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Abstract. We present here the result of MC simulation for diffusion of particles in the lattices

with both types of disorders. We have calculated the correlation factor F , the mean time between

two subsequent jumps and the coverage dependence of diffusion coefficient. It is shown that the

character of particle migration depends on the type of energetic disorder. The lattice inhomogeneity

produces specific peculiarities on the coverage dependence of diffusion coefficient. For the lattice

of site disorder and two-level distribution we observe an anomalous behavior of diffusion at low

concentration of low energy level and at low temperature.

I. INTRODUCTION

Diffusion and conductivity of disordered system have received wide attention for last
two decades [1-5]. It was revealed that for strong disordered system like amorphous alloys
atomic transport was influenced essentially by energetic disorder and little by geometrical
disorder [6-7]. Hence one can study this topic using the disordered lattice instead, where
the sites are arranged in regular lattice, but site or transition (saddle point) energies
are adopted randomly in accordance to given distribution [8-12]. Furthermore, the data
derived from disordered lattice has been compared to crystal lattice which is denoted to
the system where sites are arranged in regular lattice as disordered lattice, but site and
transition energies are kept constant. For the simple case when only one particle moves
in disordered lattice two specific effects were found [13-14]. First one relates to reduce the
mean square displacement of particle, i.e. < xn >2∼Fna2. Here a, n is the length and
number of jump; F is correlation factor. In the case of crystal lattice factor F is equal
to 1.0, but it approached to very small value at low temperature for disordered lattice.
Second effect gives rise to that the time between two consecutive jumps is much less
than averaged particle resident time at site. As a result, the temperature dependence of
diffusion coefficient appears to be non- or Arrhenius type depending on the strength of site
or transition disorder. The situation becomes more complex when consider many particles
taking part in diffusion. In this case the particles prevent each other freely move through
the system (blocking effect). Moreover, the particle-particle interaction also affects on
the diffusion behavior [15-17]. In actual systems, it was found the impurity concentration
dependence of diffusion coefficient [18]. For example, the activation energy and diffusion
coefficient D for hydrogen in Zr69.5Cu12Ni11Al7.5 metallic glass noticeably change in the
intermediate concentration regime 0.2 < H/M < 0.9 [18]. Here H/M is hydrogen-to-
metal ratio. In the low concentration regime H/M < 0.2 insignificant maximum appears
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on the dependence of D on H/M . Besides the hydrogen diffusivity follows the classical
over-barrier-hopping mechanism. The theoretical treatment of diffusion in such systems
is also very complicated. A number of models have been proposed and well described the
specific features of diffusion in disordered systems (see ref. [19-22]). However, very little
systematic works concerning the simulation of many-particle diffusion in the system with
both kinds of energetic disorders were found in the literature yet, although the blocking
effect is noticeable from both theoretical and experimental views. This motivated us to
carry out a study focusing on this topic.

site

transition

Fig. 1. Schematic representation distribution of site εi and saddle-point energies
εij in the two-dimensional lattice

In the present work we probe the diffusion of particles in two-dimensional lattice with
site and transition disorders using Monte-Carlo (MC) method (see Fig. 1). The particle-
particle interaction play its own role which is interesting and intensively investigated [17,
23], but they have no essential relation to the role of energetic disorder and event shadows
its influence. Hence, the lattices with non-interacting particles are employed here, and
both aspects: energetic disorder and blocking effect, have been studied in two separate
systems: the lattice A where the transition energies are constant but site energies have
randomly distributed, and lattice B that conversely, the transition energies are adopt
randomly and site energies are kept constant.

II. CALCULATION PROCEDURE

Here we consider a square lattice consisting of 50× 50 sites with periodic boundary
conditions. The lattice coordination number is equal to 4 and the lattice constant is kept
unchanged during the simulation. The energy of each site or the transition energy between
two nearest neighboring sites is assigned in a random way from two-level distribution, i.e.
the energy is adopt to given value ε1 or ε2. In the case of lattice A the energies ε1, ε2
are equal to -1 and 0, respectively; and for lattice B the corresponding values are 0 and 1.
By this way both lattices have the same energy distribution of barriers. We introduce the
concentration α of energy level ε1, ε2 for the lattice A, B, respectively and the particle
coverage θ = Np/N ; here N is number of sites in the lattice; Np is the number of particles.
As the site and transition energies are set up for the lattice, the probability of particle’s
jump from ith to jth neighboring site and the averaged particle resident time at ith site is
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defined as

pij =
exp(−εijβ)
4∑

l

exp(−εilβ)

, (1)

τi =
4τ0 exp(−εiβ)
4∑

l

exp(−εilβ)

· (2)

where εi and εij are the site and transition energies; τ0 is frequency period. β = 1/kT ; k
is Boltzmann constant and T is temperature; the sum in Eq. (1) and Eq. (2) is taken over
all transition energies of site i.

