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Abstract. Joint remote state preparation is a multiparty global quantum task in which several
parties are assigned to jointly prepare a quantum state for a remote party. Although various
protocols have been proposed so far, none of them are absolutely secure in the sense that the
legitimate parties (the preparers plus the receiver) can by no means identify the state to be prepared
even if they all collude with each other. Here we resolve this drawback by employing the quantum
channel in terms of nonmaximally entangled states whose parameters are kept secret to all the
participants but used to split the information in a judicious way so that not only absolute security
in the above-mentioned sense is achieved but also the performance is the simplest possible.

I. INTRODUCTION

Entanglement owns spooky action at distance and thus is a crucial resource in quan-
tum information processing and quantum computing: it can be used to test fundamental
laws of quantum physics, to provide unconditional security in quantum communication,
to teleport unknown quantum states, to enhance capacity of quantum channels, to make
inefficient algorithms efficient and so on (see, e.g., the book [1] and references therein).
It was widely believed that global quantum operations are best performed via maximal
entanglement, while utilization of nonmaximal entanglement is often regarded reluctant: a
prior local filtering (Procrustean method) or a special procedure (entanglement distillation
method) may need to be applied to probabilitically obtain a maximally entangled state
from a nonmaximally entangled one or some n maximally entangled states from a much
larger number & (k > n) of nonmaximally entangled ones [2]. However, this is not always
true. There exist certain information-theoretic tasks for which nonmaximally rather than
maximally entangled states turn out to be the right choice. For example, some remote
generalized measurements [3] and nonlocal gates [4] do require nonmaximal entanglement.
In light of a counter-intuitive fact that less entanglement may outperform more entan-
glement [5], the authors of Ref. [6] employ a d-level nonmaximally entangled state for
superdense coding and point out that states with less entanglement can have a greater
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deterministic communication capacity than other more entangled states. The effect of non-
maximally entangled states is so strong in multiple linear optical teleportation [7] that the
total success probability becomes higher than that via maximally entangled ones and can
be even further increased by selecting the nonmaximally entangled states in an adaptive
manner [8]. Furthermore, high-fidelity long-distance atomic-state teleportation can also be
carried out even via currently available optical cavities if, instead of maximally entangled
states, one uses a nonmaximally entangled state with its amplitude tailored properly to
fully compensate for the damping factors due to the state mapping [9]. Recently, quantum
secure direct communication and quantum key distribution exploit nonmaximal entangle-
ment as well to avoid encoding in terms of nonorthogonal quantum states [10, 11]: the
security is guaranteed by the quantum-mechanical impossibility of local unitary transfor-
mations between certain nonmaximally entangled states.

In this paper, we discover one more positive aspect of nonmaximal entanglement:
it can boost security of the so-called joint remote state preparation (JRSP) [12-16] to
the highest level. JRSP is an interesting multiparty quantum task that has recently
attracted attention in the quantum information community from both theoretical [12-21]
and experimental architecture [22] points of view. In contrast to the well-known remote
state preparation (RSP) [23] in which one party has complete classical knowledge of a
quantum state |¥) to be faithfully prepared at a remote party’s location, in JRSP there
are several inferiors who are assigned by a superior to jointly prepare the state |¥) for a
remote receiver. The superior knows the state |¥) but the inferiors do not. So the superior
can secretly split the information of the state |¥) into pieces each of which is given to an
inferior to exclude leakage of full information about |¥) to any of the inferiors. Both
maximally and nonmaximally entangled states have been used as the quantum channel
for JRSP and the security level of all the existing protocols [12—22] is that any subgroup of
the inferiors cannot exactly identify the state |¥) but all the inferiors together can. Like
in blind quantum computation [24], it is highly desirable also for JRSP to have absolute
security in the sense that neither an individual nor the entire group of the participants
(i.e., all the inferiors plus the receiver) can precisely infer the sate |V). Here, we shall
show that to reach this goal nonmaximally entangled states should be used in parallel
with an appropriate information splitting. Interestingly and surprisingly enough, the
judicious information splitting that leads to the highest level of security is accompanied
by simpler execution and higher success probability in comparison with that leading to a
lower level of security. We shall illustrate those features by considering JRSP with two
inferiors (called preparers in what follows) for arbitrary single- and two-qubit states using
minimum physical resource.

