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Abstract. We study the Néel state of the spin 1
2

Heisenberg antiferromagnet model on hypercubic
and triangular lattices, employing an auxiliary fermion representation for spin operators with
Popov-Fedotov trick. The unphysical states are eliminated on each site by introducing an imaginary
chemical potential. Working in local coordinate systems we obtain the free energy and the sublattice
magnetization for both lattices in an unified manner. We show that exact treatment of the single
occupancy constraint gives a significant effect at finite temperatures.

I. INTRODUCTION

The fundamental problem in the theoretical investigation of spin systems is that
spin operators satisfy neither Bose nor Fermi commutation relations, so one cannot use
Wick’s theorem to construct a standard many body techniques. In order to avoid this
difficulty various approaches to the study of spin systems have been suggested. One of the
approaches is based upon representing operators in term of Bose or Fermi spin operators
[1-2]. However, introduction of the auxiliary Bose or Fermi operators enlarges the Hilbert
space in which these operators are acting. As a result, the unphysical states appear and
should be excluded. In order to exclude these states one has to impose the constraint
on bilinear combinations of Fermi or Bose operators. For example, for spin S = 1

2 the
fermi operators introduce the spurious double occupied and empty states which must be
freezed out. Unfortunately in general it is very difficult to take the constraint exactly
into account and usually the local constraint is replaced with the global one, where the
number of states is fixed only on an average for the whole system instead of being fixed on
each site. It is not clear whether such un approximation is a good starting point for the
investigation of the spin systems. In 1988, Popov and Fedotov [4] proposed an alternative
approach for spin 1

2 and spin equal 1 Hamiltonian free from local constraint difficulty.
Based on the exact fermionic representation for spin operators, the Popov-Fedotov ap-
proach enables one to enforce the auxiliary-particle constraint on each site independently
by introducing purely imaginary chemical potential. The auxiliary-particle representation
used by Popov-Fedotov is neither fermionic nor bosonic and is called semionic representa-
tion. The Popov-Fedotov trick has been developed for arbitrary values of spin S [5] and
for the systems out of the equilibrium [6]. The semionic representation of spin operators
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has been applied successfully to various problems: ferromagnetic [7] and antiferromagnetic
[8-10] Heisenberg model in hypercubic lattice; negative −U Hubbard model [11]; antifer-
romagnetic Kondo lattices [12]; spin glass model [13]; nanostructure [14]... In this work,
we consider the Néel state in the spin 1

2 Heisenberg antiferromagnet model on hypercu-
bic and triangular lattices in an unified manner using the Popov-Fedotov approach. Spin
1
2 triangular lattice Heisenberg antiferromagnets (TLHAF) give rise to many interesting
phenomena originating from the low dimensionality and geometric frustration. Experi-
mentally, Cs2CuBr4 [15], Cs2CuCl4 [16] and K − (BEDT − TTF )2Cu2(CN)3 [17] have
been actively studied as spin 1

2 TLHAFs. Recently, Y. Shirata et al reported the results
of magnetization and specific heat measurement on Ba3CoSb2O9 and demonstrated that
spin 1

2 TLHAF has been realized in Ba3CoSb2O9 [18]. Many theories are applied to in-

vestigate the physics of spin 1
2 TLHAF: spin wave theory [19-21]; coupled cluster method

[22] and exact diagonalization [23]. However, experimental verification of the theoretical
results has not been conducted at quantitative level because the above substances are not
regular but distorted, so the exchange interaction is spatially anisotropic. The outline of
the paper is as follows. In Sec. II we describe the model Hamiltonian and the Popov-
Fedotov method. In Sec. III we consider mean field approximation. Quantum fluctuations
around a classical ground state are treated in Sec. IV. The conclusions are presented in
Sec. V.

II. MODEL HAMILTONIAN AND FORMALISM

An isotropic Heisenberg antiferromagnetic on hypercubic and triangular lattices
considered in the following is given by the Hamiltonian:

H =
J

2

∑
<i,j>

Si.Sj (1)

The sum covers all nearest neighbor pairs 〈ij〉. The starting point for evaluating the fluc-
tuations is a classical ground state of (1). For a hypercubic lattice antiferromagnet consists
two sublattice called A and B, one spin-up and the other spin-down. For a triangular lat-
tice, the classical ground state is three sublattice Néel state with an angle of 120o between
the spins of different sublattice called A,B and C. In order to introduce only one type
of auxiliary particle we perform a transformation to change the Néel configuration into a
ferromagnetic state in each sublattice. We define the local spatially varying coordinates
Ox′y′z′ with Oz′ pointing along the local classical Néel direction, the direction of y′-axis
is invariable. Accordingly, the Hamiltonian (1) in the new local coordinates is expressed
in a form:

