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Abstract. Based on the Cornwall-Jackiw-Tomboulis (CJT) effective action approach a theoretical
formalism is established for studying the Bose-Einstein condensation (BEC) in a binary mixture
of Bose gases. The effective potential, which preserves the Goldstone theorem, is found in the
Hartree-Fock (HF) approximation. This quantity is then used to consider the equation of state
(EOS) and the phase transition of the system.

I. INTRODUCTION

In recent years there appears a lot of experimental works dealing with BEC of
systems composed of two distinct species of atoms [1-10]. The typical experiments were
performed with atoms of 87Rb in two different hyperfine states |F = 1, mf = −1〉 and
|F = 2, mf = 1〉, which behave as two completely distinguishable species [1] because
the hyperfine splitting is much larger than any other relevant energy scale in the system.
The multicomponent BEC is not a simple extension of the single component BEC. There
arise many novel phenomena such as the quantum tunnelling of spin domain [5], vortex
configuration [2], phase segregation of BEC mixture [10] and so on. Moreover, it is worth
mentioning that the most special feature of all experiments realizing BEC in dilute Bose
gases is that almost every parameter of the system is controlable. In connection with
experimental efforts there are theoretical progresses [11-20] aiming at describing different
observed phenomena of multicomponent systems as well as testing various models and
methods, which have been commonly employed to consider phase transitions of relativistic
theories.
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In the present article, a theoretical formalism for studying BEC in the global
U(1) × U(1) model is formulated by means of the CJT effective action [21] combining
with the gapless HF resummation [22]. We then obtain the effective potential in the HF
approximation, which respects the Goldstone theorem.

The paper is organized as follows. In Section II we derive the desired effective
potential. Section III is devoted to the physical property study of binary mixture. The
conclusion and outlook are presented in section IV.

II. EFFECTIVE POTENTIAL IN HF APPROXIMATION

Let us begin with the idealized binary mixture of Bose gases given by the Lagrangian

£ = φ∗
(

−i ∂
∂t

− ∇2

2mφ

)

φ+ ψ∗

(

−i ∂
∂t

− ∇2

2mψ

)

ψ

−µ1φ
∗φ+

λ1

2
(φ∗φ)2 − µ2ψ

∗ψ +
λ2

2
(ψ∗ψ)2 +

λ

2
(φ∗φ)(ψ∗ψ), (1)

where µ1 (µ2) represents the chemical potential of the field φ (ψ), m1 (m2) the mass of φ
atom (ψ atom), and λ1, λ2 and λ the coupling constants. The boundedness of the potential
requires that 4λ1λ2−λ2 > 0 for repulsive self-interactions, λ1 > 0, λ2 > 0. This constraint
ensures the stability of mixture of condensates in experimental realization.
In the tree approximation the condensate densities φ2

0 and ψ2
0 correspond to local minimum

of the potential. They fulfill

−µ1φ0 + λ1

2 φ
3
0 + λ

4φ0ψ
2
0 = 0,

−µ2ψ0 + λ2

2 ψ
3
0 + λ

4φ
2
0ψ0 = 0,

yielding

φ2

0

2 = 22µ1λ2−µ2λ
4λ1λ2−λ2

ψ2

0

2 = 22µ2λ1−µ1λ
4λ1λ2−λ2 .

(2)

Now let us focus on the calculation of effective potential in HF approximation. At first
the field operators φ and ψ are decomposed

φ =
1√
2
(φ0 + φ1 + iφ2), ψ =

1√
2
(ψ0 + ψ1 + iψ2). (3)

Inserting (3) into (1) we get, among others, the interaction Lagrangian

£int =

(

λ1

2
φ0φ1 +

λ

4
ψ0ψ1

)

(φ2
1 + φ2

2) +
λ1

8
(φ2

1 + φ2
2)

2

+

(

λ2

2
ψ0ψ1 +

λ

4
φ0φ1

)

(ψ2
1 + ψ2

2) +
λ2

8
(ψ2

1 + ψ2
2)

2

+
λ

8
(φ2

1 + φ2
2)(ψ

2
1 + ψ2

2),
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and the inverse propagators in the tree approximation

D−1
0 (k) =





~k2

2mφ
−µ1+ 3λ1

2 φ2
0+ λ

4ψ
2
0 −ω

ω
~k2

2mφ
−µ1+ λ1

2 φ
2
0+ λ

4ψ
2
0



,

G−1
0 (k) =





~k2

2mψ
−µ2+ 3λ2

2 ψ2
0+ λ

4φ
2
0 −ω

ω
~k2

2mψ
−µ2+ λ2

2 ψ
2
0+ λ

4φ
2
0



. (4)