After construction of the lattice described above the sites are filled with a number
of particles Np by randomly choosing their coordinate and by avoiding double occupancy.
Initially a list of points (LSP) t11, t21, . . . tN1 is determined.

Here ti1 is the moment that ith particle jumps. Because of the jump which carries
the particle out of site i represents the Poisson process with averaged residence time τ i,
hence the time ti1 is defined as

ti1 = −τi lnR, (3)

where R is random number in interval [0,1]. Then we select a particle j that has minimum
tj1 and then move it into neighboring site if this site is empty. The neighboring site
is randomly chosen in accordance to probabilities in equation (1). In the case that the
neighboring site is occupied, the particle j remains on the current site, but the time of its
next jump is recalculated. In the next step n+ 1 LSP is updated as

tjn+1 = tjn − τj lnR and tin+1 = tin if i 6= j, n = 1, 2 . . . (4)

Such, the diffusion process is simulated. For each MC run the elapsed time tn/t
∗

1

and mean square displacement < x2n/a
2 > have been calculated. Here a is spacing be-

tween nearest neighboring sites; tn is the time realizing n particle jumps. The parameter
with subscript ∗ is denoted for crystal lattice. The data points plotted as < x2n/a

2 >
versus n and tn/t

∗

1 should be on a line with slope of correlation factorF and diffusion
coefficient D/D∗, respectively. In order to attain a good statistic all quantities is obtained
by averaging over 106-107 MC samplings.

III. RESULT AND DISCUSSION

Let us consider the migration of one particle in the lattice A and B. In accordance to
Eq. (1) for the lattice A the probability of particle jump from present site to neighboring
site is equal to 1/4. Hence the migration of particle in this lattice likes a random walk
through crystal lattice, e.g. the mean square displacement follows an classical relation
< x2n >= na2.

In addition, the mean time between two subsequent jumps τ jump is approached to
the time τ resobtained by averaging the time τ i (see Eq. (2)) over all sites in the lattice

τres =

N∑

i

τi

N
· (5)
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Fig. 2. The correlation factor F for the case of one particle; filled symbol repre-
sents the data for lattice A and unfilled symbol for lattice B

In the case of lattice B the particle prefers to move along a path enriched by low tran-
sition energies. This results in that one obtains < x2n >= Fna2 instead. The correlation
factor F depends on the temperature and attains very small value at low temperature. On
the other hand the time τ jump is significant less than time τ res. The diffusion coefficient
for disordered lattice can be given as [14]

D

D∗
= F

τ∗

τjump

· (6)

Table 1. The diffusion quantities

α ζ
Lattice A Lattice B

τ jump/τ
∗ τ ejump/τ

∗ D/D∗ F τ jump/τ
∗ τ ejump/τ

∗ τ res/τ
∗ D/D∗

0.2 2 2.28 2.28 0.4345 0.8575 1.21 1.21 1.28 0.7090
0.2 3 4.82 4.82 0.2055 0.7938 1.23 1.23 1.35 0.6427
0.2 4 11.72 11.72 0.0845 0.7589 1.24 1.24 1.42 0.6097
0.2 5 30.48 30.48 0.0325 0.7444 1.25 1.25 1.54 0.5963
0.4 2 3.55 3.56 0.2788 0.7070 1.53 1.53 1.79 0.4625
0.4 3 8.63 8.63 0.1148 0.5268 1.61 1.61 2.22 0.3264
0.4 4 22.43 22.44 0.0442 0.4041 1.65 1.65 3.02 0.2453
0.4 5 59.95 59.97 0.0165 0.3387 1.66 1.66 5.04 0.2042
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For lattice A, F = 1 and τ jump=τ res, e.g. the site disorder affects on the diffusion
coefficient only through the time τ res. In converse the transition disorder decreases both
the correlation factor and time τ jump with decreasing the temperature.

III.1. Diffusion of single particle

As mention above, the migration for the case when there is only one particle, likes
a random walk without blocking effect. This case is used to compare the diffusion in the
lattice with many particles and whereby allows clarifying the blocking effect. A typical
result is shown in figures 2 and 3. Here ζ=(ε2-ε1)β. The case of having site disorder gives
an expected correlation factor of 1.0 which is independent on temperature.

