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THE BULK METRIC IN THE THEORY WITH TWO EXTRA DIMENSIONS
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Abstract. The metric of a warped space-time with two extra dimensions is established by means of the Einstein equa-
tions in six dimensions and the compactification of two extra dimensions on a square. It is shown that at every among
two fixed points our manifold reduces to the five-dimensional Randall - Sundrum space-time and the hierarchy problem
could be solved.
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I. INTRODUCTION

The first idea of extra dimensions, as it is well known, have been proposed by Kaluza -
Klein in the 1920s to unify electromagnetism and gravity [1]. The expansion of space-time di-
mensions beyond the four is one of most interesting fields of modern theoretical physics.

Besides the extended models of Standard Model (SM), the extra dimensions have been con-
sidered as the ways to investigate both old and open problems of particle physics and Cosmology,
in the new physics beyond the SM to unify gravity with gauge interactions. Extra dimensions
provide the solutions of hierarchy problem in the 5D Randall-Sundrum space-time [2], or in more
extra dimensions [3]; the explanation of dark matter [4,5], neutrino physics in the 6D Universal
Extra Dimensions (UED) model [6-9] ; the expective proposal for GUT based on String Theories
with 10D or 11D [10,12]. Extra dimensional theories can lead to really significant physical con-
sequences.

Starting from two following important observations
1) Solving the mass hierarchy problem by means of the wrap factor attaching to the four -

dimensional metric is very successful [2,13];
2) The proton stability is explained within the framework of a theory with two extra dimen-

sions [14,15 ],
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we assume that the geometry of our theory is a 6D Riemann manifold, whose metric is expressed
as

ds2 = e−2f(x5,x6)gµνdx
µdxν − dx25 − dx26 (1)

We focus on configurations where symmetry in the brane direction is maximum

ds2 =GABdx
AdxB = e−2fgµνdx

µdxν + gmndx
mdxn

=e−2fgµνdx
µdxν + e2pdzdz̄.

(2)

where gµν = diag(1,−1,−1,−1) is the 4- dimensional tensor metric. The coordinates are xA =
xµ, x5, x6 with µ, ν = 0, 1, 2, 3 labelling the brane directions, and m,n = 5, 6 (or z = x5 + ix6)
being coordinates for the two dimensions transverse to the branes.

ds2 =GABdx
AdxB

=Gµνdx
µdxν + (Gµ5 +G5µ)dxµdx5 + (Gµ6 +G6µ)dxµdx6

+G56dx
5dx6 +G65dx

6dx5 +G55dx
5dx5 +G66dx

6dx6

(3)

where
Gµν = e−2f(x5,x6)gµν ;G55 = −1;G66 = −1;G56 = G65 = 0; (4)

The six dimensional metric reads

ds2 = e−2f(x5,x6)gµνdx
µdxν − dx25 − dx26, (5)

where 0 ≤ x5, x6 ≤ L.
To extend the field equation in 6 - dimensional space-time, we start from the Einstein’s

equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (6)

The general 6 - dimensional action takes the form

S = Sgrav + Shid + Svis, (7)

where

Sgrav =

∫
d4x

∫
dx5dx6

√
−G[−Λ + 2M4R] (8)

Shid =

∫
d4x

∫
dx5dx6

√
−ghid[Lhid − Vhid] (9)

Svis =

∫
d4x

∫
dx5dx6

√
−gvis[Lvis − Vvis] (10)

In the classical case, the particle excitation is absent, ie. Lhid = Lvis = 0

S =

∫
d4x

∫
dx5dx6

√
−G
[
(−Λ + 2M4R)

−
√
−gvisVvisδ(x5 − L)δ(x6 − L)−

√
−ghidVhidδ(x5)δ(x6)

] (11)
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The 6 - dimensional Einstein’s Equation is derived from δS = 0.

√
−G

(
RAB −

1

2
GABR

)
=

1

4M4

[
Λ
√
−GGAB

+ Vvis
√
−gvisgvisµν δ

µ
Aδ

ν
Bδ(x5 − rc)δ(x6)

+ Vhid
√
−ghidghidµν δ

µ
Aδ

ν
Bδ(x5)δ(x6)

]
,

(12)

where the (3 + 1) - dimensional space-time is connected with the (4 + 2) - dimensional by

gvisµν (x) =GAB (x, x5 = L, x6 = L) ,

ghidµν (x) =GAB (x, x5 = 0, x6 = 0) .
(13)

Our aim is to determine the analytical expression for f(x5, x6) so that above metric is a
solution of Einstein’s equation extended in six dimensions. It is shown that this metric could
be reduced to the RS space-time in the cases of compactifications on two dimensional sphere
(S2/Z22) or on a square (T 2/Z2). We also obtained the physical consequences when the 6D met-
ric is considered by the 4D effective theory. Similarly in the case of RS space-time, the hierarchy
problem is solved due to the Planck mass.