From (2) and (4) it follows that

Eφ = +

√

√

√

√

(

~k2

2mφ
+ λ1φ

2
0

)

~k2

2mφ
→ Eφ ≈ ±k

√

λ1φ2
0

2mφ
for small k,

Eψ = +

√

√

√

√

(

~k2

2mψ
+ λ2ψ

2
0

)

~k2

2mψ
→ Eψ ≈ ±k

√

λ2ψ2
0

2mψ
for small k, (5)

which are the Bogoliubov dispersion relations for binary mixture of Bose gases in the
broken phase associating with Goldstone bosons due to U(1)× U(1) breaking.
Assuming the ansatz [23]

D−1 =





~k2

2mφ
+M2

1 −ω
ω

~k2

2mφ
+M2

3



 , G−1 =





~k2

2mψ
+M2

2 −ω
ω

~k2

2mψ
+M2

4



 ,

for inverse propagators D, G which clearly show that the Goldstone theorem fails in the
HF approximation. In order to restore it, let us invoke the method developped in [22],
which in our case is achieved by adding a correction ∆V to the CJT effective potential
V CJT
β , namely,

Ṽ CJTβ = V CJT
β + ∆V, (6)

∆V CJTβ =
aλ1

2
[2PabPba−PaaPbb] +

bλ2

2
[2QabQba −QaaQbb] +

cλ

2
PaaQbb,

Pab =

∫

β
Dab; Qab =

∫

β
Gab. (7)

It is easily checked that choosing a = b = −1/2 and c = 0 we are led to effective potential

Ṽ CJT
β obeying the requirements imposed in [22]. Indeed, substituting these values of a, b



280 TRAN HUU PHAT, LE VIET HOA, NGUYEN TUAN ANH, NGUYEN VAN LONG

and c into (6) and (7) it is found that

Ṽ CJT
β (φ0, ψ0, D, G)=−µ1

2
φ2

0+
λ1

8
φ4

0−
µ2

2
ψ2

0+
λ2

8
ψ4

0+
λ

8
φ2

0ψ
2
0+

1

2

∫

β
tr

{

lnD−1(k)

+ lnG−1(k) + [D−1
0 (k; φ0, ψ0)D] + [G−1

0 (k; φ0, ψ0)G]− 211

}

+
λ1

8
P 2

11+
λ1

8
P 2

22+
3λ1

4
P11P22 +

λ2

8
Q2

11+
λ2

8
Q2

22+
3λ2

4
Q11Q22

+
λ

8
P11Q11+

λ

8
P11Q22+

λ

8
P22Q11+

λ

8
P22Q22. (8)

Since Ṽ CJTβ contains divergent integrals corresponding to zero temperature contributions
we must proceed to the regularization. To this end, we make use of the dimensional
regularization by performing momentum integration in d = 3 − ε dimensions and then
taking ε → 0, the regularized integrals turn out to be finite [25]. By this way, we obtain
the effective potential consisting only finite terms. From (8), we deduce immediately the
following equations:

a- The gap equations

−µ1 +
λ1

2
φ2

0 +
λ

4
ψ2

0 + Σφ
2 = 0, −µ2 +

λ

4
φ2

0 +
λ2

2
ψ2

0 + Σψ
2 = 0. (9)

At critical temperatures of BEC (see Section IV) we have φ0 = ψ0 = 0, and Eqs (9) give

µ1 = Σφ
2 , µ2 = Σψ

2 , which manifest exactly the Hugenholz-Pines theorem [26] extended to
binary mixture.

b- The SD equations

D−1 = D−1
0 (k) + Σφ, Σφ =

(

Σφ
1 0

0 Σφ
2

)

,

G−1 = G−1
0 (k) + Σψ, Σψ =

(

Σψ
1 0

0 Σψ
2

)

