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Abstract. In this work, we proposed a new model in order to study the phase transition behaviour of animal group.
The individuals in the group are considered as the XY spins which can move freely in a plane with the same speed.
For the interactions between every pairs of the individuals, we used the Hamiltonian of the system in the model of spin
current with including a long-range Morse potential. Using the Monte-Carlo simulation technique, we obtained the
main parameters of the model: the averaged velocity of all individuals which is equivalent to the order parameter or
magnetization for the spin model, and the concentration of the individuals. The simulation result clearly shows that the
system has three phases which correspond to the uncollected, flocking (schooling) and runaway behaviors at very low,
medium and high noise, respectively. The simulation predictions are in good agreement with experimental observations
[B. L. Partridge, Sci. Am. 246, (1982) 114].
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I. INTRODUCTION

One of the most familiar and intriguing examples of many degrees of freedom, non-equilibrium
dynamical system is a flocking or schooling behavior, which has been a phenomenon of long
standing interest. Well-known examples are found in populations such as large schools of fish,
the gatherings of birds, the swarming of ants and the herding of sheep [1–5]. The schooling or
flocking is a behavior of some animal species where they stay together in a group for social rea-
sons. They derive many benefits from these behaviors including defence against predators, easier
to move, enhanced foraging success and higher success in finding a mate.

The group of animal does not need a leader or an external stimulus to avoid splitting up,
move cohesively and adopt a common direction. Therefore, these behaviors can be described by
a self-organized system. A mathematical model is proposed by Cucker and Smale [6] (CSM)
using the equations of classical mechanics. In which, the interaction is introduced in the form
of attraction or repulsion force which depends on the distance between each individual and its
neighbors. However, the equation of motion in CSM is a discrete function of distance [7–9]. On
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the other hand, T. Vicsek et. al. introduced a physical model [10] which has been extensively
developed during the last 20 years [11–13]. This model is a novel type of dynamics in order to
investigate phase transition in non-equilibrium systems based on the ferromagnetic spin model. In
which, the velocity and direction of the particles is determined by a simple rule: at each time step,
a given particle moves with a constant velocity, a new direction is obtained by the average direction
of all the neighborhood particles within a circle of radius R with including a random noise. The
effects of vision angle on the phase transition has been investigated [14], the simulation result
showed that the schooling behavior is only for the prey species, but not for the predator species.
However, all above models are applicable to study the phase transition at high noise only, where
the system is changed from the ordered phase to the disordered phase.

In this paper, we propose a simple model of self-organized system which is combined of
Vicsek’s model [10] and the model of spin current [15]. The Hamiltonian of this system is written
in terms of exchange interaction, chemical potential and long-range Morse potential [16]. The
phase transition behavior is investigated by using the Monte-Carlo (MC) technique, we obtained
the dependence of the order parameter and the concentration of the individuals on the external
noise. These quantities could be used to explain the behaviors of animal group such as uncollected
behavior at very low noise, flocking or schooling behavior at medium noise and runaway behavior
at high noise.

The paper is organized as follows, Section II is devoted to the description of the model and
the algorithm of MC simulation. Section III shows the phase transition behavior obtained from
the simulations. Concluding remarks are given in Sec. IV.

II. THE MODEL AND TECHNIQUES

We consider a shelf-organized system consists of N individuals continuously move in a
plane (x, y) of linear size L with the maximum velocity v0. The ith individual is characterized by
their position rrri = (xi,yi) and orientation SSSi of magnitude S = 1. The orientation or the moving
direction of each individual is the same as a classical XY spin with ferromagnetic interaction. The
Hamiltonian of the system is defined by

Htot = He +HM +Hc, (1)

with

He = − ∑
<i, j>

Ji j(SSSi ·SSS j), (2)

HM = K0 ∑
<i, j>

[
e−2a(ri j−r0)−2e−a(ri j−r0)

]
, (3)

Hc = D0 ∑
i
(ni−n0). (4)

In which, He is the exchange energy of the system, SSSi is the orientation of ith individual at position
rrri. The interaction factor Ji j is given by

Ji j = J0e−ri j , (5)

with J0 > 0 and ri j is the distance between two individuals SSSi and SSS j. HM is a long-range inter-
action which has the form of Morse potential with K0, a and r0 being the constants. The chemical
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potential Hc depends on the concentration of the individuals. ni is the number of individuals in a
circle of radius rD

c , centered at ith individual. n0 = π(rD
c )

2N/L2 is the average of individuals in an
unit of area.