H =
J

2

∑
〈ij〉

{
Syi S

y
j + cos (θi − θj)

(
Sxi S

x
j + Szi S

z
j

)
+ sin (θi − θj)

(
Szi S

x
j + Sxi S

z
j

)}
(2)

The Hamiltonian (2) can be written in the following form, which is convenient for the
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Popov-Fedotov method:

H = −1

2

∑
ij;αβ

Jαβij S
α
i S

β
j (3)

where: 
Jxyij = Jyxij = Jyzij = Jzyij = 0

Jxzij = −Jzxij = J sin (θi − θj)
Jxxij = Jzzij = J cos (θi − θj)
Jyyij = −J

(4)

For a hypercubic lattice cos (θi − θj) = 1, sin (θi − θj) = 0 while for a triangular lattice

cos (θi − θj) = 1/2, sin (θi − θj) = ±
√

3
2 . Therefore we can express the coupling ma-

trix Jαβij in an unified way for both hypercubic and triangular lattice: cos (θi − θj) =

α,sin (θi − θj) = ±
√

1− α2 with α = 1 for the hypercubic lattice and α = 1/2 for the
triangular lattice. The non-canonical commutation relations of spin operator S poses a
great difficulty for an analytical approach to the Hamiltonian (3) because the Wick’s the-
orem and standard perturbation techniques cannot be applied. Following Popov-Fedotov
[4] we represent the spin 1

2 operators as bilinear combination of auxiliary Fermi operators
as follows:

Sαi =
1

2

∑
σ,σ′

a†iσσ
α
σσ′aiσ′ (5)

σ ≡ (σx, σy, σz) are the Pauli matrices, and σ, σ
′

=↑, ↓ is the spin index. Hereafter we let
~ = 1. The Pauli principle allows the number of auxiliary fermion at each site i to be 0,
1, 2 so the Fock state of the auxiliary fermion aiσ is spanned by four states: two physical

states: |↑〉 = a†i↑ |0〉 ; |↓〉 = a†i↓ |0〉 and two unphysical states: |0〉 ; |2〉 = a†i↑a
†
i↓ |0〉 where |0〉

is the vacuum aiσ |0〉 = 0. The unphysical states have to be eliminated with the aid of the
constraint:

N̂i =
∑
σ

a†iσaiσ = 1 (6)

The constraint (6) has to be enforced on each site independently and is done by introducing

the projection operator P̂ = 1
iN
ei
π
2
N̂ , where N̂ =

∑
i,σ
a†iσaiσ to the partition function:

Z = Tr
[
e−βĤ P̂

]
(7)

H is the Hamiltonian (3), written in terms of the fermions operators (5). The contributions
of the unphysical states to the partition function automatically cancel out one with other
because the trace over the unphysical states of each site vanishes:

Trunphys

[
e
−β(Ĥ− iπ

2β
N̂)
]

= (−i)o + (−i)2 = 0 (8)

Therefore, the partition function describing the Hamilton (1) with strictly one spin per
lattice site reads:

Z =
1

iN
Tr
[
e−β(Ĥ−µN̂)

]
(9)
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where N denotes the number of sites. The constraint (6) is enforced by means of the purely
imaginary Lagrange multipliers µ = iπ

2β playing the role of imaginary chemical potentials

of fermions. As a result, the fermionic Matsubara frequencies are modified as follows:

ω̃F = ωF −
π

2β
=

2π

β

(
n+

1

4

)
(10)

III. MEAN FIELD APPROXIMATION

In order to get rid off the 4-fermion terms in the partition function (9)we perform
a Hubbard-Stratonovich transformation and introduce of the Bose auxiliary fields ϕi:

e

1
2

β∫
0

dτ
∑
ijαβ

Jαβij S
α
i (τ)Sβj (τ)

=
1

Zo

∫
[Dϕ] e

−
β∫
0

dτ

{
1
2

∑
ijαβ

(J−1)
αβ

ij
ϕαi (τ)ϕβj (τ)+2

∑
iα
Sαi ϕ

α
i

}
(11)

where:

Z0 =

∫
ϕ(β)=ϕ(o)

[Dϕ] e
−
β∫
0

dτS0[ϕ(τ)]
(12)

and:

So [ϕ] =
1

2

∑
ijαβ

(
J−1

)αβ
ij
ϕαi ϕ

β
j (13)

In the equation (11) and (13)
(
J−1

)αβ
ij

denotes the inverse of the coupling matrix Jαβij .

