
Communications in Physics, Vol. 23, No. 1 (2013), pp. 85-89

INFLUENCE OF THE FREQUENCY-CHIRP
GAUSSIAN PULSE ON THE PULSE BROADENING

IN THE DISPERSIVE FIBERS

BUI XUAN KIEN
Electric Power University

TRAN HAI HUNG
Nghe An Pedagogical College

TRINH DINH CHIEN
University of Science, Vietnam National University, Hanoi, Vietnam

Abstract. A signal optical pulse propagating in the fiber is affected by many factors, one of the
most important among them is dispersion. Under the dispersive influence, the optical pulse is
reshaped, particulally, its duration is changed. Especially, the pulse duration change of the optical
short pulse with the frequency-chirp is unregular. It influences to the propagating distance in the
fiber optic network.

In this paper, the expression of the signal optical pulse with the frequency-chirp propagated
through the dispersive fiber is derived. This expression described the broadening of the pulse
in propagating process (broadening factor), which depends on the frequence chirp and dispersive
parameters. The influence of those parameters on the pulse broadening is simulated and discussed.

I. INTRODUCTION

As well known, in the optical communication, the most interesting problems are the
pulse sharping and propagating distance. It is fact that the signal optical pulse propagating
in the dispersive fiber is always affected by the nonlinear effects as disspersion, self-phase
modulation and cross-phase modulation,...[1-5], which broadens (or narrowes) the pulse,
expecially, the pulse with frequency-chirp and consequently, reduces the bit rate.

Up to now, the dispersive questions are interested in many works [2, 3], but till not
paied attentions on the influence of the pulse with the frequency-chirp on the propagating
distance in the fibers.

We present the expressions of the optical pulse propagated through the optical fiber
and of the broadening factor in Sec. 2. The influence of the chirp and dispersive parameters
on the broadening is simulated and discussed in Sec. 3.

II. THE BROADENING FACTOR OF THE OPTICAL GAUSSIAN CHIRP
PULSE IN THE DISPERSIVE FIBERS

We consider a optical Gaussian pulse propages in the unreducing linear dispersive
fiber. To describe the wave propagation of the picosecond pulse in the linear dispersive
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medium, the general Schrodinger equation [1] is reduced to:
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where A is the slowly varying amplitude of the pulse envelope; T = t − z
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is the time
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is the coefficient described the group velocity dispersion, β (ω)is the wave

propagation coefficient at frequency, ω0is the central frequency.
For simplicity, the normalized time and amplitude are defined as following:
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T
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where P0, T0is the amplitude peak and duration of the incident pulse, respectively.
Now, equation (1) is rewritten as:
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where sgn(β2) = ± 1 depending on the sign of β2 (relating to dispersive character of the

fiber) and LD =
T 2
0
|β2| is defined as the dispersive length.

As above consideration, the fiber is linear dispersive, so the equation (2) can be
rewritten as
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Equation (3) is solved by using the Fourier-transform method, such that
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With

Ũ(0, ω) =

∞∫
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U(0, T ) · exp(iωT )dT (5)

is the Fourier transform of function U(z, T ).
We are interesting in the chirped Gaussian pulse, for which the incident field is of

the form as follow:
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where C is defined as a parameter described the frequency-chirp (i.e. the instantanneous
frequency increasing linearly from the leading to the tailing edge) of the pulse [1].

Substituting (6) to (5) and consequence to (4), after integration we have:
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This expression shows that the chirp Gaussian pulse maintains its Gaussian shape
on propagation, but its duration T1 after propagating a distance z is related to the initial
duration T0 by the relation:
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The ratio σ is defined as the broadening factor at distance z, which depends on the
chirp Cand dispersive parameters β2.

III. THE INFLUENCE OF THE CHIRP AND DISPERSIVE
PARAMETERS ON THE PULSE BROADENING

To confirm that, the broadening of the Gaussian pulse with duration T0 = 100 ps and
different value of the chirp parameter, which propagates through the in different dispersvie
fiber with length z = 100 km and dispersive parameter β2 = −50, −20, 20, 50 ps2/ km
[3] are simulated and illustrated in Fig. 1.

Fig. 1. Ouput pulse duration vs chirp parameter for fiber with length 100km and
dispersive parameters of: -50 ps2/km (line);-20 ps2/km (dashs);+20 ps2/km
(dots)and +50 ps2/km (dashs-dots).

From Fig. 1 we can see that depending on the sign of parameters the pulse will
be broadened or narrowed. In the normalous-dispersive (β2 > 0) fiber, the up-chirp
(C > 0) pulse will be broadened, meanwhile the down-chirp (C < 0) pulse narrowed. In
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the unnormalous-dispersive (β2 < 0) fiber those processes are opposite. There is a value
region of chirp and dispersive parameters, for which the shortening process is prominent
than the broadening one and consequence, the minimum duration of the pulse appears.
For the pulse without frequency chirp (C = 0), its duration always broadens because of the
group velocity dispersion, however, the broadening factor is small (σ = 1.01÷1.12) for fiber
with dispersion parameter changes in the large region from 10 ps2/km to 50 ps2/km (see
Fig. 2). Moreover, there are two values of the chirp parameter, for which the broadening
factor is equal to 1 (σ = 1), i.e. the duration of the output pulse is equal to that of the
incident pulse. Two values of the chirp parameter changes in the different fibers. This
leads to choice an optimal collection of the parameters, for which the pulse remains its
shape after propagating through the given fiber. This phenomenon can be explained by
the compensation of frequency chirp effect with dispersive one if the optimal parameter
collection is chosen.

Fig. 2. Duration of the ouput pulse vs dispersive parameter for incident pulse with chirp.

In the fact, the communication fiber is the normalous dispersive medium, which
has possitive dispersive parameter (β2¿0). So the pulse with up-chirp is always broadened
when propagates in the fiber (dash-dot curve in Fig. 2). But, for the incident pulse with
down-chirp, there is the compressing process in the fiber with dispersive parameter lies
in certain interval. For example, if C=-8, the pulse will be compressed in fiber with the
dispersive parameter to 25 ps2/km (dot curve in Fig.2 ). Meanwhile, if C=-6, the pulse
is compressed in the fiber with the dispersive parameter to 34 ps2/km (dash curve in
Fig. 2). All of the above comments means there is a collection of parameters, for that the
propagated pulse is same as the incident one. For example, in Fig. 2, the collection of
paramaters is: T0 = 100 ps, L = 100 km, β2 = 25 ps2/ km and C = −8 or T0 = 100 ps,
L = 100 km, β2 = 34 ps2/ km and C = −6.
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IV. CONCLUSION

From results we can affirm that: i) In the dispersive fiber, the duration of the
optical pulse without frequency chirp is always changed; ii) The changing magnitude of
the duration of the optical pulse (relating to broadening or narrowing) depends on the
its chirp parameter and the dispersive parameter of the fiber; iii) There is a collection
of parameters (T0, β2, C, L: for example, first collection: T0 = 100 ps, β2 = 25 ps2/ km,
C = −8 and L = 100 km, and second collection: T0 = 100 ps,β2 = 34 ps2/ km, C = −6
and L = 100 km), for which the propagated chirp pulse did not change, i.e. the broadening
factor σ = 1.
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