This paper is organized as follows. In Sec. II the Einstein equations extended in 6D space-
time are derived from the 6D Riemann manifold. These equations with two extra dimension have
been solved in the cylindrical coordinate system. Sec. III is devoted to investigate the hierarchy
problems. The discussions and conclusions are given in Sec. IV.

II. THE SIX - DIMENSIONAL SOLUTION OF EINSTEIN’S EQUATION
IN THE CYLINDRICAL SYMMETRY

We impose two external variables in the cylindrical coordinates system

x5 = ρ cos θ;x6 = ρ sin θ; (14)

where 0 ≤ ρ ≤ rc,−π ≤ θ ≤ π, f(x5, x6) = f(ρ, θ).
This leads to the following metric

ds2 = e−2f(ρ,θ)gµνdx
µdxν − dρ2 − ρ2dθ2. (15)

We determine the bulk metric which is the solution of 6 - dimensional Einstein’s equation

√
−G

(
RAB −

1

2
GABR

)
=

1

4M4

[
Λ
√
−GGAB

+ Vvis
√
−gvisgvisµν δ

µ
Aδ

ν
Bδ(ρ− rc)δ(θ − π) + Vhid

√
−ghidghidµν δ

µ
Aδ

ν
Bδ(ρ)δ(θ)

]
,

(16)

where

gvisµν (xµ) =Gµν (xµ, ρ = rc, θ = π) ,

ghidµν (xµ) =Gµν (xµ, ρ = 0, θ = 0) ,
(17)
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ds2 =GABdx
AdxB

=Gµνdx
µdxν + 2Gµρdx

µdxρ + 2Gµθdx
µdxθ

(Gρθ +Gθρ)ρdρdθ +Gρρdρ
2 +Gθθdθ

2.

(18)

Here Gρθ = Gθρ = 0, Gµρ = Gµθ = 0 in zero mode.

ds2 = Gµνdx
µdxν +Gρρdρ

2 +Gθθdθ
2, (19)

where

Gµν = gµνe
−2f(ρ,θ);Gρρdρ

2 = −dρ2;Gρρ = −1;Gθθ = −r2cdθ2;Gθθ = −r2c . (20)

The six - dimensional metric reads

ds2 = gµνe
−2f(ρ,θ)dxµdxν − dρ2 − r2cdθ2. (21)

Hence

GAB =diag
(
e−2f(ρ,θ),−e−2f(ρ,θ),−e−2f(ρ,θ),−e−2f(ρ,θ),−1,−r2c

)
, (22)

GAB =diag
(
e2f(ρ,θ),−e2f(ρ,θ),−e2f(ρ,θ),−e2f(ρ,θ),−1,−r2c

)
, (23)

gvisµν (xµ) =GAB(xµ, ρ = rc, θ = π)

=Gµν(ρ = rc, θ = π) = gµνe
−2f(rc,π)

(24)

ghidµν (xµ) =GAB(xµ, ρ = 0, θ = 0)

=Gµν(ρ = 0, θ = 0) = gµνe
−2f(0,0) (25)

G = detGAB = −r2ce−8f(ρ,θ) ⇒
√
−G = rce

−4f(ρ,θ). (26)
The affine connections (or Christoffel notation) in 6 - dimensional space-time are defined

by

ΓABC =
1

2
GAD(∂BGCD + ∂CGDB − ∂DGBC),

ΓABC =GADΓD,BC

(27)

The nonvanishing Christoffel symbols are (in the linear approximation)

Γ0
05 =Γ0

50 = Γ1
15 = Γ1

51 = Γ2
25 = Γ2

52 = Γ3
35 = Γ3

53 = −f ′ρ(ρ, θ),
Γ0
06 =Γ0

60 = Γ1
16 = Γ1

61 = Γ2
26 = Γ2

62 = Γ3
36 = Γ3

63 = −f ′ρ(ρ, θ),

Γ5
00 =− f ′ρ(ρ, θ)e−2f(ρ,θ),

Γ5
11 =Γ5

22 = Γ5
33 = −f ′ρ(ρ, θ)e−2f(ρ,θ),

Γ6
00 =− 1

r2c
f ′θ(ρ, θ)e

−2f(ρ,θ),

Γ6
11 =Γ6

22 = Γ6
33 =

1

r2c
f ′ρ(ρ, θ)e

−2f(ρ,θ).

