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Abstract. This work is devoted for gauge boson sector of the recently proposed model based on SU(3)C ⊗ SU(3)L⊗
U(1)X group with minimal content of leptons and Higgses. The limits on the masses of the bilepton gauge bosons and
on the mixing angle among the neutral ones are deduced. Using the Fritzsch anzats on quark mixing, we show that the
third family of quarks should be different from the first two. We obtain a lower bound on mass of the new heavy neutral
gauge boson as 4.032 TeV. Using data on branching decay rates of the Z boson, we can fix the limit to the Z and Z′

mixing angle φ as −0.001 ≤ φ ≤ 0.0003.
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I. INTRODUCTION

The experimental evidences of nonzero neutrino masses and mixing [1] have shown that the
standard model (SM) of fundamental particles and interactions must be extended. Among many
extensions of the SM known today, the models based on gauge symmetry SU(3)C ⊗ SU(3)L ⊗
U(1)X (so-called 3-3-1 models) [2,3] has interesting features. First, [SU(3)L]3 anomaly cancella-
tion requires that the number of SU(3)L fermion triplets must equal to that of antitriplets. If these
multiplets are respectively enlarged from those of the SM, the fermion family number is deduced
to be a multiple of the fundamental color number, which is three, coinciding with the observation.
In addition, one family of quarks has to transform under SU(3)L differently from the other two.
This can lead to an explanation why the top quark is uncharacteristically heavy.

One of the weaknesses of the mentioned 3-3-1 models that reduces their predictive pos-
sibility is a plenty or complication in the scalar sectors. The attempt on this direction to realize
simpler scalar sectors has been recently constructed 3-3-1 model with minimal Higgs sector called
the economical 3-3-1 model [4, 5]. The 3-3-1 model with minimal content of fermions and Higgs
sector (called the reduced minimal (RM) 3-3-1 model) has also been constructed in [6].
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The aim of this work is to present in details the recently proposed model with focus on
gauge boson sector, and to correct some misprints in the original work [6]. The article is organized
as follows: In section II, in order to make his work self-contained, we review the basics of the
reduced minimal 3-3-1 model. Section III is devoted for the Higgs sector. In section IV, we give
more details on gauge bosons: their masses and mixing. Fermion masses and Yukawa interactions
(with some corrections) are given in section V. The charged and neutral currents are presented
in section VI, and using the obtained results we get the constraints on masses of the new neutral
Z ′ gauge boson in section VII. Section VIII is devoted for the Z decay, from which the limit on
Z − Z ′ mixing angle φ is derived. In the last section, we summarize our main results.

II. PARTICLE CONTENT

The fermion content of the model under consideration is the same as in the minimal 3-3-1
model [2, 6]. The left-handed leptons and quarks transform under the SU(3)L gauge group as the
triplets

faL =

 ν`a
`a
`c
a


L

∼ (3, 0) Q1L =

 u1

d1

T


L

∼
(
3,

2

3

)
,

QiL =

 di
−ui
Di


L

∼
(
3∗,−1

3

)
, (1)

where a = 1, 2, 3 and i = 2, 3. The T exotic quark carries 5/3 units of positron’s electric charge,
while D2 and D3 carry −4/3 each one. In Eqs. (1) the numbers 0, 2/3, and −1/3 are the U(1)X
charges. The right-handed quarks are singlets of the SU(3)L group,

uaR ∼ (1, 2/3) , daR ∼ (1,−1/3) , a = 1, 2, 3,

TR ∼ (1, 5/3) , DiR ∼ (1,−4/3) .

The charge operator is defined by

Q

e
=
λ3

2
−
√

3

2
λ8 +X, (2)

where λ3 and λ8 are the diagonal Gell-Mann matrices. Note that for antitriplet, we have to replace
the Gell-mann matrix by λ̄ = −λ∗.

The scalar sector contains only two Higgs scalar triplets [6]

ρ =

 ρ+

ρ0

ρ++

 ∼ (3, 1) , χ =

 χ−

χ−−

χ0

 ∼ (3,−1) . (3)

This minimal content of Higgs sector is enough to break the symmetry spontaneously and generate
the masses of fermions and gauge bosons in the model [6]. The neutral scalar fields develop the
vacuum expectation values (VEVs) 〈ρ0〉 =

vρ√
2

and 〈χ0〉 =
vχ√

2
, with vρ = 246 GeV.

The pattern of symmetry breaking is

SU(3)L ⊗U(1)X
〈χ0〉−→ SU(2)L ⊗U(1)Y

〈ρ0〉−→ U(1)em
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and so, we can expect
vχ � vρ. (4)

Since lepton and antilepton were put in the same triplet, therefore in the model under consideration,
lepton number is not conserved. It is better to work with a new conserved charge L commuting
with the gauge symmetry [7, 8] and related to the ordinary lepton number by diagonal matrices
L = 4√

3
T8 + L .

Another useful conserved charge B is usual baryon number [8] B = BI . These numbers
are given [7, 8] in the Table 1

Table 1. B and L charges for multiplets in the RM 331 model.

Multiplet χ ρ Q1L QiL uaR daR TR DiR faL
B charge 0 0 1

3
1
3

1
3

1
3

1
3

1
3 0

L charge 4
3 −2

3 −2
3

2
3 0 0 −2 2 1

3

In Table 2, we list particles with non-zero lepton number.

Table 2. Nonzero lepton number L of fields in the RM 331 model.

