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MULTIPARTITE DISENTANGLEMENT DYNAMICS

DUE SIMULTANEOUSLY TO

AMPLITUDE DAMPING AND PHASE DAMPING

NGUYEN BA AN
Institute of Physics, VAST

Abstract. We present a detailed analysis on disentanglement dynamics of multiqubit GHZ-type
states whose qubits are remotely located in absence of any mutual interactions. The dynamics is
thus induced by independent local environments surrounding each qubit. It has recently been known
that if each qubit is subjected solely to the phase damping then the state’s entanglement vanishes
asymptotically in time and if only the amplitude damping is active then the state’s entanglement
may vanish suddenly in certain parameter subspace. In this paper, we shall show that a combined
action of both the phase damping and the amplitude damping will force the state’s entanglement to
always vanish suddenly in the entire parameter space. Furthermore, we shall prove that by proper
local operations such a finite-time disentanglement can be avoided for whatever state’s parameters,
no matter the phase damping and the amplitude damping act severally or in combination.

I. INTRODUCTION

It is the nonlocal correlation between the subsystems comprising a quantum system
that makes quantum entanglement (or, simply entanglement, for short) so fascinating and
having no classical counterparts. Many surprising quantum protocols/algorithms based
on entanglement have been proposed so far. Superdense coding [1], quantum teleporta-
tion [2], quantum key distribution [3], quantum secret sharing [4], prime factorization [5],
quantum search [6], etc. are most profound examples. Recently, the issues such as mul-
tipartite entanglement, disentanglement dynamics, combined action of different types of
noise sources and controlling disentanglement dynamics have attracted special attention
among the quantum physics community. Multipartite entanglement is necessary for quan-
tum secure network communication and scalable quantum computation. Disentanglement
dynamics differs very much from decoherence and is inevitable in realistic circumstances
due to interactions with always existing environments. Combined action of noises of dis-
tinct types is more likely to happen in practice than separate actions of them. And,
controlling disentanglement dynamics is highly desirable from the application point of
view because one needs to maintain as long as possible the initial entanglement amount
to perform a quantum task.

Multipartite disentanglement dynamics has recently been intensively studied by a
number of authors [7–17], focusing just on particular effects of an individual noise source.
The collective effect of simultaneous action of two different noise sources has been explored
in Ref. [18] but only for a bipartite model, the simplest possible composite system. In
this work we shall touch upon all the important issues mentioned above by investigating
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disentanglement dynamics of the N -qubit GHZ-type state

|ΦN〉 = α |0〉⊗N + β |1〉⊗N , (1)

with nonzero α, β ∈ C and |α|2 + |β|2 = 1, a very powerful quantum resource which has
already been generated in the lab for N up to 10 [19] and suitable to a good deal of
application (see, e.g., [20–23]), under simultaneous local influence of two typical quantum
damping channels [24] at zero temperature, the phase damping and the amplitude damping
ones. Here by qubits we mean two-level atoms with one ground state denoted by |0〉 and
one excited state denoted by |1〉 . We assume a quite reasonable experimental scenario in
which the N qubits are shared among N remote parties so that each qubit interacts only
with its own environment and there are no direct or indirect interactions at all between any
qubit pair. Since there exists nonlocal “spooky” correlation between the qubits, even local
environments can lead to far-reaching consequences of the state’s global properties such as
entanglement. We are interested in the time it takes for state |ΦN〉 to be fully disentangled,
i.e., to become completely separable. In Sec. II we outline a description of the state
evolution governed by local qubit-environment interactions using the so-called operator-
sum representation in terms of Kraus operators [25]. Sec. III presents a detailed analysis of
disentanglement dynamics of |ΦN 〉 , with emphasis on an interesting phenomenon named
finite-time disentanglement (FTD), which is also called entanglement sudden death in the
literatures [26–38]. In Sec. IV, a method using certain local operations on the initial state
|ΦN〉 is introduced to transform it to another state which possesses the same entanglement
amount as |ΦN 〉 , but, unlike |ΦN〉 , never suffers from FTD. Since disentanglement time
does not fully characterize usefulness of an entangled state we also analyze in this section
the initial time evolution of both entanglement and fidelity of |ΦN〉 as well as of the states
obtained from |ΦN 〉 by the local operations. Finally, we conclude in Sec. V.