The transition disorder gives rise to monotony decreasing the factor F with decreas-
ing the temperature. This is caused by that at low temperature the particle performs many
forward and backward jumps located inside a small region of the lattice. The factor F is
also sensitive to the concentration α which is denoted to the concentration of energy level
ε1 and ε2 for the lattice A and B, respectively. As shown in Fig. 2 there is a pronounced
minimum near α = 0.75 which is independent on temperature.

The time τ jump exponentially increases with temperature in the case of lattice A,
whereas this time slightly changes for lattice B and at regime of low concentration α the
time τ jump is almost unchanged with temperature. This can be explained by that at low
concentration α the particle bypasses the high barrier surmounting only over low transition
energy.

Consider the diffusion of single particle for enough long time. The time which
particle spent at ith site can be approximated by

ti = tn
exp(−εiβ)

N∑

j

exp(−εjβ)

· (7)

Using equations (2) and (7) the number of visiting times of particle for ith site is

ni =
ti
τi

= tn

4∑

l

exp(−εilβ)

4τ0
N∑

j

exp(−εjβ)

· (8)

The averaged time between two subsequent jumps can be written as

τejump =
tn

N∑

i

ni

=

4τ0
N∑

j

exp(−εilβ)

4τ0
N∑

j

exp(−εjβ)

· (9)

For the case of α = 0.2 and 0.4 the result obtained by MC calculation is presented in Table
1. It is worth to note that the time τ jump is close to τ ejump and diffusion coefficient for
lattice A is significant less than one for lattice B at low temperature, although both lattices
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Fig. 3. The averaged time between two consequent jumps for the case of one
particle; Unfilled symbol represents the data for lattice A and filled symbol for
lattice B

have the same barrier distribution. Using equations (6) and (9) the diffusion coefficient
for lattice A can be defined by

D

D∗
=

τ∗

τ0
[α exp(−ε1β) + (1− α) exp(−ε2β)]. (10)

In Fig. 4 the Arrhenius plots for several cases are shown. For both types of disorder at
regime of high concentrations α the straight lines are observed. However, in the interval
α from 0.1 to 0.4 it is clearly seen the deviation from Arrehenius behavior. The origin
consists in that at low temperature the contribution of high transition or site energies is
essential, e.g. the particle surmounts only over low barriers (lattice B) or the time τ jump

is defined mainly by the site energies ε1 =-1 (lattice A).

III.2. Diffusion of many particles

Figure 5 represents the Arrhenius plots for the lattice with the particle coverage
θ = 0.02. The shape of graphs is very similar to one shown in Fig. 4 for the case of one
particle. It means that blocking effect almost does not influence on the diffusion behavior
in the considered lattices. To elucidate the strength of blocking effect we examine the
dependence of ratio Dθ/D1 as a function of the coverage θ. As shown in Fig. 6 for the
lattice B the ratio Dθ/D1 monotony decreases in likely-linear manner with increasing
the particle coverage. Whereas in the case of lattice A it shows an anomalous behavior:
at the concentration α=0.05 and temperature ζ=5 the ratio Dθ/D1 monotony increases
with the particle coverage. As the concentration α and temperature increases, this effect
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Fig. 4. The Arrhenius plot for the case of one particle: lattice A (lelft) and lattice
B (right).

Fig. 5. The Arrhenius plot for the case with θ = 0.02: lattice A (left) and lattice B (right).
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disappears. The reason of this effect will be discussed latter. In the magnitude the ratio
Dθ/D1 changes from 1 to 0.65 and 1.35 to 0.68 for the lattice B and A, respectively.

Fig. 6. The coverage dependence of coeffiction diffusion D: lattice A (left) and
lattice B (right).

The correlation factor F and time τ jump for the lattice with many particles are
shown in figures 7 and 8. For both lattices the factor F significantly decreases with
increasing the coverage θ. This is caused by that as the coverage increases, the number
of unsuccessful jumps is increased too, e.g. due to the site occupied by another particle
some jumps can not be realized and the particle remains in its present site. Regarding to
the time τ jump one can see two opposite trends: the time τ jump increases for lattice B and
decreases for lattice A (see Fig. 8). In lattice A if all sites with low site energy are occupied,
then remaining particles need to move through the site with high energy. As a result, the
time τ jumpdecrease. For lattice B the particles prevent other ones to move through the
path enriched low transition energies. Consequently, some particles need to surmount
high barrier and leads to increase the time τ jump. As such we observe two opposite trends
for time τ jump. According to Eq. (6) the diffusion coefficient may decrease or increase
depending on the ratio between the factor F and time τ jump. As just mentioned, for
lattice A both factor F and time τ jump decrease with increasing the coverage, therefore
depending on the strength of two these factors the diffusion coefficient may be increased
or decreased that observed in the Fig. 6. The dependence of the activation energy and
the pre-exponential factor D0 on the coverage θ in Table 2. It shows that the activation
does not affect the coverage, but the pre-exponential factor D0 decreases with increasing
the coverage θ.



