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Abstract. A single photon which is initially uncorrelated with an exciton will evolve to be entan-
gled with the exciton on their continuous kinetic variables in the process of resonant scattering. We
find the relations between the entanglement and their physical control parameters, which indicates
that high entanglement can be reached by changing specific parameters of exciton.

I. INTRODUCTION

Entanglement with continuous variable attracts many attentions for its fundamental
importance in quantum nonlocality [1] and quantum information science and technology
[2]. As a physical realization, the continuous momentum entanglement between atom and
photon has been extensively studied in the recent years [3–6]. In the process of resonant
scattering [5], the momentum conservation will induce the atom-photon entanglement with
the degree is proportional to the momentum variance. Based on the similarities in excitons
and atoms, in this paper, we propose a novel scheme to control the entanglement between
a single exciton and a photon. Due to the specific behaviors of the excitons, this new
mechanism will exhibit interesting features of entanglement.

To describe the degree of entanglement, we calculate first the ratio R between
the conditional and unconditional variance of momentum to evaluate the two particles
correlations in the probability amplitude of their wave function, which is experimentally
accessible and can be seen as the ”amplitude entanglement” in the momentum space [5].
Then we use the standard Schmidt decomposition [8,9,12] and treat the Schmidt number
K [9] as a criterion for the full entanglement contained both in amplitude and phase. As in
the previous system [5], for both criteria R and K, we revealed their similar dependences
on the physical control parameters of the system. However, due to the difference of the
excitons, we study the parameters in completed different scales to evaluate the degree of
entanglement.

II. THEORETICAL MODEL

As shown in Fig. 1(a), the two-level exciton in semiconductors has transition fre-
quency ωe and total mass m, the ground state and excited state are denoted by |1〉 and
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Fig. 1. (a) Single photon interacts resonantly with free two-level exciton. (b)
The incident photon is scattered by the exciton; angle θ is fixed to determine the
direction of the detection.

|2〉, respectively. The incident single photon from some generator is resonant with the
exciton and exhibits a superposed state of different Fock states due to its linewidth. We
fix the photon detector and exciton detector in opposite directions and make them both
in the x-z plane for simplicity (see in Fig. 1(b)); the angle θ can be controlled to observe
the scattering in needed directions. The Hamiltonian of this system under the rotating
wave approximation (RWA) could be written as:

Ĥ =
(~p̂)2

2m
+
∑

~k

~ω~k
â+
~k
â~k

+ ~ωeσ̂22 + ~

∑

~k

[g(~k)ωeσ̂12â
+
~k
e−i~k.~r +H.c.], (1)

where ~p̂ and ~r denote the center of mass momentum and position operators of the exciton,
σ̂ij denotes the excitonic transition operator |i〉〈j| where i, j = 1, 2; â~k

and â+
~k

are the

annihilation and creation operators for the light mode with the photonic wave vector ~k
and frequency ω~k

= ck, respectively. Note that the summation is performed over all
coupled modes in the continuous Hilbert space. We also suppress the polarization index
in the summation as well as in the photon state, since we can always choose a particular

polarization to detect the photon. g(~k) is the dipole coupling coefficient.
As there is only one photon in the interaction, the basis of the Hilbert space can

be denoted as |~q, 1~k,i
〉 (i=1,2), where the arguments in the kets denote, respectively, the

wave vector of the exciton and of the photon, and the excitonic internal state. At time t
the state vector can therefore be expanded as

|ψ〉 =
∑

~q,~k

C1(~q,~k, t)|~q, 1~k
, 1〉+

∑

~q

C2(~q, t)|~q, 0, 2〉. (2)
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Substituting Eqs.(1) and (2) into the Schrödinger equation yields

iȦ(~q,~k, t) = g(~k)B(~q + ~k, t)ei[ck−ωe−(~/2m)(2~q+~k).~k]t, (3)

iḂ(~q, t) =
∑

~k

g∗(~k)A(~q − ~k,~k, t)ei[ωe−ck+(~/2m)(2~q−~k).~k]t, (4)

in which A, B are the slow varying parts of C1 and C2, i.e.,

A(~q,~k, t) = C1(~q,~k, t)e
i(~q2/2m+ck)t, (5)

B(~q, t) = C2(~q, t)e
i(~q2/2m+ωe)t. (6)

The exciton is initially prepared in state |1〉 with the momentum wave-function

is defined by Gj(qj) = e−(qj/δqj)
2
, with j = x, y, z, in which δq denotes its momentum

variance. If the distance between the incident photon and exciton is L, one can choose
the photonic wave function as Pj = eiφ(kj ,L)/(kj/δkj + i) with j = x, y, z, which is a good
approximation if the pumping pulse for the single-photon generator is chosen appropriately
[10].