II. THE OPERATOR-SUM REPRESENTATION

Suppose that initially a qubit j is in a state ρj(0), which may be pure or mixed,
and its surrounding environment Ej is in the vacuum state |0〉Ej . Let at t > 0 the total
system “qubit plus environment” evolves together in time via a unitary operator UjEj(t) :

ρj(0)⊗ |0〉EjEj 〈0| → ρjEj

(t) = UjEj(t)
(

ρj(0)⊗ |0〉EjEj 〈0|
)

U+
jEj(t). (2)

Since we are interested in the qubit dynamics we need trace out ρjEj

(t) over the de-
grees of freedom of the uncontrollable environment. This can be expressed as action of a
superoperator S on ρj(0) as

Sρj(0) = ρj(t) = TrEj [ρjEj

(t)] =
∑

n

Kj
n(t)ρj(0)Kj

n(t)+, (3)

where

Kj
n(t) = Ej 〈n|UjEj (t) |0〉Ej , (4)
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with {|n〉Ej} an orthogonal basis for the environment associated with qubit j, are called
Kraus operators [25] which satisfy the trace-preserving condition

∑

n

Kj
n(t)+Kj

n(t) = I (5)

for all time t. Equation (3) is referred to as the operator-sum representation of the su-
peroperator S which is in many cases very convenient to obtain the desired ρj(t) directly
from ρj(0). The Kraus operators themselves can be derived from the corresponding unitary
operator by means of Eq. (4).

Two typical and useful quantum damping channels [24] for qubits are the phase
damping channel and the amplitude damping channel. A combined action of both the
channels on qubit j can be described by the following quantum map (corresponding to
transformations governed by the underlying unitary operator UjEj)

UjEj :







|00〉jEj → |00〉jEj ,

|10〉jEj →
√

(1 − pj)(1− Pj) |10〉jEj +
√

pj(1− Pj) |11〉jEj

+
√

(1− pj)Pj |02〉jEj +
√

pjPj |03〉jEj .

(6)

Physically, this map implies no changes in case the qubit is in its ground state |0〉j . But,

when the qubit is in its excited state |1〉j , it may either stay there without doing anything

with probability (1 − pj)(1 − Pj) or with scattering the environment to state |1〉Ej with
probability pj(1 − Pj), or it may jump down to its ground state and transfers its energy
to the environment by exciting it to state |2〉Ej with probability (1 − pj)Pj or to state
|3〉Ej with probability pjPj . In Eq. (6) pj and Pj are the transition probabilities due to
the phase damping and the amplitude damping, respectively, and time is parameterized
though them as

pj ≡ pj(t) = 1 − e−γj t, (7)

Pj ≡ Pj(t) = 1− e−Γj t, (8)

with γj and Γj the decay rates of qubit j associated with the corresponding damping
channel. If during the course of evolution we could monitor the environment and at a
given time measure it in the basis {|0〉Ej , |1〉Ej , |2〉Ej , |3〉Ej}, we would be able to infer
the qubit state at that time. In case the environment is uncontrollable we should average
over its states. Using the map (6) in Eq. (4) we have derived the four underlying Kraus
operators which in the qubit computational basis {|0〉j , |1〉j} are of the form

Kj
0 =

(

1 0

0
√

(1 − pj)(1 − Pj)

)

, (9)

Kj
1 =

(

0 0

0
√

pj(1 − Pj)

)

, (10)

Kj
2 =

(

0
√

(1 − pj)Pj

0 0

)

, (11)

Kj
3 =

(

0
√

pjPj

0 0

)

. (12)
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It is straightforward to check that the above operators Kj
n satisfy the condition (5) for any

pj, Pj (i.e., for all time) and that they reproduce the right expressions of Kraus operators
for the amplitude damping or the phase damping [36, 37] when pj = 0 or Pj = 0.

According to the experimental scenario mentioned in Introduction, there are no
common environments to which some qubits may be coupled, a situation that may result
in so-called decoherence-free subspaces [39,40]. There is only a local environment for each
qubit within which the qubit is experienced at the same time by both the phase damping
and the amplitude damping. Thus, the evolution of any ensemble of N distant qubits is
determined by

ρ12...N(t) =

3
∑

{nj}=0

K12...N
n1n2...nN

(t)ρ12...N(0)K12...N
n1n2...nN

(t)+, (13)

with
K12...N

n1n2...nN
(t) = K1

n1
(t) ⊗ K2

n2
(t)⊗ · · · ⊗ KN

nN
(t). (14)
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Fig. 1. The dimensionless disentanglement time TD = ΓtD as a function of r =
γ/Γ for Γj = Γ, γj = γ, N = 6 and s = |β/α| = 0.8, 1.1 and 1.5 (from top to
bottom). TD is infinite (no FTD) at r = 0 for s = 0.8 but it is finite (FTD exists)
at all r including r = 0 for s = 1.1, 1.5. Generally, for a fixed N , TD decreases
with increasing r or/and s.

III. DISENTANGLEMENT DYNAMICS

The state |ΦN〉 given in Eq. (1) has the explicit form

|ΦN〉 = (α |00...0〉+ β |11...1〉)12...N , (15)

which is a coherent superposition of N “0” and N “1”. Besides the crucial role played
by the state (15) in many problems of quantum communication and quantum computa-
tion [20–23], the main reason of choosing it for our investigation here is that this state’s
disentanglement dynamics has recently been dealt with in Ref. [13] under separate damp-
ing channels and we would like to discover new features that may arise when more than
one channel act together at the same time.