, (10)

in which

Σφ
1 =

λ1

2
P11+

3λ1

2
P22+

λ

4
Q11+

λ

4
Q22, Σφ

2 =
3λ1

2
P11+

λ1

2
P22+

λ

4
Q11+

λ

4
Q22,

Σψ
1 =

λ2

2
Q11+

3λ2

2
Q22+

λ

4
P11+

λ

4
P22, Σψ

2 =
3λ2

2
Q11+

λ2

2
Q22+

λ

4
P11+

λ

4
P22,

and

M2
1 = −µ1 +

3λ1

2
φ2

0 +
λ

4
ψ2

0 + Σ
φ
1 , M2

2 = −µ2 +
3λ2

2
ψ2

0 +
λ

4
φ2

0 + Σ
ψ
1 .
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Combining (9) and (10) we get the forms for inverse propagators

D−1=





~k2

2mφ
+M2

1 −ω
ω

~k2

2mφ



; G−1=





~k2

2mψ
+M2

2 −ω
ω

~k2

2mψ



. (11)

It is obvious that the dispersion relations related to (11) read

Eφ =

√

√

√

√

~k2

2mφ

(

~k2

2mφ
+M2

1

)

−→
√

M2
1

2mφ
k as k → 0,

Eψ =

√

√

√

√

~k2

2mψ

(

~k2

2mφ
+M2

2

)

−→
√

M2
2

2mψ
k as k → 0,

which express the Goldstone theorem. Due to the Landau criteria for superfluidity [27]
the binary mixture turns out to be superfluid in broken phase and speeds of sound in each
condensate are given respectively by

Cφ =

√

M2
1

2mφ
, Cψ =

√

M2
2

2mψ
.

Ultimately the one-particle-irreducible effective potential Ṽ CJTβ (φ0, ψ0) is

Ṽ CJT
β (φ0, ψ0)=−µ1

2
φ2

0+
λ1

8
φ4

0−
µ2

2
ψ2

0+
λ2

8
ψ4

0+
λ

8
φ2

0ψ
2
0+

1

2

∫

β
tr
{

lnD−1(k)+lnG−1(k)
}

−λ1

8
P 2

11−
λ1

8
P 2

22−
3λ1

4
P11P22 −

λ2

8
Q2

11−
λ2

8
Q2

22−
3λ2

4
Q11Q22

−λ
8
P11Q11−

λ

8
P11Q22 −

λ

8
P22Q11−

λ

8
P22Q22. (12)

III. PHYSICAL PROPERTIES

III.1. Equations of State

Let us now consider EOS starting from the effective potential. To this end, we begin
with the pressure defined by

P = − Ṽ CJT
β (φ0, ψ0, D, G)

∣

∣

∣

at minimum
, (13)

from which the total particle densities are determined

ρi =
∂P

∂µi
, i = 1, 2.

Taking into account the fact that derivatives of Ṽ CJT
β (φ0, ψ0, D, G) with respect to its

arguments vanish at minimum we get

ρ1 =−
∂V CJT

β

∂µ1
=
φ2

0

2
+
P11

2
+
P22

2
, ρ2 =−

∂V CJT
β

∂µ2
=
ψ2

0

2
+
Q11

2
+
Q22

2
. (14)
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Hence, the gap equations (9) become

µ1 = λ1ρ1 +
λ

2
ρ2 + λ1P11, µ2 = λ2ρ2 +

λ

2
ρ1 + λ2Q11, (15)

and the particle densities in condensates are

φ2
0

2
= ρ1 −

P11

2
− P22

2
,

ψ2
0

2
= ρ2 −

Q11

2
− Q22

2
. (16)

The differences

ρe1 = ρ1 − ρc1 =
P11

2
+
P22

2
,

ρe2 = ρ2 − ρc2 =
Q11

2
+
Q22

2
,

represents the densities of particles in excited states with k 6= 0.
Combining Eqs. (11), (13) and (14) together produces the following expression for the
pressure

P =
λ1

2
ρ2

1+
λ2

2
ρ2

2+
λ

2
ρ1ρ2−

1

2

∫

β
tr
{

lnD−1(k)+lnG−1(k)
}

−λ1

2
P 2

11−
λ2

2
Q2

11+λ1ρ1P11 + λ2ρ2Q11. (17)

The free energy follows from the Legendre transform

E = µ1ρ1 + µ2ρ2 − P,

and reads

E =
λ1

2
ρ2

1+
λ2

2
ρ2

2+
λ

2
ρ1ρ2+

1

2

∫

β
tr
{

lnD−1(k)+lnG−1(k)
}

+
λ1

2
P 2

11+
λ2

2
Q2

11. (18)

Eqs. (17) and (18) constitute the EOS governing all thermodynamical processes, in par-
ticular, phase transitions of the binary mixture, which is a two-component system with
two conserved charges.