DIFFUSION CHARACTERISTICS OF PARTICLES ON ENERGETICALLY DISORDERED ... 349

Fig. 7. The coverage dependence of correlation factor F: lattice A (left) and lattice
B (right).

Fig. 8. The coverage dependence of time τjump/τ
∗: lattice A (left) and lattice B (right).
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Table 2. The dependence of the activation energy and the pre-exponential factor
on the coverage θ

θ

Lattice A
αsite =0.3 αsite =0.5 αsite =0.7 αsite =0.9
E D0 E D0 E D0 E D0

0.0004 0.94 2.34 0.97 1.72 0.99 1.33 1.00 1.10
0.02 0.94 2.30 0.97 1.66 0.99 1.29 1.00 1.06
0.04 0.94 2.22 0.97 1.60 0.99 1.25 1.00 1.02
0.08 0.94 2.07 0.97 1.49 0.99 1.17 1.00 0.96
0.12 0.94 1.93 0.97 1.39 0.99 1.09 1.00 0.89
0.18 0.94 1.72 0.97 1.24 0.99 0.97 1.00 0.80
0.24 0.94 1.53 0.97 1.10 0.99 0.86 1.00 0.71

θ

Lattice B
αtran =0.3 αtran =0.5 αtran =0.7 αtran =0.9
E D0 E D0 E D0 E D0

0.0004 0.10 0.66 0.49 0.95 0.89 1.45 0.98 1.15
0.02 0.10 0.65 0.49 0.93 0.89 1.41 0.98 1.12
0.04 0.10 0.63 0.49 0.90 0.88 1.36 0.98 1.08
0.08 0.10 0.59 0.49 0.84 0.88 1.25 0.98 1.01
0.12 0.10 0.55 0.49 0.78 0.87 1.15 0.98 0.94
0.18 0.10 0.49 0.49 0.69 0.87 1.01 0.98 0.84
0.24 0.10 0.44 0.49 0.61 0.86 0.89 0.98 0.75

IV. CONCLUSION

MC simulation is carried out to study the diffusion in the disordered lattices with
two types of energetic disorders. Several remarks can be done as

(i) In the case of one particle the diffusion behavior for the lattices with transition
and site disorder is quite different: The correlation factor F for the lattice A is monotony
decreased with decreasing temperature; meanwhile it is independent of temperature for the
lattice B. For two-level distribution of transition energies the factor F attains a minimum
near the concentration α=0.75 which is independent of the temperature. By analogy the
temperature function of time τ jump is quite different for both lattices: for lattice A the
time τ jump slightly changes with temperature, whereas it exponentially increases for lattice
B. At regime of high concentration α the diffusion follows Arrhenius law for both lattices,
but at the interval of α from 0.1 to 0.4 the deviation from Arrhenius behavior is clearly
observed.

(ii) The blocking effect in most cases considered depends weakly on the tempera-
ture. The ratio Dθ/D1 changes from 1.0 to 0.65 and 1.35 to 0.68 for the lattice B and A
respectively. For lattice B the ratio Dθ/D1 decreases in likely-linear manner with increas-
ing the coverage. In the case of lattice A an anomalous behavior of Dθ/D1 is observed
near α=0.05 and at low temperature. This behavior disappears as the temperature or
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concentration α increases. The origin consists in that both factor F and time τ jump de-
creases with increasing the particle coverage. As a result of these two opposite factors the
Dθ/D1 increases upon α=0.05 and ζ > 5.0.
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[18] T. Apih, M. Bobnar, J. Dolinsěk, L. Jastrow, D. Zander, U. Kos̈ter, Solid State Commun. 134 (2005)

337
[19] N. Eliaz, D. Fuks, and D. Eliezer, Mater. Lett. 39 (1999) 255
[20] V. V. Kondratyev, A. V. Gapontsev, A. N. Voloshinskii, A. G. Obukhov, and N. I. Timofeyev, Inter.

J. of Hydrogen Energy 13 (1999) 708
[21] Y.-S. Su and S. T. Pantelides, Phys. Rev. Lett. 88 (16) (2002) 165503
[22] G. Majer, U. Eberle, F. Kimmerle, E. Stanik, S. Orimo, Physica B328 (2003) 81
[23] S. J. Manzi, G. A. Ranzuglia, and V. D. Pereyra, Phys. Rev. E80 (2009) 062104

Received 07 May 2011.