(28)

The components of the Ricci tensor are defined by

RAB = RCABC = ∂BΓCAC + ΓDACΓCBD − ΓCABΓDCD. (29)
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The elements of the Ricci tensor are

Rµν =gµνe
−2f(ρ,θ)

[
f”ρ(ρ, θ) +

1

r2c
f”θ(ρ, θ)− 4f ′2ρ (ρ, θ)− 1

r2c
f ′2θ (ρ, θ)

]
,

Rρρ =4
[
−f”ρ(ρ, θ) + f ′2ρ (ρ, θ)

]
,

Rθθ =4
[
−f”ρ(ρ, θ) + f ′2θ (ρ, θ)

]
,

Rµρ =Rρµ = Rµθ = Rθµ = Rρθ = Rθρ = 0.

(30)

R =GABRAB = GµνRµν +GρρRρρ +GθθRθθ

R =4

[
2f”ρ(ρ, θ) +

2

r2c
f”θ(ρ, θ)− 5f ′2ρ (ρ, θ)− 5

r2c
f ′2θ (ρ, θ)

]
.

(31)

Substituting (23) - (31) into the 6D Einstein’s equations (16), (17), we have

rce
−4fρ,θ

 Rµν 0 0
0 Rρρ 0
0 0 Rθθ

− 1

2

 Gµν 0 0
0 Gρρ 0
0 0 Gθθ

R


=− 1

4M4

[
Λrce

−4fρ,θ

 Gµν 0 0
0 Gρρ 0
0 0 Gθθ


+ Vvise

−4f(rc,π)gµνe
−2f(rc,π)δµAδ

ν
Bδ(ρ− rc)δ(θ − π)

+ Vhide
−4f(0,0)gµνe

−2f(0,0)δµAδ
ν
Bδ(ρ)δ(θ)

]
,

(32)

By separating the indices θθ and ρρ, we obtain the system of equations

4f”ρ(ρ, θ) + 10f ′2ρ (ρ, θ) +
6

r2c
f ′2θ (ρ, θ) = − Λ

4M4
. (33)

− 4

r2c
f”θ(ρ, θ) +

10

r2c
f ′2θ (ρ, θ) + 6f ′2ρ (ρ, θ) = − Λ

4M4
. (34)

Similarly for indices µν, we have

3f”ρ(ρ, θ) +
3

r2c
f”θ(ρ, θ)− 6f ′2ρ (ρ, θ)− 6

r2c
f ′2θ (ρ, θ)

=− Λ

4M4
+

Vvis
4M4rc

δ(ρ− rc)δ(θ − π) +
Vhid

4M4rc
δ(ρ)δ(θ).

(35)

It is clearly that when ρ coordinate is absent, i.e, the sixth dimension disappears, equations
(30) - (32) reduce to the Einstein’s equation in the RS space-time.

Note that the isotropy in the (x5, x6) - plane requires that f does not depend on the angle θ
in the pole coordinate system x5 = ρ cos θ, x6 = ρ sin θ. In other words, f must be a function of
the proper distance ρ, i.e.

f = f(ρ),

and it satisfies the conditions

f(ρ− rc) = f(rc − ρ), δ(θ) = δ(θ ± π). (36)
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Eq. (34) becomes

6f ′2ρ (ρ) = − Λ

4M4

Its solution is

f(ρ) = kρ. (37)

Here the single scale k is related to cosmological constant Λ by

k2 = − Λ

24M4
, (38)

or, equivalently Λ = −24k2M4.
We consider f(ρ) in the interval (0, rc), it is easily to see that

f”(ρ) = −2k

rc
[δ(ρ− rc)− δ(ρ)] (39)

Substituting (39) into (35), we obtain

Vvis = −24M4k; Vhid = 24M4k. (40)

The solution for the bulk metric reads

ds2 = e−2kρgµνdx
µdxν − dρ2 − ρ2dθ2. (41)

Generally, the solution - metric of Einstein’s equation in 6 dimensional space-time, takes
the form

ds2 = e−2k|z|gµνdx
µdxν − dx25 − dx26. (42)

or ds2 = e−2k
√
x25+x

2
6gµνdx

µdxν − dx25 − dx26.
It is clearly that (42) will reduce to the RS metric in the following cases:

1, Compactification on a 2 - dimensional sphere (S2/Z2)

x25 + x26 ≤ r2c .