Fields lcL lL ρ++
3 χ−1 χ−−2 DiL DiR TL TR

L −1 1 −2 2 2 2 2 −2 −2

Table 2 shows that the exotic quarks carry lepton number two. Hence they are bilepton quarks.

III. HIGGS POTENTIAL

The most general renormalizable scalar potential is given by [6]

V (χ, ρ) = µ2
1ρ
†ρ+ µ2

2χ
†χ+ λ1(ρ†ρ)2 + λ2(χ†χ)2

+ λ3(ρ†ρ)(χ†χ) + λ4(ρ†χ)(χ†ρ), (5)

This potential is the simplest one since the number of free parameters is reduced from, at least,
thirteen to only six.

Expansion of ρ0 and χ0 around their VEVs is usually

ρ0 , χ0 → 1√
2

(vρ , χ +Rρ , χ + iIρ , χ). (6)

Substituting the expansion in (6) into the above potential we obtain the following set of minimum
constraint equations [6]

µ2
1 + λ1v

2
ρ +

λ3v
2
χ

2
= 0,

µ2
2 + λ2v

2
χ +

λ3v
2
ρ

2
= 0.

This potential immediately gives us two charged Goldstones bosons ρ± and χ± which are eaten
by the gauge bosons W± and V ±.
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In the doubly charged scalars, the mass matrix in the basis (χ++ , ρ++) is given by

λ4

2

(
v2
ρ vχvρ

vχvρ v2
χ

)
(7)

This matrix has the following squared mass eigenvalues

m2
h̃−−

= 0 and m2
h−− =

λ4

2
(v2
χ + v2

ρ), (8)

where the corresponding eigenstates are(
h̃++

h++

)
=

(
cα -sα
sα cα

)(
χ++

ρ++

)
, (9)

with
cα =

vχ√
v2
χ + v2

ρ

, sα =
vρ√
v2
χ + v2

ρ

. (10)

In the neutral scalar sector, in the basis (Rχ , Rρ), the mass matrix takes the following form(
λ2v

2
χ

1
2λ3vχvρ

1
2λ3vχvρ λ1v

2
ρ

)
(11)

This matrix gives us two eigenvalues

m2
h1 =

1

2
v2
χ

(
λ1t

2 + λ2 −
√

∆
)
,

m2
h2 =

1

2
v2
χ

(
λ1t

2 + λ2 +
√

∆
)
,

where t ≡ vρ
vχ

and

∆ = (λ1t
2 − λ2)2 + λ2

3t
2. (12)

The corresponding eigenvectors are(
h1

h2

)
=

(
−sβ cβ
cβ sβ

)(
Rχ
Rρ

)
(13)

with

cβ =
1√
2

(
1− λ1t

2 − λ2√
∆

) 1
2

, sβ =
1√
2

(
1 +

λ1t
2 − λ2√

∆

) 1
2

.

In the neutral pseudoscalar sector, there are two Goldstones bosons Iρ and Iχ which are eaten by
the neutral gauge bosons Z and Z ′, respectively.

In the effective limit: vχ � vρ we have

cα ≈ 1, sα ≈ 0,
√

∆ ≈ λ2 − λ1t
2 +

λ2
3

2λ2
t2,

cβ ≈ 1− λ2
3

8λ2
2

t2, sβ ≈
λ3t

2λ2

This gives the following consequences:
(1) The Goldstones boson h̃−− ≈ χ−− and one physical doubly charged Higgs boson is

h++ ≈ ρ++.
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(2) Masses of neutral Higgs bosons

m2
h1 =

(
λ1 −

λ2
3

4λ2

)
v2
ρ, m2

h2 = λ2v
2
χ +

λ2
3

4λ2
v2
ρ, (14)

(3) The positiveness of masses yields: λ1 > 0, λ2 > 0, 4λ1λ2 > λ2
3.

Let us resume content of the Higgs sector: the physical scalar spectrum of the RM331
model is composed by a doubly charged scalar h++ and two neutral scalars h1 and h2. Since the
lightest neutral field, h1, is basically a SU(2)L component in the linear combination as in Eq. (13),
we identify it as the standard Higgs boson. Thus

ρ =

 GW+

vρ√
2

+ 1√
2
(h1 + iGZ)

h++

 , χ =

 GV −
GU−−

vχ√
2

+ 1√
2
(h2 + iGZ′)

 (15)

Note that h−− carries lepton number two. Hence, it is scalar bilepton.

IV. GAUGE BOSONS

The masses of gauge bosons appear in the Lagrangian part

L = (Dµχ)† (Dµχ) + (Dµρ)† (Dµρ) , (16)

where

Dµ = ∂µ − igAaµ
λa

2
− igXX

λ9

2
Bµ, (17)

with λ9 =
√

2
3 diag(1, 1, 1) so that Tr(λ9λ9) = 2. The coupling constants of SU(3)L and U(1)X

satisfy the following relation
g2
X

g2
=

6s2
W

1− 4s2
W

(18)

where we have used the notations cW = cos θW , sW = sin θW , tW = tan θW with θW being
the Weinberg mixing angle. Substitution of the expansion in the Eq. (6) into (16) leads to the
following result: The eigenstates of the charged gauge bosons and their respective masses are
given by

W± =
A1 ∓ iA2

√
2

→ M2
W± =

g2v2
ρ

4
, (19)

V ± =
A4 ± iA5

√
2

→ M2
V ± =

g2v2
χ

4
,

U±± =
A6 ± iA7

√
2

→ M2
U±± =

g2
(
v2
ρ + v2

χ

)
4

(20)