In Eqs. (2) and (3), ∑<i, j> indicates the sum over every individual pairs SSSi and SSS j inside
a circle centered at SSSi. We denote re

c and rM
c being the cut-off radii of exchange interaction and

Morse potential, respectively.
Let us explain the biological meaning of the terms in the Hamiltonian (1). He is the interac-

tion for the alignment of the individuals, they have the same orientation in the flocking state. HM
is an attractive potential for long range of distance between the individuals, it helps to the animals
moving close to each other. The last term Hc is a strong repulse interaction, so the individuals are
not be curdled.

’Si

Si

dt

(a) (b)

Si ’Si

φ

Fig. 1. The forward movement (a) and the rotation (b) of an individual.

In order to investigate the nature of the phase transition, we use the standard Monte-Carlo
method with Metropolis algorithm for updating both position and orientation of the individuals.
Here we define a noise parameter ξ which is equivalent to the temperature in statistical physics.
The way the simulation algorithm is implemented can be described by a scheme:

(1) Choose an initial state
(2) Choose an individual i at position ri with orientation SSSi
(3) Calculate the energy Ei
(4) Try to changes the position by a forward movement in a random length dt generated

from the uniform distribution on an interval [0,v0]. Its new position rrri (see in Fig. 1a)
is obtained by

x′i = dt cosθi, (6)
y′i = dt sinθi (7)

with the orientation angle

θi = arctan(yi/xi) .

(5) Calculate the new energy E f
(6) Generate a random number R such that 0 < R < 1
(7) If R < exp[−(E f −Ei)/ξ ], accept the translational motion and update the energy Ei→

E f
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(8) Generate a random angle φ from a zero-centered Gaussian distribution on the interval
[−π,π]. Try to changes the orientation SSS′i (Fig. 1b) as follows

(Sx
i )
′ = cosθ

′
i , (8)

(Sy
i )
′ = sinθ

′
i , (9)

where
θ
′
i = θi +φ .

(9) Calculate the new energy E f
(10) Generate other random number R
(11) If R < exp[−(E f −Ei)/ξ ], update the orientation
(12) Go to the next individual and go to (3)

In MC simulations, we calculate the averaged order parameter Q and the concentration of
the individuals which are defined as

Q =
1
N

〈∣∣∣∣∣ N

∑
i=1

SSSi

∣∣∣∣∣
〉
, (10)

ρ =
1
N

〈
N

∑
i=1

ni

〉
. (11)

III. SIMULATION RESULTS

In biology, all the individuals of an animal group are spread to find foods if there is no
danger. In this situation, the individuals are distributed in the space and out of alignment with
a small concentration. For simplicity, we say the group of animals is in “uncollected” behavior.
When the animals are faced with danger such as predators, their natural instinct is to flee not
fight, they use their natural herding instinct to bind together in a small area for safety with the
same orientation and maximum concentration. This stage is called the “flocking” behaviour. All
individuals of group will move further from predator in the same direction and then stampede as
fast as they can when being under predator’s attack. At the final stage, they are in the “runaway”
behavior. Any external excitations endanger animal lives are so-called the “noise”. In summary,
almost of animal groups have three behaviors:

• Uncollected behavior at low noise, where the individuals are distributed in the space
with disordered orientation.
• Flocking behavior at medium noise, they are bind together with the ordered orientation

and high concentration.
• Runaway behavior at high noise, all individuals stampede in the different directions.

They are distributed in the space with the disordered orientation.

In the ferromagnetic spin systems, the ordering of the system is quantified by the order
parameter Q which is defined in Eq. (10). When all spins are parallel, the order parameter reaches
to the maximum Q = 1, so we say the system is in the ordered phase. Whereas, the system is in
the disordered phase, where the spins have different values, therefore the order parameter is about
zero. On the other hand, the quantity ρ in the Eq. (11) characterizes to the concentration of the
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spins. Depending on the noise, the spins are close to each other or distributed in the space, hence
the concentration ρ is high or low.