By virtue of Eqs. (13) and (9) to (12), under simultaneous action of both the phase
damping and the amplitude damping channels, the initial pure state ρΦ(0) = |ΦN 〉 〈ΦN | =
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Fig. 2. The dimensionless disentanglement time TD = ΓtD as a function of r =
γ/Γ for Γj = Γ, γj = γ, s = |β/α| = 0.9 and N = 4, 10 and 100 (from top to
bottom). TD is infinite (no FTD) at r = 0 since s = 0.9 < 1. For r > 0, FTD
occurs and TD decreases with increasing r or/and N.
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Fig. 3. The dimensionless disentanglement time TD = ΓtD as a function of r =
γ/Γ for Γj = Γ, γj = γ, s = |β/α| = 1.5 and N = 4, 10 and 100 (from bottom
to top). Since s = 1.5 > 1 FTD occurs for all r including r = 0. In this case TD

decreases with r but increases with N.

|α|2 |00...0〉 〈00...0|+ αβ∗ |00...0〉 〈11...1|+ βα∗ |11...1〉 〈00...0|+ |β|2 |11...1〉 〈11...1| evolves
into a mixed state

ρΦ(t) = a |00...0〉 〈00...0|+ b |00...0〉 〈11...1|+ b∗ |11...1〉 〈00...0|

+
∑

{aj}

ba1a2...aN
|a1a2...aN〉 〈a1a2...aN | , (16)
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Fig. 4. The scaling of the dimensionless disentanglement time TD = ΓtD for
state |ΦN 〉 with the qubit number N . The parameters used are Γj = Γ, γj = γ,
r = γ/Γ = 0.01 and s = |β/α| = 0.9, 1 and 1.5 (from top to bottom). In the
large-N limit TD ceases to depend on s.

where the sum over {aj} runs for all possible a1, a2, ..., aN ∈ {0, 1} except a1 = a2 = ... =
aN = 0 (whose contribution is included in a for convenience),

a = |α|2 + |β|2
N
∏

j=1

(

1 − e−Γj t
)

, (17)

b = αβ∗e−
PN

j=1(γj+Γj )t/2, (18)

ba1a2...aN
= |β|2

N
∏

j=1

[

aj

(

1 − e−Γj t
)

+ aje
−Γj t

]

(19)

with aj = 1− aj.
As no fully satisfactory methods exist to quantify entanglement of an arbitrary

multipartite state, various entanglement measures such as generalized concurrence [41],
negativity [42, 43], Meyer-Wallach measure [44], geometric measure [45], etc. have been
invoked to. To be concrete, we use negativity in this work. For state ρ of a system of N
parties, the negativity associated with a bipartition k|N − k is defined as Nk = 2|

∑

n λn|,
where λn are the negative eigenvalues of ρTk, the partial transpose of ρ with respect to
the concerned bipartition. Then, from Nk = 0 it follows that ρTk > 0, i.e., ρ is a positive
partial transpose (PPT) state. Nevertheless, this does not generally imply separability
of ρ. In fact, ρTk > 0 guarantees separability only in Hilbert spaces of dimensions 2 × 2
or 2 × 3, but for higher dimensions there may exist states that are entangled and, at the
same time, PPT. Such PPT entangled states are called bound entangled ones because
they cannot be distilled [46]. Therefore, negativity cannot quantify possible entanglement
in dimensions higher than six. However, for states like ρΦ(t) calculation of negativities
reduces to a problem of dimension 2×2 so for ρΦ(t) null negativity ensures separability in
the corresponding bipartition. Furthermore, ρΦ(t) belong to a class of states whose partial
transposes have at most one negative eigenvalue. For such states the expression for Nk

simplifies to
Nk = 2 max{0,−λk}, (20)
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with λk the minimum eigenvalue of ρTk.
Return to state (15) and consider a bipartition k|N − k of it. The partial transpose

ρΦ(t)Tk corresponding to the bipartition has the form

ρΦ(t)Tk = a |00...0〉 〈00...0|+ b |k〉
〈

k
∣

∣ + b∗
∣

∣k
〉

〈k|

+
∑

{aj}

ba1a2...aN
|a1a2...aN〉 〈a1a2...aN | , (21)

with |k〉 = |c1c2...cN〉 and
∣

∣k
〉

= |c1c2...cN〉 where among the N values of {cj; j =

1, 2, ..., N} there are k “1” and (N − k) “0”. The minimum eigenvalue λk of ρΦ(t)Tk

can be derived as

λk =
1

2

(

bk + bk −

√

(

bk + bk

)2
+ 4

(

|b|2 − bkbk

)

)

, (22)

where

bk = |β|2
N
∏

j=1

[

cj

(

1− e−Γj t
)

+ cje
−Γj t

]

(23)

and

bk = |β|2
N
∏

j=1

[

cj

(

1− e−Γj t
)

+ cje
−Γj t

]

. (24)

Clearly from Eq. (20), the condition for Nk to vanish is λk = 0 which, by virtue of Eq.
(22), is satisfied by

|b|2 − bkbk = 0. (25)