From (19), it follows that vρ = 246 GeV. Note that there is mass splitting of the charged gauge
bosons

M2
U −M2

V = M2
W
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The covariant derivative of the lepton triplets is

g

2
~λ ~Aµ =


g
2(A3

µ + 1√
3
A8
µ) g√

2
W+
µ

g√
2
V −µ

g√
2
W−µ

g
2(−A3

µ + 1√
3
A8
µ) g√

2
U−−µ

g√
2
V +
µ

g√
2
U++
µ −g 1√

3
A8
µ

 .

while for the anti-triplets we have

g

2
~̄λ ~Aµ =

 −
g
2(A3

µ + 1√
3
A8
µ) − g√

2
W−µ − g√

2
V +
µ

− g√
2
W+
µ −g

2(−A3
µ + 1√

3
A8
µ) − g√

2
U++
µ

− g√
2
V −µ − g√

2
U−−µ g 1√

3
A8
µ

 ,

where λ̄ = −λ∗.
In the neutral gauge boson sector, with the basis (A3

µ, A
8
µ, Bµ), mass matrix is given by

M2 =
g2

4


v2
ρ − v2ρ√

3
−2κv2

ρ

− v2ρ√
3

1
3(v2

ρ + 4v2
χ) 2√

3
(v2
ρ + 2v2

χ)

−2κv2
ρ

2√
3
(v2
ρ + 2v2

χ) 4κ2(v2
ρ + v2

χ)


where κ = gX

g . We can easily identify the photon field Aµ as well as the massive bosons Z and
Z ′ [9]

Aµ = sWA
3
µ + cW (

√
3tWA

8
µ +

√
1− 3t2WBµ),

Zµ = cWA
3
µ − sW (

√
3tWA

8
µ +

√
1− 3t2WBµ),

and
Z ′µ = −

√
1− 3t2WA

8
µ +
√

3tWBµ

where the mass-squared matrix for {Z, Z ′} is given by

M2 =

(
M2
Z M2

ZZ′

M2
ZZ′ M2

Z′

)
with

M2
Z =

1

4

g2

cos2 θW
v2
ρ,

M2
Z′ =

1

3
g2

[
cos2 θW

1−4 sin2 θW
v2
χ +

1−4 sin2 θW
4cos2 θW

v2
ρ

]
,

M2
ZZ′ =

1

4
√

3
g2

√
1−4 sin2 θW
cos2 θW

v2
ρ.

Diagonalizing the mass matrix gives the mass eigenstates Z1 and Z2 which can be taken as mix-
tures,

Z1 = Z cosφ− Z ′ sinφ,
Z2 = Z sinφ+ Z ′ cosφ.
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The mixing angle φ is given by

tan 2φ =
M2
Z −M2

Z1

M2
Z2
−M2

Z

(21)

where MZ1 and MZ2 are the physical mass eigenvalues

M2
Z1

=
1

2

{
M2
Z′ +M2

Z − [(M2
Z′ −M2

Z)2 − 4(M2
ZZ′)

2]1/2
}
, (22)

M2
Z2

=
1

2

{
M2
Z′ +M2

Z + [(M2
Z′ −M2

Z)2 − 4(M2
ZZ′)

2]1/2
}
.

From the symmetry breaking hierarchy, vχ � vρ, we obtain the lower mass bound of Z2 [9]

MZ2 >
∼

√
4

3

cos2 θW (MZ2)√
1−4 sin2 θW (MZ2)

MZ1

>
∼

400 GeV.

For practical calculations, it is useful the following relations

A3
µ = cWZµ + sWAµ,

A8
µ =
√

3tW sWZµ +
√

1− 3t2WZ
′
µ −
√

3sWAµ,

Bµ = −sW
√

1− 3t2WZµ +
√

3tWZ
′
µ + cW

√
1− 3t2WAµ.

Trilinear and quartic interactions of the gauge bosons are the same as in Ref. [10] Using data on
the wrong muon decay [1]

Br(µ→ e+ νe + ν̃µ) < 1.2 % at 90% CL

we get a lower limit on singly charged bilepton gauge boson as follows (see, the last reference
in [3])

MV ≥ 230 GeV (23)
This means that the model works in quite lower energy limit available for example such as the
CERN LHC.

V. FERMION MASSES

As in the original minimal version, in this model, the singlet right-handed lepton does not
exist. Thus, the fermion masses are due to effective operators. The appropriate sources of mass
for each fermion in the model are: the Yukawa couplings give the exotic quark masses [6]

LexotY uk = λT11Q̄1LχTR + λDij Q̄iLχ
∗DjR +H.c.

= λT11(ū1Lχ
− + d̄1Lχ

−− + T̄Lχ
0)TR

λDij (d̄iLχ
+ − ūiLχ++ + D̄iLχ

0∗)DjR +H.c. (24)

When the χ field develops its VEV, these couplings lead to the mass matrix in the basis (T , D2 , D3),

MJ =
vχ√

2

 λT11 0 0
0 λD22 λD23

0 λD32 λD33


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which, after diagonalization, leads to mass eigenvalues at vχ around few TeV scale [6].
For the ordinary quarks, their masses come from both renormalizable Yukawa interactions

and specific effective dimension-five operators given by

−LuY uk = λuiaQ̄iLρ
∗uaR +

λu1a
Λ

εnmp
(
Q̄1Lnρ

∗
mχ
∗
p

)
uaR +H.c.

