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LOWEST EXCITED-STATE IMPURITY BINDING ENERGY IN
InGaN/GaN PARABOLIC QWW: MAGNETIC FIELD EFFECT
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Abstract. In this paper, we have investigated the magnetic field effect on the lowest excited-
state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic
transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-
one-dimensional effective potential model. The calculations are performed within the framework
of the effective mass approximation. A cylindrical QWW effective radius is taken into account
to describe the lateral confinement strength. The numerical results show that: (i) the probabil-
ity density is the largest on a circularity whose radius is the effective radius and (ii) the lowest
excited-state binding energy is the largest when an impurity is located on this circularity while it
starts to decrease as the impurity is away from the circularity.

I. INTRODUCTION

In the last few decades, there have been several studies concerning hydrogenic impu-
rities in low-dimensional semiconductors such as quantum well (QW), quantum well wire
(QWW) and quantum dot (QD) under external fields which are an interesting probe to
study the physical properties both from theoretical and technological points of view [1–19].
Using the potential morphing method within the effective mass approximation, Bask-
outas et al. [20–23] have investigated the effect of external electric and magnetic fields
on the binding energy in GaAs-GaAlAs inverse parabolic quantum well and quantum
dot. Niculescu and coworkers [27] have examined the magnetic field effect on the binding
energy inGaAs / Al0.3Ga0.7As cylindrical QWW. It has been found that the binding en-
ergy increases as a function of the applied magnetic field and the influence of the latter
is more pronounced for bigger wire radii and for on-center impurity. The same behavior
has been reported by Zounoubi and cowerkers [24] which they have calculated the binding
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energy and the polarizability of shallow-donor confined in GaAs QWW with a rectangular
cross-section in the presence of an axial magnetic field. Aktas and coworkers [13,14] have
estimated the binding energy of shallow donor impurity under both electric and magnetic
fields in a coaxial GaAs/GaxAl1−xAs QWW. They have calculated the binding energy as
a function of the impurity position and barrier thickness for various values of electric and
magnetic fields. An et al. [26] have investigated the properties of hydrogenic impurities in
a parabolic GaAs QWW in the presence of magnetic field. In the same sense, Kasapoglu
et al. [28] have calculated the binding energy in the single square quantum well under the
applied tilted magnetic field as a function of the angle and the well width. It has been
found in Ref. [28] that the direction of the magnetic field causes important changes in the
binding energy which is approximately about 13 meV when the angle changes from 15◦

to 45◦ for the width equals to 10 nm. In addition, Zhang et al. have investigated the
magnetic field effect on the binding energy of exciton in GaAs/(Ga,Al)As square QWW
with infinite and finite potential barriers [29]. They have shown that the ground state
exciton binding energy increases with the increasing of the magnetic field and the effect
of a magnetic field is much stronger in wide quantum wire. In the previous work, we
have shown that the ground-state probability density in x-y plane maximizes at a point
and starts to spread toward the boundaries as a function of the magnetic field [30]. We
have also shown that the ground-state binding energy increases with the increase of the
magnetic field and it maximizes for the effective radius around the effective Bohr radius.

In this work, based on the finite difference method adopted in our previous works
[30, 31] and quasi-one dimensional effective potential model, the calculation of the lowest
excited-state shallow donor binding energy in InGaN/GaN QWWs with lateral parabolic
potential subjected to magnetic field parallel to wire-axis is investigated.

II. THEORETICAL FRAMEWORK

Let us assume that the hydrogenic shallow donor impurity is located at(xi, yi) in the
(x, y)-plane which constitutes the lateral surface of parabolic quantum-well wire (PQWW)
made out of wurtzite (WZ)InνGa1−νN and embedded in GaN barriers. Therefore, the
electron is free to move along the z-axis longitudinal direction and it is confined by the
parabolic lateral confinement in (x,y) plane. In the presence of the hydrogenic shallow-
donor impurity and a magnetic field applied parallel to the z-axis, the effective-mass
Hamiltonian of an electron in PQWW can be expressed as follows

H = − 1

2m∗

[−→
P +

e

c

−→
A
]2

+
1

2
m∗ω2

0

(
x2 + y2

)
− e2
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e and m∗ (m∗ = ν · m∗
InN + (1 − ν).m∗