II. ABSOLUTELY SECURE PROTOCOLS

First, we consider the single-qubit case. Let
V1) = a|0) + 51), (1)

with complex numbers a, 3 satisfying the normalization condition |a|? + |3]?> = 1, be the
state the two preparers Alice and Bob are required (by their superior) to jointly prepare
for a remote receiver Charlie. The JRSP of state (1) can be done via two entangled
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pairs [13,16], but the minimum quantum resource is a single tripartite entangled state of
the form [12-14]

Q1) apc = (1]000) +v|111)) aBc, (2)
where p,v are complex numbers satisfying the normalization condition |u|? + [v]* = 1.
Without loss of generality we assume that || > |v|. The qubit A (B, C) is distributed to
Alice (Bob, Charlie). Suppose that the complete data set S = {«, 8} characterizing the
state |Wq) is split (by the superior) into two subsets: one is S4 = {a, b} with a, b arbitrary
real numbers, which is given to Alice, and the other is Sp = {Z, 7} with Z,7 some complex
numbers, which is given to Bob. Usually, a, b, T and 7 are chosen so that [12,13]

a=az, [ =0by. (3)

Transparently, such an information splitting forbids Alice alone or Bob alone to derive «, 3
(i.e., to identify |W1)) but allows them together to do so. Here, to avoid this disadvantage,
we on purpose employ the nonmaximally entangled quantum channel |@Q) , Eq. (2), whose
parameters pu, v are not disclosed (by the superior) to Alice and Bob, but are explicitly
used for the information splitting in the following way

E — fx(ay bu au/B7u7 V)7

y:fy(a,b,a,ﬁ,,u,l/), (4)
where fx(y)(a, b, a, 3, pi, v) are some well-defined functions of their arguments. Hence, even
when Alice and Bob negotiate with each other they are unable to calculate «, 8 because
they have no idea about u and v. Of course, this important feature does not arise in the case
of maximal entanglement for which p = v = 1/4/2. Actually, the nonmaximally entangled
quantum channel (2) was employed already in several previous works [12-16], in which,
however, p and v were not exploited at all for information splitting. In fact, there are many
ways to define fx(y)(a, b, o, B, pu,v) and in theory these functions could be tailored so as to
obtain the highest success probability. Such an optimization procedure is however not easy
in general. So, as an example and for concreteness, let us set f.(a,b, o, 3, u,v) = a/(a /1)

and fy(a,b,a, B, pn,v) = B/(by/v), ie.,
Y
a/i’ v= bV
With the knowledge of S4 = {a,b} Alice measures qubit A in the basis
[u1) 4 _ 1 a b 10) 4 (6)
|ug) 4 Va2 + 2\ b —a Da )’
while with the knowledge of Sp = {Z,7y} Bob measures qubit B in the basis
( lv1) g ) _ 1 <E* v ) ( 0)p > (7)
v2) VEE+P\ ¥ -7 1) p

The quantum channel state |Q1) 45~ can then be reexpressed as

T =

()

2 2

Q1) apc = Z Z [um) 4 |vn) g [ Dimn) o » (8)

n=1m=1
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which implies that if Alice finds |u,,) , and Bob finds |v,,) 5 then Charlie’s qubit is projected
onto the (unnormalized) state |Dyy, )~ . In the case of m = n =1, we have

(paw |0) + vby [1))c

D - 9
Pile = G+ )

(9)

which, by virtue of Egs. (5), becomes

(Veal0) + VvB1))e
V(@ +)([z* + [7?)
As in all the previous protocols using nonmaximally entangled quantum channel,
the JRSP protocol fails unless the receiver Charlie knows the values of p and v. We thus
suppose that the superior discloses p and v to Charlie. If so, Charlie takes an ancillary

qubit C” prepared in state |0)-, and applies on C' and C’ a two-qubit gate Uccr(v/p),
where Uxy (s) has the form (in the computational basis {|00),|01),[10),|11)}xy)