A remarkable property is that, although bk and bk depend explicitly on k (through {cj, cj}),
their product, by virtue of cjcj = 0 and c2

j + cj
2 = 1 for any j, can be proved to be

bkbk = |β|4
N
∏

j=1

[(

1 − e−Γjt
)

e−Γj t
]

(26)

which displays no k-dependence at all. Thus, using Eqs. (18) and (26) in Eq. (25) yields

e−t
PN

j=1 Γj



e−t
PN

j=1 γj −

∣

∣

∣

∣

β

α

∣

∣

∣

∣

2 N
∏

j=1

(

1 − e−Γj t
)



 = 0. (27)

The k-independence of the condition (27) means that all the Nk are going to vanish at the
same time despite each of them may undergo its own different transient evolution. It has
been proved in Ref. [13] that, when all the possible negativities vanish, the corresponding
state becomes completely separable. Therefore, the time at which the state |ΦN 〉 loses its
entire entanglement is the solution of Eq. (27). Let us first consider particular cases: a
purely dephasing process and a purely dissipative one.

For a purely dephasing process (i.e., Γj = 0 ∀j), the condition (27) reduces to

e−t
PN

j=1 γj = 0, (28)
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which is satisfied only in the limit t → ∞, implying an entanglement asymptotic vanishing
with the individual decay rates γj being added. This effect of additivity of decay rates is
similar to decoherence processes.

For a purely dissipative process (i.e., γj = 0 ∀j), the condition (27) reduces to

e−t
PN

j=1
Γj



1 −

∣

∣

∣

∣

β

α

∣

∣

∣

∣

2 N
∏

j=1

(

1− e−Γj t
)



 = 0. (29)

In this case there appear two regimes of disentanglement, depending on the parameters.
For |α| ≥ |β| the value of the expression in the square brackets decreases in time but
remains always positive. Hence, the condition (29) is equivalent to

e−t
PN

j=1
Γj = 0, (30)

which is again satisfied in the limit t → ∞, with the individual decay rates Γj being added
too. However, for |α| < |β| the value of the expression in the square brackets may vanish
in a finite time t < ∞. Then the condition (29) is equivalent to

1 −

∣

∣

∣

∣

β

α

∣

∣

∣

∣

2 N
∏

j=1

(

1 − e−Γj t
)

= 0, (31)

which implies FTD [26–38] with the individual decay rates Γj not being simply added
anymore. Such FTD effect is absolutely distinct from decoherence processes. The above
particular results for purely dephasing and purely dissipative processes coincide with those
obtained in Ref. [13] for identical local environments.

Now, what will happen if the qubits are experienced at the same time by both
the noise sources? Since as time grows the first term in the square brackets of Eq. (27)

decreases from 1 to 0, while the second term increases from 0 to |β/α|2 , the two will
inevitably intersect at a finite time for whatever values of α and β. In this case, the
condition (27) is equivalent to

e−t
PN

j=1
γj −

∣

∣

∣

∣

β

α

∣

∣

∣

∣

2 N
∏

j=1

(

1 − e−Γj t
)

= 0, (32)

which is clearly by no ways related to exp[−t
∑N

j=1(γj +Γj ], i.e., the individual decay rates
γj, Γj never add. Physically, this result means that a combined action of both the phase
damping and the amplitude damping allows only one regime, the FTD one, for |ΦN〉 to
disentangle. Of somewhat unexpected surprise is the role played by the phase damping.
When it acts alone no FTD occurs. But when it acts together with the amplitude damping
it enhances the effect of FTD in the sense that FTD occurs for any values of α and β, but
not only for |α| < |β| as in the case when only the amplitude damping acts. As mentioned
above, whenever FTD occurs the individual decay rates cease to be additive. The most
pronounced breakdown of additivity of decay rates can be seen in the parameter domain
with |α| ≥ |β|. In this domain, each of the noise sources alone only cause infinite-time
disentanglement, but under their combined action FTD becomes compulsory!
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In Ref. [13] the local environments are identical, i.e., γj = γ and Γj = Γ ∀j. Here
we consider a more general situation with nonidentical environments, i.e., γi 6= γj and
Γi 6= Γj for i 6= j. This allows us to further clarify the role of local noises with respect
to the occurrence of FTD. From the above analysis it can be verified that the necessary
constraints to always trigger FTD are

N
∏

j=1

Γj > 0 (33)

and
N

∑

j=1

γj > 0. (34)

The constraint (33) demands all Γj be greater than zero, i.e., all the qubits should be
subjected to the amplitude damping in their local environments. Should any qubit be
“liberated” from the amplitude damping, the whole qubits’ system will disentangle asymp-
totically in an infinite time. On the other hand, the constraint (34) just requires at least
one qubit to be under the local phase damping. Of course, however, the greater the number
of qubits being under local phase dampings the sooner the time of FTD occurrence.