Similar to the problem of photon-atom scattering [5], in our work, we focus on the
case of the photon scattered perpendicular to the incident direction, i.e., θ = π/2. We

have B(~q, t→ ∞) → 0, and A(~q,~k, t→ ∞) = Aπ/2.

Aπ/2 =
Nexp[−(∆qx − ~k0

mc ∆kx)
2/ηx

2]

(∆kx + ∆qx + ~k0
2

2mΓ + i)[(∆kx + ∆qx)/τz + i]
, (7)

where Γ = π
∑

~k
|g(~k)|2δ(ωe−ck) is the exciton’s radiative linewidth, ∆ki ≡ (ki−k0)/Γ/c,

∆qi ≡ (~k0/mΓ)/(qi − k0), ηi ≡ δqi~k0/mΓ, τi ≡ δki/Γ/c with i = x, y, z, are all defined
dimensionless parameters. Note that ηx and τz contain all the physical parameters that
determine the nature of the exciton-photon system and thus can be treated as physical
control parameters for the exciton and the photon, respectively.

We neglect tiny terms in Eq. (7) due to ~k0
2 � mΓ and ~k0 � mc in realistic

conditions.

Aπ/2 ≈ Nexp[−(∆qx/ηx)2]

(∆kx + ∆qx + i)[(∆kx + ∆qx)/τz + i]
, (8)

with N is the normalization factor

N 2 =
√

2(1 + τz)/π
3/2τzηx.

From Eq. (8) and Fig. 2, one sees that the variables ∆qx and ∆kx play the sym-
metric role of the two Lorentzian functions. It makes the probability amplitude |Aπ/2|2
localized along the diagonal of the momentum space, which implies the non-factorization
of the photon-exciton wave function, and then it will generate entanglement between the
two particles.

III. AMPLITUDE ENTANGLEMENT IN MOMENTUM

In both theoretical and experimental studies [6, 13], the ratio (denoted by ”R”) of
the unconditional and the conditional variances plays a important role, since it is direct
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Fig. 2. Plots of amplitude |Aπ/2|2 with the conditions τz = 1, ηx = 106

experimental measure of nonseparability (entanglement) of the system. For the single-
particle measurement, the unconditional variance for the effective excitonic momentum is
determined as

δ2∆qx
single

= 〈∆qx2〉−〈∆qx〉2 =

∫

d∆kxd∆qx∆qx
2|Aπ/2|2−

(
∫

d∆kxd∆qx∆qx|Aπ/2|2
)2

.

(9)
Meanwhile, where the photon is previously detected at some known ∆kx, the coin-

cidence measurement gives the conditional variance as

δ2∆qx
coinc

= 〈∆qx2〉∆kx
− 〈∆qx〉2∆kx

=

∫

d∆qx∆qx
2|Aπ/2|2

∫

d∆qx|Aπ/2|2
−
(

∫

d∆qx∆qx|Aπ/2|2
∫

d∆qx|Aπ/2|2

)2

,

(10)
by using these two variances, we have:

R ≡ δ∆qx
single/δ∆qx

coinc ≥ 1. (11)

Substituting Eqs. (9) and (10) into the definition of R, we yield R(ηx, τz) as a
function of parameters ηx and τz, the result of which is illustrated in Fig. 3 with ∆kx

fixed at the origin.
In Fig. 3(a), we showed that the entanglement increases monotonously with in-

creasing ηx or decreasing τz, which indicates that higher entanglement can be achieved
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Fig. 3. (a) Relation between R and the two control parameters (ηx, τz), (b) Sec-
tional views of (a), with ηx = 2.65× 105, 6.5× 105, 11.5× 105 from bottom to top.
The ratio R is calculated from variable ∆qx with ∆kx is fixed at the orgin

by squeezing the linewidth of the incident photon or broadening the wave packet of the
exciton. In particular, due to ηx � 1 and τz � ηx, we have

R ≈
ηx +

√

2
πτz

2
√
τz

. (12)

The entanglement increases linearly with increasing ηx, and increases abruptly enhanced
with decreasing τz.