= λuia(d̄iLρ
− − ūiLρ0∗ + D̄iLρ

−−)uaR

+
λu1a
Λ

[
ū1L(ρ0∗χ0∗ − ρ−−χ++) + d̄1L(ρ−−χ+ − ρ−χ0∗)

+ T̄L(ρ−χ++ − ρ0∗χ+)
]
uaR +H.c. (25)

In the basis (u1 , u2 , u3), the up-type quarks mass matrix is given by

mu =
vρ√

2

 λu11
vχ√
2Λ

λu12
vχ√
2Λ

λu13
vχ√
2Λ

−λu21 −λu22 −λu23

−λu31 −λu32 −λu33


For down quark sector, the relevant Yukawa interactions are

−LdY uk = λd1aQ̄1LρdaR +
λdia
Λ
εnmp

(
Q̄iLnρmχp

)
daR +H.c.

= λd1a(ū1Lρ
+ + d̄1Lρ

0 + T̄Lρ
++)daR

+
λdia
Λ

[
d̄iL(ρ0χ0 − ρ++χ−−) + ūiL(ρ+χ0 − ρ++χ−)

+ D̄iL(ρ+χ−− − ρ0χ−)
]
daR +H.c. (26)

Thus, in the basis (d1 , d2 , d3), the mass matrix for the down-type quarks is

md =
vρ√

2

 λd11 λd12 λd13

λd21
vχ√
2Λ

λd22
vχ√
2Λ

λd23
vχ√
2Λ

λd31
vχ√
2Λ

λd32
vχ√
2Λ

λd33
vχ√
2Λ


It was shown that as the minimal version, this model is perturbatively reliable at the scale

around Λ = 4−5 TeV [11]. In the model under consideration, there are 18 free Yukawa couplings
to generate masses for 6 quarks only. For a naive analysis [6], we just take the diagonal case where

mu ≈ λu11

vχvρ
2Λ

, md ≈ λd11

vρ√
2
, ms ≈ λd22

vχvρ
2Λ

,

mc ≈ −λu22

vρ√
2
, mb ≈ λd33

vχvρ
2Λ

, mt ≈ −λu33

vρ√
2
.

For sake of simplicity, assuming Λ = 5 TeV, vχ = 1 TeV,mu = 2.5 MeV,md = 4.95 MeV,ms =
105 MeV, mc = 1.26 GeV, mb = 4.25 GeV and mt = 173 GeV, we get then [6] λu11 ≈ 10−3,
λd11 ≈ 2.8× 10−5, λd22 ≈ 2.1× 10−2, λu22 ≈ −7.24× 10−3, λd33 ≈ 8.5× 10−1, λu33 ≈ −1.03.

With a scale Λ ∼ 4− 5 TeV, to guarantee the proton stability, as in Ref. [12], a discrete Z2

symmetry over the quark fields

QaL → −QaL, qaR → −qaR,
should be imposed.
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The following effective five-dimension operator will generate masses for the charged lep-
tons [6]

LlY uk =
κl
Λ

(
f cLρ

∗) (χ†fL)+H.c.

=
κl

Λ

[
νcLρ

− + lcLρ
0∗ + lLρ

−−] [νLχ+ + lLχ
++ + lcLχ

0∗]+H.c.

=
κl

Λ

[
νcLρ

−νLχ
+ + νcLρ

−lL

(
cαh̃

++ + sαh
++
)

+
1√
2
νcLρ

−lcL (vχ − iIχ)

]
+

κl

Λ
√

2
νcLρ

−lcL (cβh2 − sβh1)

+
κl

Λ
√

2
lcL (vρ − iIρ)

[
νLχ

+ + lL

(
cαh̃

++ + sαh
++
)]

+
κl

2Λ
lcL (vρ − iIρ) lcL (vχ − iIχ)

+
κl

2Λ
lcL (vρ − iIρ) lcL (cβh2 − sβh1)

+
κl

Λ
√

2
lcL (cβh1 + sβh2)

[
νLχ

+ + lL

(
cαh̃

++ + sαh
++
)]

+
κl

2Λ
lcL (cβh1 + sβh2) lcL (vχ − iIχ) +

κl

2Λ
lcL (cβh1 + sβh2) lcL (cβh2 − sβh1)

+
κl

Λ
lL

(
cαh

−− − sαh̃−−
)[
νLχ

+ + lL

(
cαh̃

++ + sαh
++
)

+
lcL√

2
(vχ − iIχ)

]
+

κl√
2Λ

lL

(
cαh

−− − sαh̃−−
)
lcL (cβh2 − sβh1) +H.c.

(27)

From (27), it follows masses for the charged leptons ml =
vχ
Λ κlvρ ≈ κlvρ. Taking into account

me = 0.5 MeV, mµ = 105 MeV, mτ = 1.77 GeV, one gets [6] ke = 2× 10−5, kµ = 4.3× 10−3

and kτ = 7.2× 10−2.
From (27), it follows the interaction

κlcαvχ√
2Λ

h−−lLl
c
L ≈

κlcα√
2
h−−lLl

c
L

which is responsible for lepton-number violating decay of h−− to two charged leptons. This would
be a specific character of the model.

Generation for correct neutrino mass, in this model, is still open question [6].