Vi 0 0 JI—]s]
0 10 0

|Di1)o = (10)

Uxy(s) = (11)

0 01 0
VI—1]s] 0 0 —s*
Because

v VYY) 0 o+ V(e = D/ pla 1) o (1) e
UCC’(#) |D11)c [0)er = @+ )P+ ) ) (12)

if Charlie measures C’ and finds [0)., then qubit C is collapsed into the desired state
|W1)o, with the probability

5 |
P @R "
Note that with the information splitting (5) the requirement that Charlie knows p and v is
necessary for her to construct the right gate Uocr (v/p). This, however, creates opportunity
for the three participants (Alice, Bob and Charlie) to cooperate to deduce a, 8 from Eqs.
(5), namely, « = az,/p and § = by/v. To get rid of such a drawback (i.e., to achieve
absolute security in the sense mentioned in the abstract), we do not let any of the three
participants know p and v. Then, even the receiver joins the preparers in an attempt to
learn full information about the state to be prepared, they all remain powerless. Yet, the
JRSP would work by splitting information in a way different from (5). Concretely, now
S4 remains the same, i.e., S4 = {a,b}, but Sp should be changed to Sp = {z,y} with
o B

(14)

Alice will measure qubit A in the same basis determined by (6), but the basis for Bob
to measure qubit B is determined by Eq. (7) in which Z,7 should be replaced by z,v,
respectively. It is straightforward to verify that if Alice finds |u;), and Bob finds |vi) g
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then Charlie will get qubit C' in the right state |¥;), without doing anything. The
probability for this to happen is

1
(a? +0*)(Jz* + ly*)

Intuitively, one deems that P; would be lower than P;. Yet, the fact turns the other way
around. From Egs. (5), (13), (14) and (15) it follows that
P Pul=wD )
P, wl(lz + |y[?)
implying that P; is always higher than P;. This result is rather surprising since the
latter method for JRSP is much simpler (no ancillas, no two-qubit quantum gates, no
measurements are required at Charlie’s station), provides absolute security (not only the
two preparers but also all the three participants together are unable to identity |¥;)) and,
at the same time, succeeds with a probability higher than that by the former method which
makes use of the information splitting (5) with u,» known to Charlie. Such triple benefit
arises from the usage of the nonmaximally entangled state (2) along with the judicious
information splitting (14).
To assess achievable values of the success probability Py we set b = au|S8]/(v|a|) and
lw?=1/2+¢ (Jv|* =1/2 — &) with 0 < ¢ < 1/2. Then

B g2 —1/4
C22lal2—1)e 1"

P = (15)

Py

(17)
Py
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Fig. 1. The success probability P, Eq. (17), as a function of ¢ for |a|? = 0.2, 0.4,
0.6, 0.8, 0.9, 0.95 and 0.99, upwards.

In Fig. 1 we plot P; of Eq. (17) as a function of ¢ for several values of |a|?. As
seen from Fig. 1, in the limit of ¢ — 0 (i.e., |Q1) tends to the maximally entangled
state (]000) + [111))/v/2) Py — 1/4, while in the limit of ¢ — 1/2 (i.e., |Q1) tends to
the separable state |000)) P, — 0. However, P, may exceed 1/4 for a fixed value of ¢ if
la|? > (1 + 2¢)/2.
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Next, we consider JRSP of the most general two-qubit state
|Wy) = |00) 4+ 5 ]01) + ~|10) + 4§ |11), (18)

with complex numbers «, 3, v and § satisfying the normalization condition || + |3| +
|7|2 +|8|> = 1. Possible quantum channels may be served by four entangled pairs [17], two
entangled trios [18] or one six-qubit cluster state [19]. Here we are concerned with the
most economical quantum resource that consists only of three nonmaximally entangled
pairs [20]