The ratio R, which can be experimentally obtained by comparing the momentum
dispersion variance, is an appropriate quantification for the entanglement contained in the
probability amplitude correlation (thus can be seen as an evaluation of the ”amplitude
entanglement”). Next, we can see that it reveals a correct varying tendency for the
entanglement with its control parameters. However, the definition of R is dependent on
its representation space and different choices for the basis of Hilbert space will cause
distinct values of R. This is because the R ratio is only constructed from the amplitude
information of the wavefunction, and then all entanglements included in phase [7, 11] are
lost. To obtain the ”total entanglement”, we calculate the Schmidt number [8, 9] and
compare it with the entanglement ratio R in the next section.

IV. SCHMIDT DECOMPOSITION AND FULL ENTANGLEMENT

In order to evaluate the full entanglement for the bi-partite system in a pure state,
we use the ”Schmidt number”. Mathematically, the entanglement of an unfactorable wave
function can be completely characterized by the Schmidt number, which is denoted by the



ENTANGLEMENT OF A SCATTERED SINGLE PHOTON AND AN EXCITON 227

value K ≡ (
∑

n=0
∞λn

2)−1, where λn are the eigenvalues of the integral equation:
∫

d∆q
′

xρ
e(∆qx,∆q

′

x)ψi(∆q
′

x) = λiψi(∆qx). (13)

On the other hand, the Schmidt number is expressed via trace of squared partial density
matrix, K = 1/Tr((ρe)2) = 1/Tr((ρp)2) (ρe, ρp are the partial density matrix of the
exciton and the photon, respectively).

The partial density matrix for the exciton is defined by

ρe(∆qx,∆q
′

x) =

∫

d∆kxAπ/2(∆qx,∆kx)A
∗

π/2(∆q
′

x,∆kx). (14)

Substituting Eq. (8) into Eq. (13), we have:

ρe(∆qx,∆q
′

x) = − 4πiN 2τ2
z e

−
(∆q2x+∆q

′ 2

x)

ηx
2

(∆qx − ∆q′x + 2i)(∆qx − ∆q′x) + 2τzi)(∆qx − ∆q′x + (τz + 1)i))
.

(15)
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Fig. 4. (a) Schmidt number K and amplitude entanglement degree R in depen-
dence on τz with ηx = 6.5×105, (b) Relation between K and R in the dependence
on ηx with τz = .1, 1, 5, spots line is for K whereas solid line is plotted for R

Finally, we obtained an analytical formula for the Schmidt number, which has a
simple asymptotic form:

K ≈ ηx(τz + 3)(3τz + 1)

6
√
π(τz + 1)τz

. (16)

From Fig. 4 we find that, similar to the ratio R, K rises linearly with parameter ηx and
will increase rapidly when the linewidth of the incident photon is squeezed narrower to
the exciton linewidth. Second, when τz is fixed, the slope of K(ηx) is always much larger
than that of R(ηx), which means that more entanglement information will transfer to the
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phase when ηx becomes larger [5,7], and this phenomenon will become more evident when
τz reduced.

V. CONCLUSION

In summary, we have investigated the recoiled induced excitonphoton entanglement
in the scattering. To evaluate the entanglement, first we use an experimentally accessible
parameter R, which denotes the ratio between momentum variance in single particle and
in coincidence observations, second we use standard Schmidt decomposition to reveal the
full entanglement information. Because specific parameters of excitons are different from
those of atoms, the physical control parameters in the new scheme are calculated in much
higher scales. Compared with the degree of entanglement between atom and photon [3–6]
the new scheme produces super-high momentum entanglement between a single exciton
and a single photon. Moreover, we obtained for the first time a simple analytical formula
of K, which could be used to demonstrate explicitly the dependence of entanglement on
the control parameters. However, there are still difficulties in the new scheme such as the
weak stability of excitons in semiconductors and decoherence due to effects of environment,
which can cause the disentanglement [7].
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