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Abstract. The first three coefficients of the Taylor’s series expansion of the vevtor pion form factor as a function of the
momentum transfer are evaluated using the experimental data on the pion form factor and the P-wave nx phase shifts.
The real part of the form factor as a function of energy is also calculated by dispersion relation. Comparisons there
results with Chiral Perturbation Theory and unitarized models are given.
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The purpose of this note is three-fold. First, a systematic procedure is given to calculate
the coefficients of the Taylor’s series expansion of the form factor around the origin s = 0 in
terms of experimental data. Second the real parts of the form factor for a wider range of energy
are calculated using also experimental data. Third, these results are compared with those given
by existing theoretical calculations in order to evaluate their reliability. It turns out that only
models satisfying the elastic unitarity, giving rise to the p resonance, are valid. Chiral Perturbation
calculations at one and two-loop disagree, at very low energy, with the Taylor’s series expansion
and, at moderate energy, with the dispersion relation results.

Chiral Perturbation Theory (ChPT) [1-4] is a well-defined perturbative procedure allowing
one to calculate systematically low energy phenomenon involving soft pions. It is now widely
used to analyze the low energy pion physics not only when the interaction is not strong but also in
the presence of the resonance as long as the energy region of interest is sufficiently far from the
resonance. In this scheme, the unitarity relation is satisfied perturbatively order by order.

In this note we want to examine critically the ChPT approach and wish to emphasize that
unless that this calculation was followed by a unitarisation procedure, its results for a number of
physical processes would not be meaningful. This is so because in any perturbative scheme, it is
important that the magnitude of the calculated term should be much larger than that of the same
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order which is uncalculable because of its non-perturbative origin. To make this point clear, let us
examine the one-loop ChPT calculation of the vector pion form factor V (s) [3,4]:

1 2s
9672 2 3
where fr =0.93GeV and the r.m.s. radlus of the vector form factor is related to si by the definition
V'(0) = %rv = 1/sg. The function Hz(s) is given by:

— 4?2 —4 2 —4m2
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fors > 4m for other values of s, Hy(s) can be obtained by analytic continuation.

From this definition, it is clear that the third term on the r.h.s. of Eq. (1), being an analytic
function with the same singularity as V(s), can be expanded as a Taylor’s series at s = 0 with a
leading term behaving as s> at small s. For small s it is a reasonable approximation to take only
the first few terms of this series.

The unitarised version of Eq. (1), obtained by the inverse amplitude, the Padé approximant
or the N/D methods, is given by [7, 8]:

VPer (s )_1_1_7 + ———((s—4m3)Hzz(s) + =) (1)

1
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It is obvious that Eq. (3) has the Breit-Wigner resonance character while that from Eq.
(1) does not, although their amplitude and first derivative are identical at s = 0. Furthermore, if
the parameter sz was fixed by the the r.m.s. radius, the p mass would come out to be slightly
low compared measured p mass. Neglecting this last problem at the moment, the Taylor’s series
expansion around s = 0 reveals that Eq. (3) gives rise to a coefficient of the s* term as (1/sg)? ~
4.0GeV ~* which is much larger than that coming from the third term of Eq. (1), 1/(9607*m2 f2) ~
0.63GeV—*. This is the signal of the failure of the perturbation method. While it is difficult to
detect the presence of this term using experimental data at low energy, this failure would show up
at higher energy and with more accurate data.

It could be argued, however, that this discrepancy could come from the unitarisation scheme,
because Eq. (3) fits the data only approximatively. It is therefore desirable to have a direct proof
that this discrepancy is real and only depends on the experimental data.

Because the vector pion form factor V (s) is an analytic function with a cut from 4m2 to oo,
the n'* subtracted dispersion relation for V (s) reads:

ImV (2)dz
am2 (2 — s —I€)

V(s)=ao+ais+...ap_15" 1—|— / )
where n > 0 and, for simplicity, the series around the origin is considered. The polynomial on the
R.H.S. of this equation will be referred in the following as the subtraction constants and the last
term on the R.H.S. as the dispersion integral (DI). The evaluation of DI as a funtion of s will be
done later. Notice that a, = V"(0)/n! is the coefficient of the Taylor series expansion for V (s),
where V"(0) is the nth derivative of V (s) evaluated at the origin. The condition for Eq. (4) to
be valid was that, on the real positive s axis, the limit s "V (s) — 0 as s — c. By the Phragmen
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Lindeloff theorem, this limit would also be true in any direction in the complex s-plane and hence
it is straightforward to prove Eq. (4). The coefficient a4, of the Taylor’s series is given by:

1= ImV(2)dz
aptm = Amizr Z(”+m+1)

&)
T
where m > 0. The meaning of this equation is clear: under the above stated assumption, not only
the coefficient a, can be calculated but all other coefficients a1, can also be calculated.
Below the inelastic threshold, from unitarity of the S-matrix, V(s) must have the phase of
the P-wave elastic &7 phase shifts [9]. From the available experimental data, the inelastic effect
will manifest only at an energy above 1.3GeV [10]. Therefore, below this energy one has:

ImV(z) =|V(z) | sind(z) (6)

where 9 is the strong elastic P-wave 7 phase shifts. (There is an ambiguity of + sign on the
RHS of Eq. (6); the choice of the sign + was made is due to the normalisation V(0) = 1 and
the phenomenology, e.g. the rms pion radius is positive). Because the real and imaginary parts
are related by dispersion relation, it is important to know accurately /mV (z) over a large energy
region. Below 1.3 GeV, ImV (z) can be determined accurately because the modulus of the vector
form factor [11, 12] and the corresponding P-wave w7 phase shifts are well measured [13—15].

Using the experimental data on the pion form factor and the corresponding 77 phase shifts,
ImV (z) with experimental errors is given in Fig. 1. Similarly in Fig. 2, ReV (s) with experimental
errors is given using the expression ReV (s) =| V(s) | cosd.

One first shows how the coefficients of the Taylor’s series around s = 0 can be evaluated in
terms of /mV (s) then later, the experimental /mV (s) and ReV (s) will be used to test the validity of
various theoretical model calculations.

Following the usual definition, V(s) = 1 + ¢ < r§ > s+cs>+ds> + ... one has < 1§ >=
6aj,c = ap,d = as etc. If one makes a weak assumption that V(s)/s — 0 as s — o, using Eq. (5)
one gets the following results:

<% >=0.4440.015fm*;c =3.90+0.10GeV ~*;d = 9.70 + 0.40GeV ~° (7

where the upper limit of the integration is taken to be 1.7GeV?. From the 2 7 threshold to 0.5GeV
the experimental data on the the phase shifts are either poor or unavailable, an extrapolation pro-
cedure has to be used. For this purpose the results of models 1 and 2, to be discussed later, were
used for ImV (s). They contribute, rspectively, 5%, 15% and 30% to the a;,a; and a3 sum rules.

Because of the assumed high energy behavior, one cannot calculate here the pion charge ay.
From these results the radius of convergence for the Taylor’s series is (much) less than 1GeV?2. In
fact, a reasonable approximation for this series is the Taylor’s series expansion of V(s) ~ 1/(1 —
ays). This result is not surprising because it is the zero width approximation for Eq. (3). Away
from the p resonance, it is a better approximation than the ChPT calculations for the vector pion
form factor.

If one was willing to make a stronger assumption that the form factor vanished asymptoti-
cally, then one would be able to calculate the pion charge ag and of course also higher derivatives.
A straightforward calculation gives ap = 1.02 £ .08, where the upper limit of the integration is
taken to be 1.7GeV?. The Ward identity requires ag to be exactly unity. This calculation is to
illustrate the fact that the p resonance gives the major contribution and almost saturates the sum
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Fig. 1. The imaginary part of the vector pion form factor ImV (s), given by Eq. (6), as
a function of the energy in the GeV unit. The experimental data of the modulus of the
form factor and the P-wave 77 phase shifts are taken from the refences [11-15]. The solid
curve is the the experimental results with experimental errors; the long-dashed curve is the
two-loop ChPT calculation, the medium long-dashed curve is the one-loop ChPT calcu-
lation, the short-dashed curve is from the modified unitarized one-loop ChPT calculation,
Eq. (8), and the dotted curve is the unitarized two-loop calculation of Hannah [19].

rule for the charge; it will not be used in the following. The higher derivative sum rules are much
less sensitive to the high energy behavior of ImV (z) because of the corresponding weight factor.

It is possible to estimate the high energy contribution to the sum rules by fitting the asymp-
totic value of the pion form factor by the expression, V (s) = —% In(—s/sp) which fits equally
well the large energy behavior of the time-like and space-like pion form factor, then the integration
of the sum rule from 1.7GeV? to infinity can be estimated. The r.m.s. radius is then increased by
2% and is completely negligible for the values of ¢ and d. (The additional contribution to the ag
sum rule is 15%).