At x6 = 0 we have −rc ≤ x5 ≤ rc, then the metric (42) will takes the form

ds2 = e−2k|φ|gµνdx
µdxν − r2cdφ2, (43)

in which x5 = rcφ,−1 ≤ φ ≤ 1.
Metric (43) is exactly the RS metric if we identify (43) at θ = 1 with that at θ = −1. Hence,

the manifold (42) contains two RS space-time (43) as its submanifolds at x5 = 0 and x6 = 0.
2, Compactification on a square (T 2/Z2) : 0 ≤ x5, x6 ≤ L.
In this case (42) is also to be reduced to (43) at x5 = 0, L and x6 = 0, L. As a result, the

manifold (42) contains two RS manifolds at the square summits if we identify the point x5 = 0
with x5 = L and the point at x6 = 0 with x6 = L.
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III. THE PLANCK MASS AND HIERARCHY PROBLEM

We consider scalar field T (x) so that its VEV is the compact radius rc = const. The local
4 - dimensional metric is given by

gµν = ηµν + hµν , (44)

where hµν is symmetric tensor and very small. It is identified to physical gravitational field hµν
of 4 - dimensional effective theory, |hµν | � 1.

The 6 - dimensional metric takes the form

ds2 = e−2k|T (x)| [ηµν + hµν ] dxµdxν − dT 2(x)− T 2(x)dθ2. (45)

Note that this metric is locally the same as the ”vacuum” solution.
By substituting metric (45) into the original action (7), the four dimensional effective theory

as follows

Sgrav =

∫
d4x

∫
dT (x)

∫
dθ
√
−G

[
−Λ + 2M4R

]
, (46)

where
√
−G =T (x)e−4k|T (x)|

√
−ḡ, ḡ = detgµν ,

R =e2k|T (x)|R̄,Gµν = e−2k|T (x)|gµν .
(47)

Here R̄ is 4 - dimensional Ricci scalar made out of gµν , in contrast to the six - dimensional
Ricci scalar R, made out of GAB(x, T ).

Substituting (47) into (46) the effective action is given by

Seff =

∫
d4x

∫
dT (x)

∫
rcdθ
√
−ḡe−4k|T (x)|

[
−Λ + 2M4e2k|T (x)|R̄

]
. (48)

We focus on the mass term in the 4 - dimensional gravitational action

Sgrav = −
∫
d4x
√
−ḡ2M2

PlR̄, (49)

where MPl is 4 - dimensional Planck mass.
Compare (48) to (49), we derive

M2
Pl = −M4

∫ π

−π
rcdθ

∫
e−2k|T (x)|dT (x) =

M4rc
2k

∫ π

−π
dθe−2k|T (x)|, (50)

With |T (x)| = rc|θ|, it becomes

M2
Pl =

M4rc
2k

(
− 1

2krc

)
2e−2krcθ

∣∣∣π
0

=
M4

2k2

(
1− e−2krcπ

)
. (51)

Similarly in the case of 5 dimensions the result (51) shows that MPl depends only weakly on rc in
the large krc limit. By means an adequate value of k the 6 - dimensional mass M4 has the same
power with 4 - dimensional Planck mass. That means the hierarchy problem could be solved.
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IV. DISCUSSION AND CONCLUSION

In this paper we built a formalism for the warped six-dimensional space-time with a square
of compactification. In addition to the hierarchy problem that could be solved successfully, the
formalism still encompasses many other features:

1. It allows the existence of chiral fermions [14] in the four - dimensional effective theory.
This property has good prospect for setting up the six-dimensional standard model within a warped
space-time.

2. The implication of the compactification on a square implies that for standard model in
six dimensions the symmetry ensures a lifetime of proton longer than the current experimental
bounds [15], even in the presence of baryon violation at TeV scale and forces the neutrino masses
to be of the Dirac type [9]. It also explains the origin of electroweak symmetry breaking [16], the
number of fermion generation [17] and the breaking of grand unified gauge groups [18].
Hence, it is hopeful that our proposed theory could pave the way for better understanding various
physical phenomena of high energy physics.
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