To visualize the influence of all the involved parameters on the disentanglement
dynamics, let us assume for simplicity γj = γ and Γj = Γ. Then the disentanglement time
tD is solution of the equation

e−rTD = s2/N
(

1− e−TD
)

(35)

in which we have used the following dimensionless notations TD = ΓtD , r = γ/Γ and
s = |β/α|. In Fig. 1 we plot TD as a function of r for a fixed value of N but different
values of s. If s ≤ 1, TD = ∞ for r = 0, i.e., no FTD arises in the absence of phase
damping. However, TD becomes finite for r > 0, i.e., FTD arises in the presence of phase
damping. When s > 1, FTD occurs for whatever value of r including r = 0. Generally, for
a given N, the dimensionless disentanglement time TD decreases with increasing r or/and
s. Figure 2 plots TD versus r for a fixed value of s < 1 but different values of N. There is
no FTD for any N if r = 0 but, if r > 0, FTD occurs with TD decreasing with increasing
r or/and N. Figure 3 is the same as Fig. 2 but for s > 1. In Fig. 3, similar to Fig. 2, TD

decreases with increasing r, but opposed to Fig. 2, TD increases with increasing N. It is
worth emphasizing that for r > 0 the scaling of TD with the system size in terms of the
qubit number N differs strongly in three regimes s = 1, s < 1 and s > 1. Namely, there
is no N -dependence for s = 1. However, the N -dependences are inverse to each other for
s < 1 and s > 1. Moreover, for s < 1 (s > 1) the scaled disentanglement time TD is bound
from below (above) by its value at s = 1. In other words, in the limit N → ∞ (large-size
limit) TD ceases to depend on s. These behaviors are illustrated in Fig. 4. In the large-
size limit (N → ∞), only the r-dependence sustains and, for r > 0, the dimensionless
disentanglement time is determined by TD = ln(1/X) with X the solution of the equation
Xr + X = 1.
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IV. CONTROLLING DISENTANGLEMENT DYNAMICS

If entanglement degrades asymptotically one could distill it when fidelity remains
sufficiently high [47, 48]. Nevertheless, when an entangled state evolves too quickly and
suddenly becomes completely separable no distillation protocols can be utilized to restore
the irreversible loss of entanglement. FTD has been looked upon as a serious obstacle
or even an impasse in using entanglement as a resource for quantum communication and
quantum computation. Controlling FTD dynamics is therefore of real necessity. One
method to combat FTD is to let subsystems of the considered system interact with com-
mon environments to build up possible decoherence-free subspaces [39, 40]. This method
however does not apply to our experimental scenario in which each qubit experiences only
its own local environment, i.e., there are no common environments at all. FTD in cav-
ity QED can be controlled by measurement feedback methods or by driving the system
with additional classical fields (see, e.g., [49, 50] and the references therein). Quantum
error correction (QEC) [51–53] proves to be a powerful method to detect and correct a
general error in a single qubit in closed systems. For open systems a channel-adapted
QEC scheme has been proposed [54] that allows to correct errors in single qubits due to
the amplitude damping as well. Recently, quantum codes adapted for dissipative chan-
nels have been investigated in detail [55] with a hope to protect two-qubit entanglement
against the amplitude damping. It has been found that generally the quantum codes will
not protect a state from FTD. In some cases they can delay FTD but cannot remove it.
Worse still, in other cases they may bring about FTD for coded states which are FTD-free
when uncoded!

In this section we shall show that just by applying on |ΦN〉 a proper initial set of
local operations one can absolutely get rid of FTD. The set of operations is

U(n) = I⊗n ⊗ (σx)⊗(N−n), (36)

with 1 ≤ n ≤ N − 1, I the 2 × 2 identity matrix and σx the Pauli bit-flip operator. We
shall provide an explicit proof that, for any α and β, entanglement of the transformed
state

|Ψn,N 〉 = U(n) |ΦN〉 = α |0〉⊗n |1〉⊗(N−n) + β |1〉⊗n |0〉⊗(N−n) (37)

always vanishes asymptotically (i.e., FTD never happens), no matter the phase damping
and the amplitude damping act severally or together.

By virtue of Eqs. (13) and (9) to (12), under simultaneous action of both the
phase damping and the amplitude damping channels, the initial pure state ρΨ(0) =
|Ψn,N 〉 〈Ψn,N | = |α|2 |0...01...1〉 〈0...01...1|+αβ∗ |0...01...1〉〈1...10...0|+α∗β |1...10...0〉 〈0...01...1|+
|β|2 |1...10...0〉〈1...10...0| evolves into a mixed state