Starting from (9), this leads to:

Z =
1

Z0

1

iN

∫
[Dϕ] [Dη] e

−
β∫
0

S[ϕ(τ),η(τ)]dτ
(14)

where

S [ϕ(τ), η(τ)] = So [ϕ] + S1 [ϕ, η] (15)

S1 [ϕ, η] =
∑

η∗iσ(τ)

(
∂

∂τ
− µ

)
ηiσ(τ) +

1

2

∑
iασσ′

η∗iσ(τ)σασσ′ηiσ′(τ)ϕαi (16)

and η∗iσ, ηiσ stand for the Grassmann variables. After integration over the bilinear Grass-
mann variables the partition function (14) becomes:

Z =
1

iN
1

Zo

∫
ϕ(β)=ϕ(o)

[Dϕ] e−Seff [ϕ] (17)

where the effective action Seff [ϕ] is given by

Seff [ϕ] =

β∫
0

So [ϕ] dτ − ln detβK̂ (18)
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The matrix K̂ reads:

K̂i (ωn1 − ωn2) =

(
iωn1 δn1,n2 + 1

2ϕ
z
i (ωn1 − ωn2) 1

2ϕ
x
i (ωn1 − ωn2)− iϕyi (ωn1 − ωn2)

1
2ϕ

x
i (ωn1 − ωn2) + iϕyi (ωn1 − ωn2) iωn2 δn1,n2 − 1

2ϕ
z
i (ωn1 − ωn2)

)
(19)

ωn1 , ωn2 refer to modified fermionic Matsubara frequencies defined in (10). K̂i can be
written in the form:

K̂i = K̂io + M̂i (20)

where

K̂io (ω1, ω2) =

(
iωn1 + 1

2ϕ
z
io

1
2ϕ
−
io

1
2ϕ

+
io iωn2 − 1

2ϕ
z
io

)
δn1,n2 (21)

M̂i =
1

2

(
δϕzi (ωn1 − ωn2)δϕ−i (ωn1 − ωn2)

δϕ+
i (ωn1 − ωn2)− δϕzi (ωn1 − ωn2)

)
(22)

with
δϕi (ωn1 − ωn2) = ϕi (ωn1 − ωn2)−ϕi (0) (23)

and
δϕ±i (ω) = δϕxi (ω)± iδϕyi (ω) (24)

Then the second term in the effective action (18) can be developed into a series:

ln detβK̂i = Tr ln K̂io + Tr

∞∑
n=1

(−1)n+1

n

(
K̂−1
io Mi

)n
(25)

From (17) and (24), at the one loop approximation one obtains the effective action as
follows:

Seff =
β

2

∑
Ωn

ΦoÂij(Ωn)Φo − Tr lnKo

+
β

2

∑
ij,Ωn

{
ΦioĈij(Ωn)δΦj(Ωn) + δΦi(−Ωn) Ĉij(Ωn)Φjo

}
(26)

where
Âij(Ωn) = δΩn,0(Ĵ−1)ij (27)

Ĉij(Ωn) = δΩn,0(Ĵ−1)ij +
2

β
K̂i1δijδΩn,0 (28)

D̂ij(Ωn) = δΩn,0(Ĵ−1)ij +
1

β
K̂i2δijδΩn,0 (29)

The matrix K̂i1 is given by:

K̂i1 = −1
4

β
|ϕio| tanh β|ϕio|

2 Î (30)

while the matrix K̂i2 has the following components:

K−−i2 =
1

16

(
ϕ+
io

)2
QiΩ (31)

K++
i2 =

1

16

(
ϕ−io
)2
QiΩ (32)
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Kzz
i2 =

1

8

[(
(ϕzio)

2 −
(
ϕ+
io

) (
ϕ−io
))
QiΩ − 4PiΩ

]
(33)

K−+
i2 = − 1

16

[
(ϕzio)

2 (ϕzio + 2iΩ)QiΩ + PiΩ

]
(34)

K+−
i2 = − 1

16

[
(ϕzio)

2 (ϕzio − 2iΩ)QiΩ + PiΩ

]
(35)

Kz+
i2 =

1

8

∑
iΩ

[
ϕ−io (ϕzio + iΩ)

]
QiΩ (36)

K+z
i2 =

1

8

∑
i,Ω

[
ϕ−io (ϕzio − iΩ)

]
QiΩ (37)

Kz−
i2 =

1

8

∑
i,Ω

[
ϕ+
io (ϕzio − iΩ)

]
QiΩ (38)

K−zi2 =
1

8

∑
i,Ω

[
ϕ+
io (ϕzio + iΩ)

]
QiΩ (39)