Notice that the determination of the pion r.m.s. agrees well with its direct experimental
value of 0.439 & .008 fm? [16] and with comparable errors. The determination of the values of ¢
given by emperical fits to the data using the vector meson dominance models, quoted as having a
large error of 30%, is due to the use of models having different values for the form factor at the p
mass [5, 12]. The present determination of ¢ as well as of d has an error of only a few percents.

It is now possible to compare these experimental results with existing calculations.

The first model is obtained using the inverse amplitude method for the pion form factor at
one-loop level. It can also be obtained by using the (0,1) Padé approximant method for the one-
loop ChPT calculation. The result is well known: by fitting the time like the pion form factor using
the experimental p mass, the r.m.s. radius is 10% too small. The calculated p width is 0.156GeV
which is satisfactory but the maximum value of square of the modulus of the pion form factor is
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Fig. 2. The real parts of the pion form factor as a function of energy. The curves are as in Fig. 1.

only 31 which is too low compared with the experimental data value of 40.5+0.6 as given directly
by the 7 decay data.

This result is based on the assumption of the elastic unitarity which should be correct for
an energy below 1.3 GeV but is certainly incorrect above this energy. One should phenomeno-
logically correct for this strong assumption. To do this one can simulate the inelastic effect, the
contribution of higher resonances of the same quantum number as the vector mesonp by the pres-
ence of the polynomial ambiguity in the phase representation of the form factor i.e. a zero in the
form factor. Instead of Eq. (3), the time-like pion form factor data can now be fitted by [17, 18] :

1+ as/sp
1—s/sgr— %lef%{(s—4m,2t)Hm(s) +2s/3}

V(s) = (8)

where fr = 0.093GeV, and s, is related to the p mass squared sp by requiring that the real part of
the denominator of Eq. (8) vanishes at the p mass.

The experimental data can be fitted with a p mass equal to 0.773GeV and o = 0.14. This is
a two parameter fit to the experimental data and there are three predictions: the pion r.m.s. radius,
the p width and the value of the form factor at the p mass (or the p leptonic width). These results
are in excellent agreement with the data [12,16]: the p width, defined as the derivative of the phase
shift at the p mass, is equal to 0.156GeV, the rms radius is predicted to be 0.45+0.01 fm? and the
maximum value of the modulus squared of the pion form factor at the p resonance is 39.2.

The second model, which is more complicated, but is more complete because it is based
on the two-loop ChPT calculation with unitarity taken into account. It has the singularity asso-
ciated with the two loop graphs. By using the same inverse amplitude method as was done with
the one-loop amplitude, but by generalizing this method to two-loop calculation, Hannah has re-
cently obtained a remarkable fit to the pion form factor in the time-like and space-like regions. His
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result is equivalent to the (0,2) Padé approximant method as applied to the two-loop ChPT calcu-
lation [19]. Unlike Eq. (8) which is a two parameter fit, Hannah calculation is a three parameter
calculation which gives the correct maximum value of the pion form factor, the p mass and width
and the pion r.m.s. radius.

As can be seen from Figs. 1 and 2, the imaginary and real parts of these two models are
very much in agreement with the data. A small deviation of ImV (s) above 0.9GeV is due to a
small deviation of the phases of V(s) in these two models from the data of the P-wave w7 phase
shifts. They both give also correct results for ¢ and d as given by the sum rules, Eq.(7). For
0 < s < 0.4GeV? the real parts of V (s) of these two models also agree very well with its Taylor’s
series expansion, using its first 4 terms (not shown).

The results of the imaginary parts of the one and two-loop ChPT calculations are also shown
in Fig. 1; it is seen that they differ significantly from the data. At low energy, ChPT results for
the real parts are not bad as can be seen from Fig. 2. This is due to the dominance of the real
subtraction constants (uncalculable in ChPT scheme) and cannot be used to support the validity of
the ChPT as will be discussed below.

At one-loop level, ChPT cannot be used to calculate the rms radius because the loop integral
for this quantity is divergent. Using the measured r.m.s. as an input, the one loop ChPT for
the pion form factor is given by Eq. (1). The coefficient ¢{**T, where the subscript refers to
the one-loop level is ¢§"PT = (96072 f2m2)~! ~ 0.626GeV ~* and dS"T = (134407 f2m}%)~! ~
2.30GeV~® The value for ¢ calculated by the one-loop ChPT is in agreement with a previous
determination [19] and is too small by a factor of 7 compared with the sum rule value Eq. (7); d
is also a factor of 4 too small compared with the sum rule value, Eq. (7).