To proceed further it is interesting to consider the high temperature regime, T/µi �
1, associating with symmetry restoration/nonrestoration (SR/SNR) and inverse symmetry
breaking (ISB), which are the main subject of the next section. In Appendix B are listed
the high temperature expansions of all integrals appearing in Vβ and related quantities.
From (17) we find the pressure to first order in λ1, λ2 and λ for temperature just below
the critical temperature

P =
λ1ρ

2
1+λ2ρ

2
2+λρ1ρ2

2
+

(m
3/2
φ +m

3/2
ψ )ζ(5/2)

2
√

2π3/2
T 5/2+

(m3
φλ1+m3

ψλ2)[ζ(3/2)]2

16π3
T 3,

which reduces to the well-known result of Lee and Yang for single component Bose gas
[28] without invoking the double counting subtraction as was done in Ref. [29]. Based on
the formula

E = − ∂

∂β
[βP (µ)]µ, β = 1/T,
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the high temperature behaviour of the free energy density is also derived in the same
approximation

E = −1

2
(λ1ρ

2
1 + λ2ρ

2
2 + λρ1ρ2)−

3(m
3/2
φ λ1ρ1 +m

3/2
ψ λ2ρ2)ζ(3/2)

4
√

2π3/2
T 3/2

+
3(m

3/2
φ +m

3/2
ψ )ζ(5/2)

4
√

2π3/2
T 5/2 +

(m3
φλ1 +m3

ψλ2)[ζ(3/2)]2

8π3
T 3.

Let us remark that the preceding expression for E does not reduce to the corresponding
one given in Ref. [29] for single component Bose gas because the approximation taken
there is different from ours.
Next the low temperature regime, T/µi � 1, is concerned. We are able to write the low
temperature behaviours of the equations for M2

1 and M2
2 as follows

M2
1 = 2λ1ρ1 −

2
√

2M3
1m

3/2
φ λ1

3π2
−

2
√

2m3
φλ1π

2

15M5
1

T 4,

M2
2 = 2λ2ρ2 −

2
√

2M3
2m

3/2
ψ λ2

3π2
−

2
√

2m3
ψλ2π

2

15M5
2

T 4,

which require a self-consistent solution for M2
1 and M2

2 as functions of densities and tem-
perature. The first approximation we can choose is

M2
1 ' 2λ1ρ1, M2

2 ' 2λ2ρ2. (19)

Substituting respectively (19) into (17) we arrive at the low temperature dependences of
chemical potentials and pressure

µ1 = λ1ρ1 +
λ

2
ρ2 +

4m
3/2
φ λ

5/2
1 ρ

3/2
1

3π2
+

m
3/2
φ π2

60λ
3/2
1 ρ

5/2
1

T 4,

µ2 = λ2ρ2 +
λ

2
ρ1 +

4m
3/2
ψ λ

5/2
2 ρ

3/2
2

3π2
+

m
3/2
ψ π2

60λ
3/2
2 ρ

5/2
2

T 4,

and

P =
λ1ρ

2
1 + λ2ρ

2
2 + λρ1ρ2

2
+

4(m
3/2
φ λ

5/2
1 ρ

5/2
1 +m

3/2
ψ λ

5/2
2 ρ

5/2
2 )

5π2

+





m
3/2
φ

λ
3/2
1 ρ

3/2
1

+
m

3/2
ψ

λ
3/2
2 ρ

3/2
2





π2T 4

36
−
(

m3
φ

ρ1
+
m3
ψ

ρ2

)

T 4

45
−

8(m3
φλ

4
1ρ

3
1 +m3

ψλ
4
2ρ

3
2)

9π2

−
(

m3
φ

λ4
1ρ

5
1

+
m3
ψ

λ4
2ρ

5
2

)

π4T 8

7200
. (20)

It is worth to mention that Eq. (20) does not coincide with the low temperature expansion
of pressure for one-component Bose gas [29] because several T-dependent terms were
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missed in that work. Accordingly we get the equation for free energy

E = µ1ρ1 + µ2ρ2 − P =
λ1ρ

2
1+λ2ρ

2
2+λρ1ρ2

2
+

8(m
3/2
φ λ

5/2
1 ρ

5/2
1 +m

3/2
ψ λ

5/2
2 ρ

5/2
2 )

15π2

−





m
3/2
φ

λ
3/2
1 ρ

3/2
1

+
m

3/2
ψ

λ
3/2
2 ρ

3/2
2





π2T 4

90
+

(

m3
φ

ρ1
+
m3
ψ

ρ2

)

T 4

45

+
8(m3

φλ
4
1ρ

3
1 +m3

ψλ
4
2ρ

3
2)

9π4
+

(

m3
φ

λ4
1ρ

5
1

+
m3
ψ

λ4
2ρ

5
2

)

π2T 8

7200
.

