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Abstract. The Bose - Einstein condensation of ultra - cold Bose gases is studied by means of the Cornwall - Jackiw -
Tomboulis effective potential approach in the improved double - bubble approximation which preserves the Goldstone
theorem. The phase structure of Bose - Einstein condensate associating with two different types of phase transition is
systematically investigated. Its main feature is that the symmetry which was broken at zero temperature gets restored at
higher temperature.
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I. INTRODUCTION

The experiments on Bose - Einstein condensation (BEC) of atomic vapors 87Rb and 23Na
was successfully realized in 1995 [1, 2]. Just after this first achievement a series of experiments
[3], [6] dealing with BEC of systems composed of two distinct species of atoms revealed that the
multi - component BEC is not a simple extension of the single component BEC. There arise many
fascinating phenomena such as the quantum tunneling of spin domain [7], vortex configuration [8],
phase segregation [9] and so on. This event marked a very rapid development in the study of
quantum gases. The most attractive feature of all experiments realizing BEC in dilute ultra - cold
gases is that almost every parameter of the system is controllable, thereby many novel phenomena,
in particular, various types of phase transition, could be created experimentally by simply adjusting
the model parameters. In parallel with experimental efforts we witness theoretical progresses [10,
21] aiming at describing different observed phenomena of multi - component systems as well as
predicting new quantum effects. In this connection, to study the phase structure of Bose - Einstein
condensates in ultra - cold gases, both experimental and theoretical, is of special interest. This
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paper is devoted to investigating the phase structure of one component Bose - Einstein condensate.
To this end, let us begin with the dilute Bose gases given by the Lagrangian:

L = φ
∗(−i

∂

∂ t
− ∇2

2m
)φ −µφ

∗
φ +

λ

2
(φ ∗φ)2, (1)

where µ represents the chemical potential, m represents the mass of Bose atom, and the coupling
constant λ is expressed through the s - wave scattering length a by

λ =
4π h̄2a

m
. (2)

For repulsive interaction λ > 0.
The controllable parameters associating with the model (1) involve two model parameters

µ , λ and the temperature T.
This article is organized as follows. In section II based on [22,23] we establish the Cornwall

- Jackiw - Tomboulis (CJT) effective potential for the system (1) in the improved double - bubble
approximation together with the equations of state. The section III deals with the numerical study
of various scenarios of phase transition. The conclusion is presented in section IV.

II. EFFECTIVE POTENTIAL IN DOUBLE BUBBLE APPROXIMATION AND
EQUATION OF STATE

In the tree approximation the condensate density

ρ0 = φ
2
0 (3)

corresponds to the local minimum of the potential. It fulfills

µφ0−
λ

2
φ

3
0 = 0, (4)

yielding
φ 2

0
2

=
µ

λ
(5)

for φ0 6= 0.
Let us now focus on the calculation of the CJT effective potential in the double - bubble

approximation [22]. At the first, the field operator is decomposed

φ =
1√
2
(φ0 +φ1 + iφ2). (6)

Inserting Eq. (6) into Eq. (1) we get, among other, the interaction Lagrangian

Lint =
λ

2
φ0φ1(φ

2
1 +φ

2
2 )+

λ

8
(φ 2

1 +φ
2
2 )

2, (7)

and the inverse propagator in the tree approximation in momentum space

D−1
0 (k) =

∥∥Ai j
∥∥ ,

A11 =
~k2

2m
−µ +

3λ

2
φ

2
0 ,

A12 = −A21 =−ω,
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A22 =
~k2

2m
−µ +

λ

2
φ

2
0 . (8)

From Eq. (5) and Eq. (8) it follows that

E =

√√√√~k2

2m

(
~k2

2m
+λφ 2

0

)
, (9)

which is the Bogoliubov dispersion relation for Bose condensate of ultra - cold Bose gases.
For small momenta Eq. (9) reduces to

E ∼

√
λφ 2

0
2m

.k, (10)

associating with the Goldstone boson due to the U(1) breaking.
Next the CJT effective potential is calculated in the double - bubble approximation in which

the obtained self - energy is momentum independent. Therefore, we assume the ansatz for the
propagator

D−1(k) =
∥∥Bi j

∥∥ ,B11 =
~k2

2m
+M1,B22 =

~k2

2m
+M2,B12 =−B21 =−ω.