VI. CHARGED AND NEUTRAL CURRENTS

The interactions among the gauge bosons and fermions are read off from

LF = R̄iγµ(∂µ − igXBµX)R
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+ L̄iγµ

(
∂µ − i

gX√
6
BµX − ig

8∑
a=1

W a
µ .
λa
2

)
L, (28)

where R represents any right-handed singlet and L any left-handed triplet or antitriplet.
The interactions among the charged vector fields with leptons are [6]

LCCl =
g√
2

(ν̄aLγ
µV l

PMNSeaLW
+
µ + ēcaRO

V γµνaLV
+
µ

+ ēaLγ
µecaRU

++
µ + H.c.). (29)

with V l
PMNS = V ν†

L being the PMNS mixing matrix and OV = V ν
L is the matrix diagonalizing

neutrino mass one.
For the quarks we have

LCCq =
g√
2

[ūLV
q
CKMγ

µdLW
+
µ + (T̄Lγ

µ(V u
L )1auaL − d̄lLγµ(V d†

L )liDiL)V +
µ

+ (ūlL(V u†
L )liγ

µDiL + T̄Lγ
µ(V d

L )1adaL)U++
µ + H.c.], (30)

where i, l = 2, 3, V q
CKM = V u†

L V d
L is the CKM mixing matrix. One assumes that the exotic

quarks come in a diagonal basis.
We can see that the interactions with the V + and U++ bosons violate the lepton number

(see Eq.(29)) and the weak isospin (see Eq.(30)).
The electromagnetic current for fermions is the usual one

Qfef̄γ
µfAµ, (31)

where f is any fermion withQf = 0,−1, 2/3,−1/3, 5/3,−4/3 and the electromagnetic coupling
constant e is identified as follows

e = g sin θW . (32)
The neutral current interactions can be written in the form

LNC =
g

2cW

{
f̄γµ[a1L(f)(1− γ5) + a1R(f)(1 + γ5)]fZ1

µ

+ f̄γµ[a2L(f)(1− γ5) + a2R(f)(1 + γ5)]fZ2
µ

}
. (33)

The couplings of fermions with Z1 and Z2 bosons are given as follows

a1L,R(f) = cosφ [T 3(fL,R)− s2
WQ(f)]

− sinφ

X(fL,R)√
3

 1− s2
W√

1− 4s2
W

−
√

1− 4s2
W

2
√

3
Y (fL,R)

 ,
a2L,R(f) = cosφ

X(fL,R)√
3

 1− s2
W√

1− 4s2
W

−
√

1− 4s2
W

2
√

3
Y (fL,R)


+ sinφ [T 3(fL,R)− s2

WQ(f)], (34)

where T 3(f) and Q(f) are, respectively, the third component of the weak isospin and the charge
of the fermion f . Note that for the exotic quarks, the weak isospin is equal to zero. Eqs. (34)
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are valid for both left- and right-handed currents. Since the value of X is different for triplets and
antitriplets, the Z2 coupling to left-handed ordinary quarks is different for the first family, and thus
flavor changing.

We can also express the neutral current interactions of Eq. (33) in terms of the vector and
axial-vector couplings as follows

LNC =
g

2cW

{
f̄γµ[g1V (f)− g1A(f)γ5

]
fZ1

µ

+ f̄γµ[g2V (f)− g2A(f)γ5]fZ2
µ

}
. (35)

The values of these couplings are

g1V (f) = cosφ [T 3(fL)− 2s2
WQ(f)]

− sinφ

X(fL)√
3

 1− s2
W√

1− 4s2
W

−
√

1− 4s2
W

2
√

3
Y (fL) +

Q(fR)√
3

 3s2
W√

1− 4s2
W

 ,
g1A(f) = cosφ T 3(fL)

− sinφ

X(fL)√
3

 1− s2
W√

1− 4s2
W

−
√

1− 4s2
W

2
√

3
Y (fL)− Q(fR)√

3

 3s2
W√

1− 4s2
W


where we have used Q(fR) = X(fR) for the singlets. The values of g1V , g1A and g2V , g2A are
listed in Tables 3, where the first generation is assumed to belong to the triplet. However, to get
some indication as to why the top quark is so heavy, we have to treat the third generation differently
from the first two as in Refs [2] and [13].

Table 3. The Z1 → ff̄ couplings in the RM 331 model.

f g1V (f) g1A(f)

e, µ, τ (−1
2 + 2s2

W ) cosφ− sinφ

√
3(1−4s2W )

2 −1
2 cosφ− sinφ

√
(1−4s2W )

2
√

3

νe, νµ, ντ
1
2(cosφ− sinφ

(1−4s2W )1/2√
3

) 1
2(cosφ− sinφ

(1−4s2W )1/2√
3

)

t (1
2 −

4s2W
3 ) cosφ− sinφ

1+4s2W
2
√

3(1−4s2W )1/2
1
2 cosφ− sinφ

(1−4s2W )1/2

2
√

3

b (−1
2 +

2s2W
3 ) cosφ− sinφ

1−2s2W
2
√

3(1−4s2W )
−1

2 cosφ− sinφ
1+2s2W

2
√

3(1−4s2W )

u,c (1
2 −

4s2W
3 ) cosφ+ sinφ

1−6s2W
2
√

3(1−4s2W )

1
2 cosφ+ sinφ

1+2s2W
2
√

3(1−4s2W )

d,s (−1
2 +

2s2W
3 ) cosφ+ sinφ 1

2
√

3(1−4s2W )
−1

2 cosφ+ sinφ 1
2
√

3
(1− 4s2

W )1/2

T −10
3 s

2
W cosφ+ sinφ

1−11s2W
2
√

3(1−4s2W )
sinφ

1−s2W
2
√

3(1−4s2W )

Di
8
3s

2
W cosφ− sinφ

1−9s2W
2
√

3(1−4s2W )
− sinφ

1−s2W√
3(1−4s2W )
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We can realize that in the limit φ = 0 the couplings to Z1 of the ordinary leptons and quarks
are the same as in the SM. Furthermore, the electric charge defined in Eq. (32) agrees with the SM.
Because of this, we can test the new phenomenology beyond the SM.