ρΨ(t) = c |0...00...0〉〈0...00...0|

+b |0...01...1〉〈1...10...0|+ b∗ |1...10...0〉〈0...01...1|

+
∑

{a1,,...,an}

da1...an |a1...an0...0〉 〈a1...an0...0|

+
∑

{an+1,...,aN}

gan+1...aN
|0...0an+1...aN〉 〈0...0an+1...aN | , (38)
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where |0...01...1〉 (|1...10...0〉) contains n “0” (“1”) and (N − n) “1” (“0”),

c = |β|2
n

∏

j=1

(1 − e−Γj t) + |α|2
N
∏

l=n+1

(1− e−Γlt), (39)

b is the same as was defined in Eq. (18),

da1...an = |β|2
n

∏

j=1

[

aj(1 − e−Γj t) + aje
−Γj t

]

, (40)

and

gan+1...aN
= |α|2

N
∏

l=n+1

[

al(1− e−Γlt) + ale
−Γlt

]

. (41)

In Eq. (38) the sum over {a1, ..., an} runs for all possible a1, ..., an ∈ {0, 1} except a1 =
a2 = ... = an = 0, while the sum over {an+1, ..., aN} runs for all possible an+1, ..., aN ∈
{0, 1} except an+1 = an+2 = ... = aN = 0, because their contributions are already
collected in c. It is important to notice the essential difference in Eqs. (16) and (38).
In Eq. (16) all the 2N diagonal matrix elements are nonzero, whereas this does not so in
Eq. (38). In Eq. (38) the diagonal matrix elements |a1...ancn+1...cN〉 〈a1...ancn+1...cN |
and |c1...cnan+1...aN〉 〈c1...cnan+1...aN | , with {cj} not identically equal to zeros, remain

zero all the time. This structural difference between ρΦ(t) and ρΨ(t) will lead to distinct
expressions of the time-dependent negativities that make the disentanglement dynamics of
|ΦN〉 and |Ψn,N 〉 diverge visibly. As for calculations of negativities they are more subtle for
|Ψn,N 〉 than for |ΦN 〉 . Unlike |ΦN 〉 , |Ψn,N 〉 has two permutationally asymmetric groups
of qubits, one group (G1) contains n first qubits and the other group (G2) contains the
remaining N − n qubits. Therefore, when dealing with a bipartition k|N − k we should
make clear the “origin” of the k qubits: do all of them come from G1 (G2) or some of
them come from G1 and the rest from G2? We may identify that by writing k = k1 + k2

with k1 (k2) the number of qubits coming from G1 (G2). There are three situations.
First, consider the situation with 1 ≤ k1 ≤ n and k2 = 0. The corresponding

partially transposed ρΨ(t)Tk1 has the form

ρΨ(t)Tk1 = c |0...00...0〉〈0...00...0|+ b |k1〉
〈

k1

∣

∣ + b∗
∣

∣k1

〉

〈k1|

+
∑

{a1,...,an}

da1...an |a1...an0...0〉 〈a1...an0...0|

+
∑

{an+1,...,aN}

gan+1...aN
|0...0an+1...aN〉 〈0...0an+1...aN | , (42)

with |k1〉 = |c1...cn1...1〉 and
∣

∣k1

〉

= |c1...cn0...0〉 where among the n values of {cj; j =

1, 2, ..., n} there are k1 “1” and (n−k1) “0”. The minimum eigenvalue Λk1
of ρΨ(t)Tk1 can

be derived as

Λk1
=

1

2

(

dk1
−

√

d2
k1

+ 4|b|2
)

, (43)
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where

dk1
= |β|2

n
∏

j=1

[

cj(1 − e−Γj t) + cje
−Γj t

]

. (44)

Next, consider the situation with k1 = 0 and 1 ≤ k2 ≤ N − n. The corresponding
partially transposed ρΨ(t)Tk2 has the form

ρΨ(t)Tk2 = c |0...00...0〉〈0...00...0|+ b |k2〉
〈

k2

∣

∣ + b∗
∣

∣k2

〉

〈k2|

+
∑

{a1,...,an}

da1...an |a1...an0...0〉 〈a1...an0...0|

+
∑

{an+1,...,aN}

gan+1...aN
|0...0an+1...aN〉 〈0...0an+1...aN | , (45)

with |k2〉 = |0...0cn+1...cN〉 and
∣

∣k2

〉

= |1...1cn+1...cN〉 where among the (N −n) values of
{cj; j = n+1, n+2, ..., N} there are k2 “0” and (N −n−k2) “1”. The minimum eigenvalue

Λk2
of ρΨ(t)Tk2 can be derived as

Λk2
=

1

2

(

gk2
−

√

g2
k2

+ 4|b|2
)

, (46)

where

gk2
= |α|2

N
∏

l=n+1

[

cl(1− e−Γlt) + cle
−Γlt

]

. (47)

Finally, consider the situation k = k1 + k2 with both k1 6= 0 and k2 6= 0. The
corresponding partially transposed ρΨ(t)Tk has the form