Q2) 4,8, 4501 Bocy, = (10[00) + v [11)) 4, B,
®(p]00) + v [11)) a5cy
@(1|00) + v [11)) Bycn, (19)
of which qubits A, A5 belong to Alice, qubits By, B> to Bob and qubits C7, C5 to Charlie.
Clearly, the state |Wq) is fully characterized by the data set S = {«,[,v,0}. Let us

consider two data subsets Sy = {a,b,c,d} € R and Sp = {Z,7,%,t} € C. Generally, the
information can be split as

T = fw(avb)cvd)aaﬁapy)dﬂuvy)v
y: fy(a,b,c,d,a,ﬁ,’y,é,u,u),
zZ= fz(a)bvc)dvavlgv’yv&mu>y)a
f: ft((l, bu c,d,a,ﬁ,’y, 57”7 V)7 (20)

with fi(y,2.0(a,b,¢,d,a, 3,7, p, v) being some well-defined functions of their arguments.

First we analyze the method in which u, v are kept secret to the two preparers but
disclosed to the receiver and choose fy(, . (a,b,c,d,a, 8,7,0, 1, v) to have the following
information splitting

_ dva—cuy _  dvB —cuo
T wArvA v= wArA (21)
E:a,uy—bua z:aué—buﬁ

uviA uviA

with a, b, ¢, d satisfying the condition A = ad — bc # 0 to avoid mathematical singularity
in Egs. (21).

Alice measures qubits Aj, Ao in a basis determined by the data subset S4 =
{a,b,c,d} :

1) 4, 4, a b ¢ d 100) 4, 4,
lu2) 40, | _ 1 b —a d —c 01) 4, 4, (22)
us) a,n, | Va2 tb2+2+a2| ¢ —d —a b 110) 4, 4,
\U4>A1A2 d ¢ —-b —a |11>A1A2

Note that the condition A # 0 has a physical meaning. It means that Alice’s measurement
is a single collective two-qubit one, but not two individual single-qubit ones, i.e., state
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[tm) A, 4, for any m € {1,2,3,4} should not be a product state. As for Bob, he measures
qubits By, By in a basis determined by the data subset Sp = {E, Y, E,Z}:

V1) B, B, A TA z* _E: 100) g, B,
v2)pB, | _ 1 AT Nt =E A /A 101) 5, B,
|v3) , B, VEP+GR+ R+ ¥ T 1 —Z 110) g, 5,
|U4>BlBg Ay —AT /A Z/A ‘11>BIBQ
(23)
with
|2 4 |F|2
A=y e en
1z + [y

to ensure the unitarity of the transformation (23). The state |Q2) 4, g, 4,y B,c, €A1 be
rewritten in terms of [um) 4 4, and |vn) g g, as

4 4
|Q2>A131A2013202 - Z Z ‘um>A1A2 |U”>B1BQ ‘Rm”>0102 : (25)

n=1m=1

The JRSP may succeed when Alice finds |u1) 4, 4, and Bob finds [v1) 5 g, in which case

1
V(a2 + 02+ + ([ + [§ + 22 + [?)
X [/ﬂ(a,uf + cvZz)|00) + pv(evt + apgy) |01)
+ (b + dvz) [10) + V2 (dvl + bug) [11)] ¢ ) - (26)
Substituting Egs. (21) into Eq. (26) yields
Bu)en o, = [na [00) +v3(01) + 1y |10>_+ Vo |11>]01€2 '
V(@ + 02+ + &2)([7? + [y? + [2]2 + [1]?)
To transform state (27) to the target state [W2) o, Charlie applies the two-qubit

|R11>C102

(27)

gate Ugycs (V2 /1?) (see Eq. (11)) on qubit Cy and an ancillary qubit C3 that she prepared
in state |0), . Since

v |\112>C1C2 |O C3 W v ‘M‘Q |O +’Y‘1 G |11>C2CS
UCQC?,(_) |R11>0102 |0>03 = 2 2 2 2 2 2 2
[ V(@0 +c +d)(|a:| +\y\ + 212 + [t]?)

)

if Charlie measures the ancilla in the computational basis and finds |0) ., , then the state of

the two unmeasured qubits Cy and Cy becomes [W3) 4 o, as desired, with the probability
vl?