In the model under consideration, the interactions with the heavy charged vector bosons
V +, U++ violate the lepton number and the weak isospin. Because of the mixing, the mass
eigenstateZ1 now picks up flavor-changing couplings proportional to sinφ. However, sinceZ−Z ′
mixing is constrained to be very small, evidence of FCNC’s in the 3-3-1 model can only be probed
indirectly at present via the Z2 couplings.

VII. CONSTRAINTS ON THE Z − Z ′ MIXING ANGLE AND THE Z2 MASS

There are many ways to get constraints on the mixing angle φ and the Z2 mass. Below we
present a simple one. A constraint on the Z − Z ′ mixing can be followed from the Z data. Hence
we now calculate the Z width in this model.

The decay width of the Z boson is described by [14–16]

Γ(ff̄) =
ρGFM

3
Z

6
√

2π
Nf
c

(
β2|ḡf1A|

2 +
3β − β3

2
|ḡf1V |

2

)
(1 + nf )REWRQCD, (36)

where β =

√
1− 4

m2
f

M2
Z

[16], β is very small and we present a result which is correct up to terms

of order ααs:

Γ(ff̄) =
ρGFM

3
Z

6
√

2π
Nf
c

(
|ḡf1A|

2RfA + |ḡf1V |
2RfV

)
(1 + nf ), (37)

where Nf
C is the color factor and other parameters are given in Ref. [16]

ρ = 1 + δρ, δρf 6=b =
3GFm

2
t

8
√

2π2
,

δρf=b = −GFm
2
t

2
√

2π2
, nb = 10−2

(
1

5
− m2

t

2m2
Z

)
, nf 6=b ∼ 0.

Here RfA and RfV are radiator factors to account for final state QED and QCD corrections, as well
as effects due to nonzero fermions masses.

The non-factorial electroweak correction is given by [15]

RfV = 1 +
3α(MZ)

4π
, RfA = 1− 6

m2
l

M2
Z

+
3α(MZ)

4π
,

where α(MZ) denotes the QED coupling constant at the scale MZ . The QCD correction is given
by

RfV (s) = RfA(s) = 1 +
3αs
4π

Q2
f +

αs
π

+O(α2).

By assuming the masses of all the ordinary fermions except the t quark to be much lighter than
the mass of the Z boson and the masses of the exotic quarks to be much heavier than the mass of
the Z boson, the total width of the Z boson is given as

ΓRM331
total [GeV] = 2.49632 + 1.6968 sin 2φ+O(sin2 φ), (38)

ΓRM331
bb̄ [GeV] = 0.377046 + 0.98375 sin 2φ+O(sin2 φ), (39)
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ΓRM331
hadrons[GeV] = 1.74022 + 1.5683 sin 2φ+O(sin2 φ), (40)

where we have used [1]: GF = 1.166378.10−5 GeV−2 , α−1(MZ) = 128.87, αs = 0.1184,
s̄2
W (MZ) = 0.23116 , Mτ

MZ
= 1.7768/91.187 and mt = 173.5 GeV.

Taking the experimental result [1]: Γtotal[GeV] = 2.4952± 0.0023, we obtain the limit for
the mixing angle

−0.001 ≤ φ ≤ 0.00034. (41)

Next, let us consider Rb ≡ Γ(bb̄)
Γ(hadrons) . In the model under consideration, from (39) and (40), we

obtain
RRM331
b = 0.21666 + 0.740083 tanφ+O(tan2 φ). (42)

According to the experimental result Rb = 0.21629± 0.00066 [1], we also get

−0.001397 ≤ φ ≤ 0.00038. (43)

Thus, both limits of the mixing angle in (41) and in (43) are consistent: |φ| ≤ 10−3. Therefore,
hereafter we can set φ = 0. For the shorthand, we rename Z1 to be Z and Z2 to be Z ′.

VIII. FLAVOR-CHANGING NEUTRAL CURRENTS AND MASS DIFFERENCE OF
THE NEUTRAL MESON SYSTEMS

Due to the fact that one family of left-handed quarks is treated differently from the other
two, theX charges for left-handed quarks are different too (see Eq. (1)). Therefore flavor-changing
neutral currents Z1, Z2 occur through a mismatch between weak and mass eigenstates.

Let us diagolize mass matrices by three biunitary transformations

U ′L = V U
L UL, U

′
R = V U

R UR,

D′L = V D
L DL, D

′
R = V D

R DR, (44)

where U ≡ (u, c, t)T , D ≡ (d, s, b)T .
The usual Cabibbo-Kobayashi-Maskawa matrix is given by

VCKM = V U+
L V D

L . (45)

Using unitarity of the V D and V U matrices, we get flavour-changing neutral interactions

LNCds =
gcW

2
√

1− 4s2
W

[
V D∗
LidV

D
Lis

]
d̄LγµsL (cosφZµ2 − sinφZµ1 ) ,

LNCuc =
gcW

2
√

1− 4s2
W

[
V U∗
LiuV

U
Lic

]
ūLγµcL (cosφZµ2 − sinφZµ1 ) , (46)

LNCdb =
gcW

2
√

1− 4s2
W

[
V D∗
LidV

D
Lib

]
d̄LγµbL (cosφZµ2 − sinφZµ1 ) ,

where i denotes the number of ”different” quark family i.e. the SU(3)L quark triplet.
For the neutral kaon system, we get then effective Lagrangian