Now we apply the algorithm of MC technique to the new model which have been described
in Sec. II. For the model’s parameters, we use here the exchange interaction constant J0 = 1.0 and
cut-off radius re

c = 1.0. For the Morse potential: K0 = 0.2, a = 0.5, r0 = 3.0 and rM
c = 3.0. The

parameters of chemical potential are D0 = 0.05 and rD
c = 1.0. The maximum velocity is set to be

a constant v0 = 0.05.
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Fig. 2. Order parameter versus noise ξ with the system size N = 100.
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Fig. 3. The concentration of the individuals versus noise ξ .

For the simulations, we generate an initial state with N individuals are randomly distributed
on a square of size L×L, where N = 100 and L = 40. The orientation angle θi of each individual is
randomly chosen in an interval [0÷2π]. At each ξ , the equilibration time lies around 4×106 MC
steps per individual and we compute statistical averages over 8× 106 MC steps per individual.
Periodic boundary conditions (PBCs) are used in the xy plane. We obtained the dependence of
the order parameter and the concentration on the noise which are shown in the figures 2 and 3,
respectively.

We see that, the system undergos two transition points at low noise ξ 1
c = 0.025 and high

noise ξ 2
c = 0.225. The transition points separate the system into three phases: phase I, II and III

at low noise ξ < 0.025, medium noise 0.025≤ ξ ≤ 0.225 and high noise ξ > 0.225, respectively.
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Fig. 4. Snapshot of the system at very low
noise ξ = 0.01, the arrows indicate the
position and orientation of each individual.
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Fig. 5. Snapshot of the system in the flocked
state at ξ = 0.039.
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Fig. 6. Snapshot of the system at high noise
ξ = 0.233.

In phase I, the order parameter Q is
about 0.2 and ρ ' 1.0, the system is in the
disordered phase with the distributed position
of the individuals. Fig. 4 clearly shows that
the individuals have been distributed in the
space with different orientation. Therefore,
this phase is equivalent to the uncollected be-
havior of animal group.

With increasing the noise, the order pa-
rameter Q increases up to 1.0 and the concen-
tration ρ increases to 6.64. The system un-
dergos from disordered phase (phase I) to or-
dered phase (phase II) over the first critical
point ξ 1

c = 0.025, then one slowly decreases in
phase II until the noise reaches to the second
critical point ξ 2

c = 0.225. In this phase, the in-
dividuals are close to each other with the same
orientation (see in Fig. 5). The ordered phase
corresponds to the flocking behavior of animal
group when they are faced with danger such as
predators.

In the case of high noise, the system
is changed from ordered phase (phase II) to
disordered phase (phase III) passing through
the second critical point. With increasing the
noise, the order parameter quickly decreases
to 0.1 and the concentration decreases to zero.
Fig. 6 shows the snapshot of the system at high
noise ξ = 0.233 where the individuals are lo-
cated at the positions far away from each other
with random orientations. The phase III is
equivalent to the runaway behavior of animal
group when they are under predator’s attack.

Let us say a few words on the phase
transition, the discontinuity in order parameter
curve is a clear signature of a first-order tran-
sition. Of course, it is only one of the condi-
tions for the first-order transition. To give a
conclusion on that, ones have to calculate the
critical exponent quantities and the energy his-
togram with a double peak, but it is not our
purpose here.
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IV. CONCLUDING REMARKS

We have introduced in this paper the simple model for studying the phase transition behav-
ior of animal group. The group of animals is considered as a system of self-propelling particles.
Using the definitions for the velocity of the individuals in Vicsek’s model combining with the
model of spin current, we established the Hamiltonian of the system with including the Morse
potential for long range interaction. We also presented in detail the algorithm for the Monte-Carlo
simulation technique.

The result presented here will serve as a testing for the new model. We showed that the
system has three phases and it goes through two phase transitions at very low noise and high noise.
These phases correspond to the behaviors of animal group: uncollected, flocking and runaway. Our
results are in good agreement with the experiment observations [17], where the behavior of animal
group changes from the uncollected behavior to flocking behavior at low noise and then changes
to the runaway behavior at high noise. The main goal of our model is applicable to investigate
the transition from disordered phase to ordered phase at low noise. Note that all previous models
are only proposed for the study on the phase transition at high noise, i.e., from ordered phase to
disordered phase. For developing the model, we will study the system size dependence of the
phase transition. It is the purpose of the future works.
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