Following closely [23] we arrive at the CJT effective potential Vβ (φ0, D) at finite temperature

Vβ (φ0,D) = −µ

2
φ

2
0 +

λ

8
φ

4
0 ++

1
2

∫
β

tr
[
lnD−1 +D−1

0 D−1
]

+
3λ

8

[∫
β

D11(k)
]2

+
3λ

8

[∫
β

D22(k)
]2

+
λ

4

[∫
β

D11(k)
][∫

β

D22(k)
]
, (11)

where ∫
β

f (k) = T
+∞

∑
n=−∞

∫ d3k

(2π)3 f (ωn,~k). (12)

Starting from Eq. (11) we get, respectively,
1. The gap equation

µ− λ

2
φ

2
0 −Σ1 = 0. (13)

2. The Schwinger - Dyson equation

D−1(k) = D−1
0 (k)+Σ, (14)

in which

Σ = ||Σi j||, Σ11 = Σ1,Σ22 = Σ2,Σ12 = Σ21 = 0, (15)

and

Σ1 =
3λ

2

∫
β

D11(k)+
λ

2

∫
β

D22(k),
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Σ2 =
λ

2

∫
β

D11(k)+
3λ

2

∫
β

D22(k),

M1 = −µ +
3λ

2
φ

2
0 +Σ1,M2 =−µ +

λ

2
φ

2
0 +Σ2. (16)

Then the explicit form of propagator comes out from combining Eqs. (13) and Eq. (14)

D−1 =
∥∥Bi j

∥∥ ,B11 =
~k2

2m
−µ +

3λ

2
φ

2
0 +Σ1,

B12 = B21 =−ω,B22 =
~k2

2m
−µ +

λ

2
φ

2
0 +Σ2, (17)

which clearly indicates that the Goldstone theorem fails in this approximation. In order to restore
it, we follow [24] to add an appropriate correction ∆V to Vβ (φ0, D), namely,

Ṽβ (φ0,D) =Vβ (φ0,D)+∆V, (18)

with

∆V =−λ

4
[
P2

11 +P2
22−2P11P22

]
,Paa =

∫
β

Daa(k);a = 1,2. (19)

It is easily checked that

Ṽβ (φ0,D) = −µ

2
φ

2
2 +

λ

8
φ

4
0 +

1
2

∫
β

tr[lnD−1 +D−1
0 (k)D(k)−1]

+
λ

8
P2

11 +
λ

8
P2

22 +
3λ

4
P11P22. (20)

yielding
1. The gap equation

−µ +
λ

2
φ

2
0 +Σ

∗
2 = 0. (21)

or
φ 2

0
2

=
µ̄

λ
; µ̄ = µ−Σ

∗
2. (22)

2. The SD equation
D−1(k) = D−1

0 (k)+Σ
∗, (23)

in which

Σ
∗ = ||Σ∗i j||,Σ∗11 = Σ

∗
1 =

λ

2
P11 +

3λ

2
P22,

Σ
∗
12 = Σ

∗
21 = 0,Σ∗22 = Σ

∗
2 =

3λ

2
P11 +

λ

2
P22. (24)

Combining Eqs. (22), (23) and (24) provides

D−1(k) =
∥∥Bi j

∥∥ ,B11 =
~k2

2m
+M∗1 ,

B22 =
~k2

2m
,B12 =−B21 =−ω,M∗1 =−µ +

3λ

2
φ

2
0 +Σ

∗
1. (25)
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It is immediately derived from Eq. (25) the dispersion relation

E =

√√√√~k2

2m

(
~k2

2m
+M∗1

)
,

which preserves the Goldstone theorem

E ∼
√

M∗1
2m

.k. (26)

as k→ 0.
Due to Landau criteria for superfluidity the Bose condensate turns out to be superfluid in broken
phase and its sound speed reads

C =

√
M∗1
2m

.

Ultimately the one - particle - irreducible effective potential Ṽβ (φ0) is read off from Eq. (20) with
D fulfilling the SD equation Eq. (23),

Ṽβ (φ0) = −µ

2
φ

2
0 +

λ

8
φ

4
0 +

1
2

∫
β

tr lnD−1(k)

+
P11

2

(
3λ

2
φ

2
0 −µ−M∗1

)
+

P22

2

(
λ

2
φ

2
0 −µ

)
+

λ

8
(
P2

11 +P2
22
)
+

3λ

4
P11P22. (27)

Based on the effective potential Ṽβ (φ0,D) given in Eq. (20) various equations of state are easily
derived as follows

- The pressure P is defined by

P =−Ṽβ (φ0,D), (28)
taken at minimum. Then the density of condensate reads

ρ =−
∂Ṽβ

∂ µ
=

φ 2
0
2

+
P11 +P22

2
. (29)

In term of density, the pressure (28) is expressed as

P =
λ

2
ρ

2− 1
2

∫
β

trlnD−1(k)+λρP11−
λ

2
P2

11. (30)

The free energy E follows from the Legendre transform E = µρ−P leading to

E =
λ

2
ρ

2 +
1
2

∫
β

trD−1(k)+
λ

2
P2

11. (31)

Eqs.(30) and (31) are the basic equations of state of BEC which govern all phase transition pro-
cesses of BEC.
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Starting from these equations let us consider respectively the high and low temperature
behaviors of P and E. To this end, we first mention that the symmetry U(1), broken at T = 0, is
restored at high temperature T = Tc if φ 2

0 = 0 as T → Tc.
Using the high temperature expansion of all integrals appearing in Eq. (20) we arrive at

Tc = 2π

[
µ

2m3/2λζ (3/2)

]2/3

, (32)

here ζ (z) is the zeta function of Riemann.
The behavior of pressure for high T just below the critical temperature is reduced