L∆S=2
eff =

√
2GF c

4
W cos2 φ

(1− 4s2
W )

[
V D∗
LidV

D
Lis

]2 |d̄LγµsL|2(m2
Z1

M2
Z2

+ tan2 φ

)
. (47)
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Similar expressions can be easily written out for D0 − D̄0 and B0 − B̄0 systems. From (47) it is
straightforward to get the mass difference

∆mP =
4GF c

4
W cos2 φ

3
√

2(1− 4s2
W )

[
V D∗
LidV

D
Liα

]2(m2
Z1

M2
Z2

+ tan2 φ

)
f2
PBPmP , (48)

where α = s for the KL −KS and α = b for the B0 − B̄0 mixing systems. The D0 − D̄0 mass
difference is given by the expression for theK0 system with replace of V D by V U . In the previous
section, the Z − Z ′ mixing angle φ was bounded1: |φ| ≤ 10−3, hence if MZ2 is in order of one
hundred TeV, the Z − Z ′ mixing has to be taken into account.

In the usual case, the Z − Z ′ mixing is constrained to be very small, it can be safely
neglected. Therefore FCNC’s occur only via Z2 couplings. For the shothand hereafter we rename
Z1 to be Z and Z2 to be Z ′.

Since it is generally recognized that the most stringent limit from ∆mK , we shall mainly
discuss this quantity. We use the experimental values [1]

∆mK = (3.489± 0.009)× 10−12 MeV, mK ' 498 MeV (49)

and √
BKfK = 135± 19 MeV. (50)

Following the idea of Gaillard and Lee [18], it is reasonable to expect that Z ′ exchange
contributes a ∆m no larger than observed values. Substituting (49) and (50) into (48) we get

MZ′ > 2.63× 105 ηZ′
[
Re(V D∗

LidV
D
Lis)

2
]1/2

GeV. (51)

where ηZ′ ≈ 0.55 is the leading order QCD corrections [19].
Let us call ∆mmin

K ,∆mrhn
K contributions to ∆m from the Z ′ in the minimal 3 3 1 model

and in the model with r.h. neutrinos, respectively. We have then

R ≡
∆mmin

K

∆mrhn
K

=
2(3− 4s2

W )

3(1− 4s2
W )

= 19.7, (52)

for [1] s2
W = 0.2312. Because of the denominator, the relation is highly sensitive to the value of

the Weinberg angle. It is easy to see that a limit for the Z ′ following from Eq (51) in the model
with r.h.neutrinos is approximately 4.4 times smaller than that in the minimal version.

We use the experimental values2 [1] presented in Table 4.

Table 4. Experimental data of K0, D0 and B0 meson.

K D B

∆m[MeV] (3.483± 0.006)× 10−12 9.478+3.159
−3.291 × 10−12 (3.337± 0.033)× 10−10

Mass [MeV] 497.614± 0.024 1864.86± 0.13 5279.58± 0.17√
BP fP [MeV] 135± 19 200 [20] 244± 26

1see also [9, 17]
2According to the experimental value in Ref. [1], ∆mD0 = 1.44+0.48

−0.5 × 1010 ~s−1=1.44+0.48
−0.5 × 1010 ×

6.582119 × 10−22=9.478+3.159
−3.291 × 10−12 Mev.
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Following the idea of Gaillard and Lee [18], it is reasonable to expect that Z ′ exchange
contributes a ∆m no larger than observed values. Substituting Table 4 into (48) we get

• In K0 − K̄0 system,

MZ′ > 1.36658× 106ηZ′
[
Re(V D∗

L11V
D
L12)2

]1/2
GeV

= 0.751616× 106
[
Re(V D∗

L11V
D
L12)2

]1/2
GeV. (53)

• In D0 − D̄0 system,

MZ′ > 1.60369× 106ηZ′
[
Re(V U∗

L11V
U
L12)2

]1/2
GeV

= 0.882028× 106
[
Re(V U∗

L11V
U
L12)2

]1/2
GeV. (54)

• In B0 − B̄0 system,

MZ′ > 4.54763× 105ηZ′
[
Re(V D∗

L11V
D
L13)2

]1/2
GeV

= 2.5012× 105
[
Re(V D∗

L11V
D
L13)2

]1/2
GeV. (55)

where ηZ′ ≈ 0.55 is the QCD corrections [19].
From the present experimental data we cannot get the constraint on V U,D

Lij . These matrix
elements are only constrained by the Cabibbo-Kobayashi-Maskawa matrix. However, it would
seem more natural, if Higgs scalars are associated with fermion generations, to have the choice of
nondiagonal elements depends on the fields to which the Higgs scalars couple. By this way, the
simple Fritzsch [21] scheme gives us

V D
ij ≈

(
mi

mj

)1/2

, i < j. (56)

In the model under consideration, the first quark family transforms differently. The quark
mass eigenstates are U = (u, c, t)T and D = (d, s, b)T . In other models, the third family trans-
forms differently so the value of ∆mP will be differently and the quark mass eigenstates are
U = (t, u, c)T , D = (b, d, s)T .

Combining (53), and (56) we get the following bounds on MZ′ :

MZ′ ≥ 163.194 TeV, if the first or the second quark family is different ( in triplet),

MZ′ ≥ 4.032 TeV, if the third quark family is different (57)

It is noted that the limit in (57) is almost consistent with analysis from B-physics [22].
From (57) we see that to keep relatively low bounds on MZ′ the third family should be the

one that is different from the other two i.e. is in triplet.