We use the following notations in the above expressions:

Qi,Ω6=0 =
2β

|ϕio|
(
ϕ2
io + Ω2

) tanh
β |ϕio|

2
(40)

Qi,Ω=0 =
2β

|ϕio|3
tanh

β |ϕio|
2
− β3

ϕ2
io

1

cosh2 βϕio
2

(41)

Pi,Ω6=0 =
ϕ2
io

4
Qi,Ω6=0 (42)

Pi,Ω=0 = −ϕ
2
io

4
Qi,Ω=0 +

β

|ϕio|
tanh

β |ϕio|
2

(43)

We also introduce the three component spinors:

Φio =

 ϕ+
io

ϕ−io
ϕio

z

 ; Φio =
(
ϕ+
io, ϕ

−
io, ϕio

z
)

δΦi =

 δϕ+
i

δϕ−i
δϕi

z

 ; δΦi =
(
δϕ+

i , δϕ
−
i , δϕi

z
) (44)

The mean field equation for the auxiliary field ϕio can be derived by minimizing the
effective action in the application of the least action principle:

δSeff
δΦk(Ω)

∣∣∣∣δΦi=δΦi=0 ∀i =
δSeff

δΦk(−Ω)

∣∣∣∣
δΦi=δΦi=0 ∀i

= 0 (45)

From (28) and (44) one obtains:∑
j

(Ĵ−1)ijΦjo =
Φio

2 |ϕio|
tanh

β |ϕio|
2

(46)
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In order to relate the auxiliary field ϕi to the local magnetization mi, we add the source
term

∑
i
λαi S

α
i (τ) to the Hamiltonian (1). The sublattice magnetization is given by follow-

ing:

mα
i = 〈Sαi 〉 = − 1

β

∂ lnZ (λ)

∂λαi
|λk=0∀k (47)

which leads to the relation:
〈ϕνk〉 =

∑
i,α

(J)ναki m
α
i (48)

Because we are working in the local coordinates with eio pointing along the sublattice
classical magnetization in the mean-field approximation mio = mioez and ϕio = ϕioez.
Combining (45) and (47) the mean-field equation of the magnetization mio is given by

mio =
1

2
tanh

β
∑
ij

(Ĵ)zzijmjo

2
(49)

In the absence of the external magnetic field all the sublattices are equivalent so mAo =
mBo = mo for the hypercubic lattice and mAo = mBo = mCo = mo for the triangular
lattice. Inserting (J)zzij = αJ , from (48) one gets:

mo =
1

2
tanh

3Jβmo

2
(50)

with z being the coordination number of the lattice. (z = 2D for the D-dimensional
hypercubic lattice and z = 6 for the triangular lattice). For average projection, with
µ = 0, we find on a similar procedure:

mo =
1

2
tanh

zαJβmo

4
(51)

Putting α = 1 and z = 2D for the D-dimensional hypercubic lattice we recover the results
obtained by the other authors [8, 9, 10, 24] while for α = 1/2 and z = 6 we obtain the
results for the triangular lattice. From (49) the phase transition temperature TC reads:

kBTC =
zαJ

4
(52)

which is twice larger than the Néel temperature obtained in the case of average projection.
The temperature dependence of the sublattice magnetization have been calculated by
solving the equations (49) and (50). The results are shown in Fig.1. One can see that the
exact constraint treatment changes sizably the finite temperature results. This is due to
thermal fermion number fluctuations into unphysical states, which are reduced in exact
projection.

IV. FLUCTUATION CORRECTIONS

In the local coordinates in the mean-field approximation we have ϕ±io = 0 and ϕzio =

ϕo for every site i, therefore the matrix K̂i2 (30)-(38) has only two nonzero components:

K+−
i2 =

(
K−+
i2

)∗
= −β

4

1

(ϕio + iΩ)
tanh

βϕo
2

(53)
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Fig. 1. Temperature dependence of magnetization. Full line: exact projection.
Dotted line: average projection.