P =
λ

2
ρ +

m3/2ζ (5/2)

2
√

2π3
T 5/2 +

m3λ [ζ (3/2)]2

16π3 T 3,

which is the well -known result of Lee and Yang for Bose gas without invoking the double count-
ing subtraction. The high T behavior of free energy is straightforwardly derived by means of the
formula

E =− ∂

∂β
[βP]µ , (33)

which yields

E =−λ

2
ρ

2− 3m3/2λρ ζ (3/2)

4
√

2π3
T 3/2 +

3m3/2ζ (5/2)

4
√

2π3
T 5/2 +

m3λ [ζ (3/2)]2

8π3 T 3. (34)

Next the behaviors of P and E are concerned for T/µ ≤ 1. At first we note that we have the
approximate expression for M∗1 in this regime

M∗1 ' 2λρ−
2
√

2M3/2
1 m3/2λ

3π2 − 2
√

2m3λπ2

15M∗5/2
1

,

which requires a self - consistent solution for M∗1 as function of density and temperature. The
first approximation is chosen as M∗1 ' 2λρ leading to the low temperature behaviors of chemical
potential, pressure and free energy:

- Chemical potential

µ ' λρ +
4m3/2λ 5/2ρ3/2

3π2 +
m3/2π2

60λ 3/2ρ5/2 T 4.

- Pressure

P =
λρ2

2
+

4m3/2λ 5/2ρ5/2

5π2 +
m3/2π2

36λ 3/2ρ3/2 T 4.

- Free energy

E = µρ−P =
λρ2

2
+

8m3/2λ 5/2ρ5/2

15π2 +

(
m3

45ρ
− m3/2π2

90λ 3/2ρ3/2

)
T 4.
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III. NUMERICAL STUDY

Starting from the analytical expressions above, let us implement the numerical study of
various types of phase transitions of Bose - Einstein condensate in ultra - cold Bose gases.

At the first, we deal with the symmetry restoration of condensate. To this end, in every
case of interest the model parameters µ , λ and m are chosen to be close to those of experi-
mental setting. To begin with, let us focus on what was observed in the first experimental re-
alization of BEC: the appearance of BEC at given values of λ and m. Selecting, for example,
λ = 10−11eV−2,m = 8.1010eV we consider the T dependence of condensate φ0 at several values
of chemical potential. It is plotted in Fig. 1 which indicates that the critical temperature Tc de-
pends on µ as given in Eq. (31). On the other hand, Fig.1 also reveals that the symmetry U(1),
which was broken at T = 0, gets restored at higher value of T = Tc. Fig.2, which displays the
evolution of effective potential V against φ0 at several values of chemical potential µ , proves that
the restoration phase transition is second order.
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Fig. 1. The T dependence of order parameter
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.

Μ
=

0
eV

Μ
=

0.
5́

10
-11

eV
Μ

=
1´

10
-

11
eV

Μ
=

1.
6́

10
-

11
eV

Μ
=

2´
10

-
11
eV

0.0 0.5 1.0 1.5 2.0 2.5
-15

-10

-5

0

5

10

15

Φ0IeV3�2M

V
H10

-
1
2
eV

4
L

Fig. 2. The evolution of effective potential V
against φ0 at λ = 10−11eV−2 and several values
of µ

Next, let us deal with another type of phase transition which is generated by changing
the coupling constant λ at fixed µ .In Fig.3 we plot the T dependence of φ0 at several values of
coupling constant λ for m given above and µ = 10−11eV . It represents another scenario of Bose
- Einstein condensation: the appearance of Bose -Einstein condensate depends on the coupling
constant. Fig.3 also confirms the restoration of U(1) as T increases from zero and the restoration
transition is second order, as is shown in Fig. 4.

The phase diagrams of these restorations in the (T,µ) and (T,λ ) planes are presented in
Figs.5 and 6, respectively. Their common feature is that there are two distinct regions of the model
parameters: the BEC takes place only when µ̄ > 0, at µ̄ = 0 there occurs the restoration of broken
symmetry. In addition, the behavior of phase diagram in Fig.6 is in accordance with Eq. (32).
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Fig. 3. The T dependence of order parameter
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Fig. 4. The evolution of effective potential V
against φ0 at µ = 10−11eV and several values
of λ
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IV. CONCLUSIONS

In the preceding sections several physical properties of Bose - Einstein condensate were
studied by means of the CJT effective potential in the improved double - bubble approximation
which preserves the Goldstone theorem. The main results we found are in order:

1. It proved that the condensate is a superfluid in broken phase.
2. Several equations of state were established in the regimes of high and low temperature.
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3. The numerical investigation deals with two types of phase transition characterized by
adjusting three parameters T, µ and λ .

Here we discovered two difference types of phase structure of one - component Bose -
Einstein condensate: the conventional scenario of BEC manifests at given λ ; the un - conventional
scenario of BEC exhibits when λ is made changed. The last phenomenon could be directly verified
in Bose gas experiments at ultra low temperature.
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