@02+ + B)([f 1[5 + 7 + [P

As was recognized above in the case of single-qubit states, Charlie should not need know

about the quantum channel and can still obtain the target state. In the case of two-qubit
states this may be realized if the information S = {«, 8,7, d} is split wisely. We therefore

Py = (29)
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analyze another method in which u,v are hidden from all the three participants. This
method could be successful in such a way that the receiver Charlie does not need doing
anything. Namely, instead of Sp = {Z,7,%,t} defined by Egs. (21), the superior can
choose Sp = {z,y, z,t} with

Cdva—cpy dvB—cud
 udvA 4= JIRIZZYAN
_apy —bra L apd — bvp
op22A T A
Now the basis for Bob to measure qubits By, By has the same form as in Eq. (23) but
with Z, 7, Z and ¢ replaced by x, y, z and t, respectively. If so, when Alice finds |u1) Ay Ay
and Bob finds [v1) 5 g, , the target state [V2), o, appears automatically at Charlie’s. The
corresponding success probability reads

T

(30)

1
P, — , 31
TR E T AP VT AP o
which is, surprisingly, always higher than Py because
Py (=P [2P) (ul? = P

= —1=—5—7 5 5 5 > 0. (32)

Py w(lzl® + |yl + [217 + [¢?)
To evaluate possible values of P, we set a = b =c¢ = —d, u = cosf and v = sinf

with 0 < @ < /4. Then, for a class of two-qubit states with o = i = v = (icos ¢)/V/3
and § = sin , we have

Py = 6{[3+ cos(26) — sin(46)] cos? p csct @ sec® 0
—4+/3 cos p esc® O sec 0 sin ¢ + 6 csc® 0 sin? ¢
+6 csc? Bsec? Osin? p + 16v/3 csc®(20) sin(2)} 71, (33)

where ¢ = 6 — /4. Figure 2 is a plot of P, given by Eq. (33) as a function of  for several
values of ¢. In the limit of 6 — 7/4 (i.e., |Q2) tends to a maximally entangled state)
P, — 1/16, while in the limit of § — 0 (i.e., |@1) tends to a separable state) P» — 0.
However, P, may exceed 1/16 for a certain range of 6 and .

IIT. CONCLUSION

In conclusion, we have proposed JRSP protocols which are absolutely secure in
the sense that all the participants, even when they are in connivance with each other,
are unable to retrieve the full information of the state to be prepared, from the partial
informations that they are allowed to know. This is achieved by exploiting the quantum
channel in terms of nonmaximally entangled states combined with a proper way to split the
secret information. The key idea is to hide from all the participants (i.e., the preparers
plus the receiver) the quantum channel’s characteristic parameters which are however
taken judiciously into account in the information splitting. By doing so not only the
security is boosted to the highest level but the protocols’ execution is also the simplest:
the receiver does not need any ancillas nor any operations/measurements, as opposed to
any other existing protocols. Furthermore, in the JRSP protocols proposed in this paper,
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P,
0. 08
0. 06
0.04
0.02
i > 3n  x°
16 8 16 4

Fig. 2. The success probability P>, Eq. (33), as a function of 6 for ¢ = 7/3, 7/4,
/5, /6, w/7, m/8 and 7/9, upwards.

not only the quantum resource, but also the number of bits for classical communication
is minimum. Just one bit per preparer is required to inform the measurement outcome:
‘1"if m =1 (n =1) and ‘0’ otherwise. The JRSP is by itself state-dependent. Here we
are interested in the most general quantum states characterized by complex coefficients.
Nevertheless, there are possibilities to trade off the resources from different contexts. For
example, if the coefficients of the state to be prepared are all real or for an ensemble
of some special states, the measurement bases for the preparers may be simplified so
as to significantly increase the success probability [20]. Existing protocols for JRSP of
multiqubit states [21] can also be made absolutely secure with resort to the strategy of
using nonmaximal entanglement combined with proper information splitting as described
in this paper.
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