At two-loop level [5, 6], ChPT cannot be used to calculate the expression for ¢ because
of the degree of divergence of the loop integral. One can calculate, however, the expression for
d. Although an analytical formula can be given, it is simpler to give it numerically: dZChP T =
4.1GeV~° which is a factor of 2.5 too small compared with the sum rule value, Eq. (7). The
disagreement with the sum rule value is now less than that from the one-loop calculation.

In the following, one follows the standard dispersion relation analysis of the data, i.e. given
the imaginary part of an amplitude, one can calculate its real part by dispersion relation. For this
purpose, it is important to realize that the equivalent use of the Taylor’s series is the dispersion
integral (DI) on the R.H.S. of Eq. (4). Because of the use of the elastic unitarity, this analysis is at
best valid to a maximum of energy of 0.8 —0.9GeV'.

One should compare the experimental values of the real part of the DI with those given by
models, because they are the direct results of the calculation schemes, unmasked by the dominance
of the subtraction constants at low energy. The real parts of the DI can be calculated using ImV (s)
from experimental data, models 1, 2 and ChPT results. In Fig. 3, for clarity, only the two-loop
ChPT calculation is plotted. It is seen that the two-loop ChPT results, are too small compared
with the corresponding real parts calculated from the data, not only for small s but also for large
s (using n = 3 for the DI). At very low energy one recovers the results of the Taylor’s series as
discussed above.

The real parts of the DI, calculated using models 1 and 2, are in good agreement with the
data at low energy, but show a small deviation from the data above 0.6GeV. This result is expected
because models 1 and 2 violate the phase theorem by a small amount above 0.9GeV, as mentioned
above.
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Fig. 3. The real parts of the dispersion integral ReDI as a function of energy (using n = 3)
in Eq. (4). The curves are as in Fig. 1; the ChPT one-loop result is not shown.

It is seen that perturbation theory is inadequate for the vector pion form factor calculation
for an energy below the p mass and even at the point s = 0 which are fairly far away from the
p mass. It would be useful to ask how large the hypothetical p mass would be in order that
perturbation theory could be trusted. It is difficult to answer this question in general but one can
take the large Ny model [21] as a guide, where Ny is the number of flavors. In this model, the
explicit solution for the form factor as well as for the scattering amplitude can be given. The
expression for the form factor is given by Eq. (3). In order that perturbation theory to be valid, it
is required that the coefficient c calculated by the ChPT to be much larger than that given by the
large Ny model. This condition yields:

sg >> V960 frmyz ~ 1.26GeV? 9)

or roughly sp >> 1.26GeV?, a condition cannot be satisfied by the physical value of the p mass.

The situation may not be as bad for the scalar form factor as can be seen by considering
also the large Ny model. Instead of Eq. (9) we now have a condition on the scalar r.m.s. of the
pion, 1/6 < r? >= 1/s§§”l‘”:

scalar
S}vecalar >> /1920/197 frmy ~ 0.41GeV? (10)

Using the “experimental” value of the scalar r.m.s. radius, < rr>=0.6 fm2 [4,5], one has s‘,"{“l“’ ~
0.40GeV? which is equal to the R.H.S. of Eq. (10), instead of being much larger. The situation is
better here than the vector case. It might be barely possible to apply the ChPT for the scalar form
factor but the accuracy of the perturbative approach could be questionable.

In conclusion, because of the inedequacy of the perturbative loop calculations, one could
try two different approaches to this problem. A more radical approach consists in considering
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effective lagrangians just as it was invented for, i.e. low energy theorems; instead of doing pertur-
bative loop calculations, one could try to analytically continue these low energy theorems to the
time-like region with the technique of dispersion relation and the constraint of unitarity. A more
standard approach is to do perturbative calculation but resumming the perturbative series in order
to satisfy unitarity. In both approaches, one could use for example the inverse amplitude, N/D and
Padé methods [7,8]. This last method [23], based on the results of the perturbation calculation and
briefly reviewed here, could be an useful method but could also give a wrong answer in a number
of problems if care was not taken. In general, one does not have a unique prescription of how to
handle the strong interaction problem.
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