GaN) are the electron charge and the electron

effective-mass respectively, ω0 is the harmonic oscillator frequency,
−→
P is the momentum

while ε∗(ε∗ = ν · ε∗InN + (1 − ν) · ε∗GaN) is the dielectric constant of (In,Ga)N QWWs. ri
is the electron-impurity distance in which xi and yi are the coordinates of the impurity in
the PQWW given as::
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We note that
−→
A represents the vector potential of the magnetic field which is ex-

pressed as follows:

−→
A =

1

2

−→
B ∧ −→r and r =

√
x2 + y2 + z2 (3)

By using the effective Bohr radius (EBR) a∗ = ε∗~2
/
m∗e2 as the length unit and the

effective Rydberg energy (ERE) R∗ = e2
/
2ε∗a∗as the unit of the energy, the Hamiltonian

(1) becomes:

H = - ∇2 +
ρ2

ρ4e
+

~ωm

2R∗ Lz −
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(4)
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r0[
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m

4ω2
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]1/4 (5)

r0 =
√

~
m∗ω0

is the oscillator length and ωm = eB
m∗c is defined as the cyclotron frequency.

In Eq. (4), ρ is the electron distance from the origin of the wire along the z-axis. It
is given as:

ρ =
√
x2 + y2 (6)

For a fixed finite parabolic potential ω0, the value of ρe can be modulated by the
indium fraction in the QWW and the changeable magnetic field intensity. Note that the
operator Lz is the angular momentum component of an electron which equals zero for
the ground-state. We also mention that the lateral confinement effect scales as ρ - 4

e . It
is also indicated that the confinement potential depends strongly on the value of ρe, i.e.,
the smaller theρe, the stronger is the lateral confinement. Therefore, ρeis defined as the
effective radius (ER) of the wire cross section describing the lateral confinement of an
electron in the PQWW.

By solving the Schrodinger equation in cylindrical coordinates in the absence of the
donor impurity:

H0ψ
ex
0 (−→r ) = Eex

0 ψ
ex
0 (−→r ) (7)

The exact solution of Eq. (7) is given as:

ψex
0 (ρ, θ) =

1√
πρ2e

ρ exp
(
−ρ2

/
2ρ2e

)
exp (iθ) (8)

Eex
0 =

4

ρ2e
+

~ωm

2R∗ Lz (9)

In the presence of the impurity, there is no exact solution for the combination
of Coulomb interaction and parabolic confinement potential. However, in the present
situation we have adopted the same method used in Ref [32] in which the authors have
proposed an analytical 1D formula for the effective interaction potential between confined
carriers. Therefore, it is permissible to replace the Colombian potential with the effective
potential energy V ex

eff (z) [32]. Within this approximation, the Hamiltonian can be separated
in the cylindrical coordinates and given:

H = Hex
⊥ +Hex

/ / (10)
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Hex
⊥ is the perpendicular Hamiltonian which is the same as given in the absence of the

impurity (Hex
⊥ = H0) and H

ex
/ / is the parallel Hamiltonian given as:

Hex
/ / = -

d2

dz2
− V ex

eff (z) (11)

And the effective potential energy V ex
eff (z) is defined as:

V ex
eff (z) =

+ ∞∫
−∞

2

ε∗ri
|ψex

0 (x, y)|2 dxdy (12)

This integral (12) is calculated as done in Ref. [32] by replacing (|ψex
0 (x, y)|2) and

the Coulombian potential by their Fourier transforms, and integrating over the transverse
coordinates and transverse momenta. Then, the effective interaction potential becomes
expressed as the integral:

V ex
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0
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J0 is the zeroth-order Bessel function and |ψex
0 (x, y)|2 is the lowest excited-state probability

density of electron without the presence of the impurity in the QWWs.
The eigenvalues of the Hamiltonian given in Eq. (11) can be obtained using the

finite-difference method on a one-dimensional mesh. The lowest excited-state energy with
the presence of the impurity is given:

Eex
I = Eex

0 + Eex
/ / (14)

And then, the lowest excited-state binding energy is obtained as follows:

Eex
b = Eex

0 − Eex
I = −Eex

/ / (15)

To simplify, our results are given in the effective units (a∗ = 2.80 nm and R∗ =
26.65 meV for In0.2Ga0.8N ternary alloy).

III. RESULTS AND DISCUSSION

To get a clear picture of the lowest excited-state shallow donor binding energy
dependence as a function of the magnetic field, the indium concentration and the parabolic
potential, we have started to study the electron lowest excited-state probability density
without the presence of the impurity.