After the Fourier transform the last term of the effective action (25) reads:

S
(2)
eff =

β

2

∑
p,Ω

δΦ (−p,−Ω) D̂ (p,Ω) δΦ (p,Ω) (54)

where the kernel D̂ (p,Ω) is given by:

D̂ (p,Ω) = Ĵ−1(p) +
1

β
K̂2(Ω) (55)

Here we have:

K̂2(Ω) =

 0 K+−
2 (Ω) 0

K−+
2 (Ω) 0 0

0 0 Kzz
2

 (56)

with:

K+−
2 (Ω) = K−+

2 (Ω) = − mo

2(αzJmo + iΩ)
(57)

Kzz
2 = −β

4

(
1− 4m2

o

)
(58)

From (4) the inverse of the coupling matrix Ĵ−1(p) in the momentum representation is
defined as follows:

(J−1(p))++ = (J−1(p))−− =
αγ2(p) +B(p)

C (p)
(59)

(J−1(p))+− = (J−1(p))−+ =
αγ2(p)−B(p)

C (p)
(60)

(J−1(p))+z = (J−1(p))−z = −(J−1(p))z+ = −(J−1(p))z− =
2
√

1− α2f(p)γ (p)

C (p)
(61)



ANTIFERROMAGNETIC HEISENBERG SPIN 1
2

MODEL ON HYPERCUBIC AND TRIANGULAR ... 41

(J−1(p))zz =
4αγ (p)

C(p)
(62)

In equation (58)-(61) we use the following notations:

γ(p) =
2

z

∑
δ

cosδp (63)

where δ is the nearest neighbor vectors δ = (1, 0, 0...)...; (0, 0, ...1) for the hypercubic and:

δ1 = (1, 0); δ2 =
(

1
2 ,
√

3
2

)
and δ3 =

(
−1

2 ,
√

3
2

)
for the triangular lattice.

f (p) =
2i

z

∑
δ

sin(pδ) (64)

B(p) = α2γ2(p) + (1− α2)f2(p) (65)

C(p) = 4zJγ(p)B(p) (66)

Substituting (53) into (25) and integrating over the fluctuation field δΦ(Ωn) we obtain the
free energy in the one-loop approximation:

F =
NzαJm2

o

2
− N

β
ln

(
2 cosh

zαJmoβ

2

)
+

1

4β

∑
p

ln

[
1− (zα)2

16
J2β2

(
1− 4m2

o

)2
γ2(p)

]

+
1

β

∑
p

ln
sinh βε(p)

2

sinh zαJmo
2

(67)

where the magnon energy is given by:{
ε(p) = zαJmoω(p)

ω(p) =
[
1 + 1−α

α γ(p)− 1
αγ

2(p)
]1/2 (68)

For z = 2D and α = 1, from (66) and (67) we get the well known results for the D-
dimensional hypercubic lattice [8]. For z = 6 and α = 1/2, equation (67) gives the
magnon dispersion for TLAFM [19]. In the limit T → 0K, from (66) one gets the ground
state energy per bond for TLAFM :

εo = −3

8
+

1

4

1

N

∑
p

ω(p) (69)

The numerical evaluation of equation (68) gives εo = −0, 1818; which is in agreement
with the results obtained by other methods [19-23]. Adding the sources term

∑
i
λiSi to

the Hamiltonian (1) in a similar way in the preceding section we obtain for the sublattice
magnetization in one-loop approximation as follows:

m =

(
mo +

1

4mo

)
+
zαJ∆m

4mo
− 1

4N

∑
p

1

tanhβε(p)
2

(
2

ω(p)
+
γ(p)

ω(p)
+
zαJ∆m

2

)
(70)
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where:

∆m =
2β
(
1− 4m2

o

)
4− βzαJ (1− 4m2

o)
(71)

Putting z = 4 and α = 1,from (69) and (70) we get the results in Ref.[9] for the square
lattice. For the triangular lattice z = 6 and α = 1/2 taking the limit of zero temperature
∆m = 0;mo = 1

2 , we have:

m = 1− 1

4N

∑
p

(
2

ω(p)
+
γ(p)

ω(p)

)
(72)

which is exactly the magnetization obtained in linear spin wave approximation [19]. On
the contrary, at finite temperatures exact treatment of the constraint changes the results
considerably.

V. CONCLUSIONS

In the present work we have studied the Néel state of the spin 1
2 isotropic Heisen-

berg antiferromagnetic model on hypercubic and triangular lattices using Popov-Fedotov
approach in one-loop approximation. Working in local coordinates we considered both
lattices in an unified procedure. For the hypercubic lattice we recover the results of the
other authors. Some results for the triangular lattice have been derived by us before, but
in more complicated way [25]. We employed an auxiliary fermion representation for spin
1
2 operators. The exact projection into the physical states is performed by introducing an
imaginary chemical potential as proposed by Popov and Fedotov. We obtained the ex-
plicit expressions for the free energy and the sublattice magnetization taking into account
the fluctuations. The results show that exact projection gives a significant effect at finite
temperatures. However, in the limit of low temperature the difference of the results for
the cases when the constraint is treated exactly and when it is done in thermal average is
negligibly small. This is due to the suppression of the fermion number fluctuations into
the unphysical states, as discussed in Ref.[24].
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