ρΨ(t)Tk = c |0...00...0〉 〈0...00...0|+ b |k〉
〈

k
∣

∣ + b∗
∣

∣k
〉

〈k|

+
∑

{a1,...,an}

da1...an |a1...an0...0〉 〈a1...an0...0|

+
∑

{an+1,...,aN}

gan+1...aN
|0...0an+1...aN〉 〈0...0an+1...aN | , (48)

with |k〉 = |c1...cncn+1...cN〉 and
∣

∣k
〉

= |c1...cncn+1...cN〉 where among the n values of {cj;
j = 1, 2, ..., n} there are k1 “1” and (n − k1) “0” and among the (N − n) values of {cj;
j = n + 1, n + 2, ..., N} there are k2 “0” and (N − n − k2) “1”. The minimum eigenvalue
Λk of ρΨ(t)Tk can be derived as

Λk = −|b| (49)

which turns out independent of both k and n.
By definition, the negativities associated with the three above situations are given

by

Nk1
= 2 max{0,−Λk1

}, (50)

Nk2
= 2 max{0,−Λk2

} (51)

and

Nk = 2 max{0,−Λk}, (52)
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Fig. 5. Fidelity FΨ, Eq. (55), as a function of T = Γt for Γj = Γ, γj = γ,
γ/Γ = 0.1, N = 6 with different values of α and n. a) α = 0.9 and n = 1, 2, 3, 4, 5
(upwards). b) α = 0.1 and n = 1, 2, 3, 4, 5 (downwards).
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Fig. 6. The largest negativities Nk=N/2(T ), Eq. (20), of state |ΦN〉 (thick-dashed

curve) and Nk(T ), Eq. (52), of state |Ψn,N〉 = I⊗n⊗(σx)⊗(N−n) |ΦN〉 (thick-solid
curve), in units of their initial value 2|αβ|, as functions of T = Γt for Γj = Γ,
γj = γ, α = 0.1, γ/Γ = 0.1 and N = 6. For the same set of parameters, the
entanglement of |ΦN 〉 dies suddenly in a finite time, while that of |Ψn,N 〉 does
asymptotically in an infinite time. The thin-dashed curve is the fidelity FΦ(T ),
Eq. (54), while the thin-solid curve is the fidelity FΨ(T ), Eq. (55), with the
optimal choice n = 1. The horizontal straight line at 0.5 is just to guide the eye.

respectively. From Eqs. (43), (46), (49) and (50), (51), (52) it immediately follows that
all of Nk1

, Nk2
and Nk tend to zero at the same time as |b|2 → 0. Thus, returning to the

expression of b, Eq. (18), the condition for all the possible bipartite negativities to vanish,
i.e., for |Ψn,N 〉 to become completely separable, is simply

e−t
PN

j=1(γj+Γj ) = 0. (53)

This condition (53) means that |Ψn,N 〉 never suffers from FTD. Moreover, in the whole
range of the involved parameters the entanglement of |Ψn,N 〉 decays exponentially at a
rate equal to the sum of all the individual decay rates, i.e., additivity of decay rates holds,
in transparent contrast to that of |ΦN 〉 when |α| < |β|, as shown in the previous section.
This is a remarkable result in the sense that, while the applied local operations do not
change the entanglement amount of |ΦN〉 , i.e., |ΦN〉 and |Ψn,N 〉 possess the same amount
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of entanglement (quantified by any same measure), they cause a dramatic change in the
states’ disentanglement dynamics.

At this point it is worth noting that, from a practical point of view, what more
actually matters is the “short-time” dynamics of disentanglement, i.e., how big is the
initial decay rate of the state’s entanglement. Also, in view of possible distillation, of
significance is the change of the state’s fidelity, which is a measure of to what extent the
evolved state is close to the initial one. Touching these issues also elucidates the role played
by n in the local operator U(n) given by Eq. (36). On the one side, as seen from the
condition (53), states |Ψn,N 〉 are FTD-free irrespective of a concrete value of n ∈ [1, N−1].
So, to protect |ΦN〉 from FTD, just a single bit-flip, say, of the last qubit (i.e., n = N −1)
suffices. On the other side, however, n proves to play an important role in the evolution
of fidelity. For ρΦ(t) the fidelity is given by

FΦ(t) = 〈ΦN | ρΦ(t) |ΦN〉 = a|α|2 + 2<(αβ∗b∗) + b11...1|β|
2, (54)

which is of course independent of n, while for ρΨ(t) it is given by

FΨ(t) = 〈Ψn,N | ρΨ(t) |Ψn,N 〉 = g11...1|α|
2 + 2<(αβ∗b∗) + d11...1|β|

2, (55)

which is sensitive to n. So, the strategy is to choose the optimal value nopt of n such that

the decrease of FΨ in time is as slow as possible to favor distillation process. This choice
depends on the concrete value of α. Qualitatively, for |α| close to 1 (i.e., |β| =