Fig. 1 shows the magnetic field (effective radius) effect on the lowest excited-state

probability density |ψex
0 (x, y)|2in x-y plane without the presence of the impurity. It is

shown that |ψex
0 (x, y)|2is the smallest at a point on the center axis of the QWW. As

the distance from the center axis increases, the probability density increases. When the
distance reachesρe, |ψex

0 (x, y)|2 is the largest and then it decreases as a function of the

distance, i.e., |ψex
0 (x, y)|2is maximum on the circularity (Cm) of radius ρe. The smallestρe

is, the electrons are forced to be near the center axis but not on it. From the results
obtained in our previous work, it appears that |ψex

0 (x, y)|2has a complete behavior of the
ground-state probability density [30].
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Fig. 1. (a and b): The electron lowest excited-state probability density in x-y
plane for two confinement regimes: (a) for ρe = 1 and (b) for ρe = 4 in

In0.2Ga0.8N / GaNPQWW.

In Fig. 2, the magnetic field effect on the lowest excited-state binding energy of
shallow donor impurity located along the x-axis as a function of the impurity position
is presented. The same results are obtained for the impurity located along the y-axis
(not shown here). A typical symmetric behavior is exhibited around xi = 0. An obvious
increase of the binding energy is shown especially for the impurity located around the
center axis. A critical value of the effective radius is obtained ρce = 0.5. It has been found
that for ρe ≻ ρce the binding energy presents two maxima while for ρe ≺ ρce, E

ex
b has only

one. When the impurity is located on Cm, the probability density is the largest, i.e. the
distance between the impurity and the electron is the shortest. Thus, when the impurity
is located atxi = ± ρe the binding energy is the largest. When the impurity is located
within (ρ ≺ ρe) the C

m, Eex
b increases as a function of the position |xi|. For the impurity

located away from the Cm, the Eex
b starts to decrease. Notice that the presence of the

applied magnetic field parallel to the QWW axis leads to an increase of the binding energy.
Such increase is also related to the indium concentration and the parabolic potential. The
largest the indium concentration is, the larger the decrease is obvious. In addition, the
largest the parabolic potential is, the larger the increase is.

It is well known that the increase of the magnetic field enhances the localization of
the wave-function and then it acts as the reduction of the QWW geometrical dimension
(effective radius). The results we presented above, corresponding to the effect of external
magnetic field on the lowest excited binding energy, are in good agreement with those
reported by several authors. We note that all of these works concern the ground-state and
exciton state in different semiconductor materials (especially for GaAs, (Al,Ga)As, ZnS,
InAs. . . ), different shape and different numerical methods adopted. Incidentally, Hong
and coworkers have investigated the magnetic field effect on the binding energy in GaAs
QD [33] and GaAs double QD [34]. The same behavior as described above is reported
especially for the QD but in self-assembled double quantum-dot (DQD) it is found that
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Fig. 2. The magnetic field effect on the lowest excited-state binding energy
of shallow donor impurity located along the x-axis as a function of the impurity
position in In0.2Ga0.8N / GaNPQWW.

the binding energy has a complex behavior due to the coupling between the two dots,
i.e., the magnetic field has different effects for different dot-size and for different lateral
confinement. Recently, the same results concerning the magnetic field investigation on
the binding energy of the ground state and the excited states have obtained by Abramov
et al. [35] which has used the Green’s function to obtain the solution of the Schrödinger
equation in a square QW. For other shape like an InAs Pöschl-Teller quantum ring, the
same behavior is also reported by Barseghyan et al. [36] for the ground state binding
energy.

IV. CONCLUSION

Within the framework of the effective-mass approximation and the quasi-one-
dimensional effective potential model, the magnetic field effect is investigated using the
finite-difference method on the electron lowest excited-state probability density and the
lowest excited-state shallow donor binding energy in parabolic-transversal section WZ
In0.2Ga0.8N / GaNPQWW. In this model, an effective radius is introduced which can be
modulated by the Indium concentration, the parabolic potential and the magnetic field.
The numerical results show that:

The electron lowest excited-state probability density is the largest on a circularity
whose radius is the effective radius.

The lowest excited-state shallow donor binding energy is the largest when the im-
purity is located on this circularity while it starts to decrease as the impurity is away from
the circularity.
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