IX. SUMMARY

In this paper, we have presented the reduced minimal 3-3-1 model (RM 331) with most
economical particle content. Some misprints in the original version of the RM 331 model were
corrected.

In this work, the limits on the masses of the bilepton gauge bosons and on the mixing angle
among the neutral ones were deduced. From the data on branching decay rates of the Z boson, the
Z and Z ′ mixing angle φ lies at −0.001 ≤ φ ≤ 0.0003.
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We have studied the FCNC’s in the RM 331 model arisen from the family discrimination in
this model. This gives a reason to conclude that the third family should be treated differently from
the first two. In this sense, the ∆mK gives us the lower bound on MZ′ as 6.051 TeV.

Due to the simplicity of Higgs sector, number of the model’s free parameters is strongly
reduced and that increases the predicability. However, the price of Higgs simplicity is that there
are non-renormalizable effective operators. In addition, a problem on neutrino masses is still an
open question. We hope to return to this stuff in the near future.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for Science and Technology De-
velopment (NAFOSTED) under grant number 103.01-2014.51.

REFERENCES
[1] Particle Data Group: J. Beringer et al., Phys. Rev. D 86 (2012) 010001.
[2] F. Pisano and V. Pleitez, Phys. Rev. D 46 (1992) 410; P. H. Frampton, Phys. Rev. Lett. 69 (1992) 2889; R. Foot,

O. F. Hernandez, F. Pisano and V. Pleitez, Phys. Rev. D 47 (1993) 4158.
[3] M. Singer, J. W. F. Valle and J. Schechter, Phys. Rev. D 22 (1980) 738; R. Foot, H. N. Long and Tuan A. Tran,

Phys. Rev. D 50 (1994) 34(R) [arXiv:hep-ph/9402243]; J. C. Montero, F. Pisano and V. Pleitez, Phys. Rev. D 47
(1993) 2918; H. N. Long, Phys. Rev. D 54 (1996) 4691; H. N. Long, Phys. Rev. D 53 437 (1996); H. N. Long,
Mod. Phys. Lett. A 13 (1998) 1865.

[4] W. A. Ponce, Y. Giraldo and L. A. Sanchez, Phys. Rev. D 67 (2003) 075001.
[5] P. V. Dong, H. N. Long, D. T. Nhung and D. V. Soa, Phys. Rev. D 73 (2006) 035004; P. V. Dong, D. T. Huong,

Tr. T. Huong and H. N. Long, Phys. Rev. D 74 (2006) 053003; P. V. Dong, H. T. Hung and H. N. Long, Phys.
Rev. D 86 (2012) 033002, for a review, see: P. V. Dong and H. N. Long, Adv. High Energy Phys. 2008 (2008)
739492, [arXiv:0804.3239(hep-ph)].

[6] J. G. Ferreira, Jr, P. R. D. Pinheiro, C. A. de S. Pires and P. S. Rodrigues da Silva, Phys. Rev. D 84 (2011) 095019
[7] M. B. Tully and G. C. Joshi, Phys. Rev. D 64 (2001) 0113001
[8] D. Chang and H. N. Long, Phys. Rev. D 73 (2006) 053006
[9] D. Ng, Phys. Rev. D 49 (1994) 4805 .

[10] H. N. Long , D. V. Soa, Nucl. Phys. B 601 (2001) 361; D. T. Binh, D .T. Huong, T. T. Huong, H. N. Long, D. V.
Soa, J. Phys. G 29 (2003) 1213.

[11] A. G. Dias, R. Martinez, V. Pleitez, Eur. Phys. J. C 39 (2005) 101. See also, A. G. Dias, V. Pleitez, Phys. Rev. D
80 (2009) 056007.

[12] F. Queiroz, C. A. de S. Pires, P. S. Rodrigues da Silva, Phys. Rev. D 82 (2010) 065018.
[13] J. T. Liu, Phys. Rev. D 50, 542 (1994); J. T. Liu and D. Ng, Phys. Rev. D 50 (1994) 548.
[14] P. Langacker and M. Luo, Phys. Rev. D 45 (1992) 278; J. Hewett and T. Rizzo, Phys. Rep. 183, 193 (1989), and

references therein.
[15] D. Bardin and G. Passarino, The Standard Model in the Making, Clarendon Press-Oxford (1999).
[16] D. A. Gutierrez, W. A. Ponce and L. A. Sanchez, Eur. Phys. J. C 46 (2006) 497; For more details, see A. Carcamo,

R. Martinez, R. and F. Ochoa, Phys. Rev. D 73 (2006) 035007.
[17] H. N. Long and V. T. Van, J. Phys. G 25 (1999) 2319.
[18] M. K. Gaillard and B. W. Lee, Phys. Rev. D 10 (1974) 897.
[19] F. J. Gilman and M. B. Wise, Phys. Rev. D 27 (1983) 1128.
[20] D. G. Dumm, F. Pisano, and V. Pleitez, Mod. Phys. Lett. A 9 (1994) 1609; F. Pisano, J. A. Silva-Sobrinho and

M. D. Tonasse, Phys. Rev. D 58 (1998) 057703.
[21] H. Fritzsch, Phys. Lett. B 73 (1978) 317; Nucl. Phys. B 155 (1979) 189.
[22] A. Buras, F. De Fazio, J. Girrbach, and M. Callucci, JHEP 1302 (2013) 023, arXiv:1211.1237 [hep-ph].