√

1 − |α|2

close to 0), FΨ ' g11...1 ∝ exp[−(N −n)T ] and thus decays slower for larger n (see 5a). In
this case the optimal choice is nopt = N − 1. In the opposite limit, for |α| close to 0 (i.e.,
|β| close to 1),FΨ ' d11...1 ∝ exp(−nT ) and thus decays slower for smaller n (see 5b). In
this case the optimal choice is nopt = 1. Figure 6 visualizes the advantage of |Ψn,N 〉 over
|ΦN〉 with respect to both entanglement and fidelity evolutions. As recognized from 6,
starting right from t = 0, not only the entanglement degree of |Ψn,N 〉 decays slower than
that of |ΦN〉 , but also the fidelity of |Ψn,N 〉 decays much slower than that of |ΦN 〉 . In

particular, up to T ' 0.66 the fidelity FΨ remains high enough (> 0.5) while ρΨ is still
entangled, enabling a potential entanglement distillation. On the contrary, already after
T ' 0.58 the fidelity FΦ is negligibly small and, more seriously, ρΦ becomes completely
separable due to FTD, preventing any entanglement distillation protocols.

V. CONCLUSION

In conclusion, disentanglement dynamics of the multiqubit GHZ-type state |ΦN〉 =

α |0〉⊗N + β |1〉⊗N , each qubit of which is exposed simultaneously to two local damping
channels, the phase damping and the amplitude ones, has been studied in detail by means
of time-dependent negativities. In contrast to the well-known decoherence of a single qubit,
entanglement of |ΦN 〉 always vanishes in a finite time. Of outstanding interest is the effect
of collective action of different types of noise sources. While in a certain range of the pa-
rameters (|α| ≥ |β|) disentanglement process takes an infinite time under a separate action
of either the phase damping or the amplitude damping, FTD turns out to be imperative
when both the damping channels are active at the same time, a very pronounced break-
down of additivity of individual decay rates. FTD is obviously an undesirable phenomenon.
Whenever it occurs one can by no local means restore the lost nonlocality. Fortunately,
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Fig. 7. The state parameter space in terms of |α| and |β| (which is a 1
4 -circle of

radius 1 except the points (|α|, |β|) = (0, 1) and (1, 0)) for a) |ΦN〉 under phase
damping alone (no FTD), b) |ΦN〉 under amplitude damping alone (partial FTD),
c) |ΦN 〉 under phase damping and amplitude damping together (full FTD), and
d) |Ψn,N〉 = I⊗n ⊗ (σx)⊗(N−n) |ΦN〉 under phase damping alone or amplitude
damping alone or both together (no FTD). FTD occurs in the “thick” segment,
while asymptotic disentanglement in the “thin” segment. Note that in c) the
“thin” segment includes the point with |α| = |β|.

FTD of |ΦN〉 can be absolutely circumvented without changing its initial entanglement

amount by a proper set of local operations: the state |Ψn,N 〉 = I⊗n ⊗ (σx)
⊗(N−n) |ΦN 〉 has

been shown to always disentangle “normally”, i.e., exponentially with the decay rates of
all the individual qubits being added for the total rate of the state’s entanglement decay.
This is true independent of the way of action of damping channels, i.e., no matter they act
separately or collectively. Mathematically, such FTD circumvention comes out from the
different structures of the reduced density matrices (compare Eqs. (16) and (38)) that in
turn yield strongly different forms of the minimum eigenvalues (compare Eqs. (22) with
(43), (46) and (49)) of the partial transposes and, thus, of the negativities which govern
the states’ disentanglement dynamics. Physically, disentanglement is faster for stronger
interaction with environments. In the quantum damping model under consideration (see
(6)) only qubits in states |1〉 interact with environments while qubits in states |0〉 are unaf-
fected. Thus, the more qubits in states |1〉 the stronger the state-environment interaction.
As can be verified, in state |ΦN〉 the probability of finding all the N qubits in states |1〉
is |β|2 which is always finite, but in state |Ψn,N 〉 such a probability is always zero. In
other words, in states |Ψn,N 〉 the possible number of qubits being in |1〉 is always less
than N so |Ψn,N 〉 interacts with the environments weaker than |ΦN〉 does. It is this fact
what is possibly the physical reason of the distinct disentanglement dynamics of the two
local-operation invariant states. In this connection, an existing interpretation that under
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the amplitude damping FTD requires the initial population probability of the multiply
excited state |11...1〉 to be larger than the population probability of the unexcited state
|00...0〉 [37] turns out irrelevant when the phase damping joins the game. The various ef-
fects of damping channels and local operations can be viewed diagrammatically in Fig. 7.
The final remark we want to make concerns the value of N which is tacitly treated as
greater than or equal to three. However, our results apply to N = 2 as well, because
for N = 2 the unique bipartition is 1|1 for which the defined negativity coincides with
concurrence [56]. Experimentally, FTD has been observed in bipartite systems under a
single noise source [35–37]. Since quantum technologies are progressing at a quick pace
disentanglement dynamics of multipartite systems under the collective action of different
types of noise sources could be examined in the future.

ACKNOWLEDGMENT

This work is supported by a NAFOSTED project NCCB-2009.

REFERENCES

[1] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett., 69 (1992) 2881.
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