III.2. Symmetry Non Restoration and Inverse Symmetry Breaking

Introducing the effective chemical potentials

µ1 = µ1 − Σφ
2 , µ2 = µ2 − Σψ

2 ,

the gap equations (9) can be rewritten as

λ1

2
φ2

0 +
λ

4
ψ2

0 = µ1,
λ

4
φ2

0 +
λ2

2
ψ2

0 = µ2,

which yield

φ2
0

2
= 2

2µ1λ2 − µ2λ

4λ1λ2 − λ2
;

ψ2
0

2
= 2

2µ2λ1 − µ1λ

4λ1λ2 − λ2
. (21)

Eqs. (21) resemble (2) with µi replaced by µi.
It is evident that the symmetry breaking in φ sector is restored at T = Tc1 if

φ2
0 = 0 or 2λ2µ1(Tc1)− λµ2(Tc1) = 0. (22)

A similar process occurs in ψ sector at T = Tc2 if

ψ2
0 = 0 or 2λ1µ2(Tc2)− λµ1(Tc2) = 0. (23)

Taking into account the high temperature expansions for µ1 and µ2 Eqs. (22) and (23)
provide the approximate formulae for the critical temperatures Tc1 and Tc2

Tc1 = 2π





2(λµ2 − 2λ2µ1)

(m
3/2
φ λ2 +m

3/2
ψ λλ2 − 8m

3/2
φ λ1λ2)ζ(3/2)





2/3

,

Tc2 = 2π





2(λµ1 − 2λ1µ2)

(m
3/2
ψ λ2 +m

3/2
φ λλ1 − 8m

3/2
ψ λ1λ2)ζ(3/2)





2/3

, (24)

which suggest several scenarios for symmetry restoration (SR), symmetry non restora-
tion(SNR) and inverse symmetry breaking (ISB) in our model, which were discussed in
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detail in Ref. [30]. Regarding the influence of thermal effect on the manifestation of
SNB/ISB let us estimate the temperature dependent coupling constants determined by

λ1(T ) =
1

3

δ4Ṽ CJTβ (φ0, ψ0)

δφ4
0

∣

∣

∣

∣

∣

φ0=ψ0=0

,

λ2(T ) =
1

3

δ4Ṽ CJTβ (φ0, ψ0)

δψ4
0

∣

∣

∣

∣

∣

φ0=ψ0=0

,

λ(T ) =
1

2

δ4Ṽ CJTβ (φ0, ψ0)

δφ2
0δψ

2
0

∣

∣

∣

∣

∣

φ0=ψ0=0

. (25)

Using the high temperature expansion for Ṽβ from Eqs. (25) we are led to the following
expressions for the effective coupling constants λ1(T ), λ2(T ) and λ(T ) up to the cubic
order of λ1, λ2 and λ

λ1(T ) =
1

3

δ4Ṽ CJT

δφ4
0

∣

∣

∣

∣

∣

φ0=0

= λ1−
3ζ(1/2)

√
T

8
√

2π3/2

(

m
3/2
ψ λ2+9m

3/2
φ λ2

1

)

+
[ζ(1/2)]2T

16π3

(

3m
3/2
φ m

3/2
ψ

2
λ2λ1+m3

ψλ
2λ2+9m3

φλ
3
1

)

− 9ζ(3/2)T 3/2

64π7/2

√

−µ1 +
T 3/2(m

3/2
ψ λ+4m

3/2
φ λ1)ζ(3/2)

(2π)3/2

(

m
3/2
φ m

3/2
ψ λλ2

1 + 4m3
φλ

3
1

)

− ζ(3/2)T 3/2

64π7/2

√

−µ2 +
T 3/2(m

3/2
φ λ+4m

3/2
ψ λ2)ζ(3/2)

(2π)3/2

(

m
3/2
φ m

3/2
ψ λ3 + 4m3

ψλ
2λ2

)

,

λ2(T ) =
1

3

δ4Ṽ CJT

δψ4
0

∣

∣

∣

∣

∣

ψ0=0

= λ2−
3ζ(1/2)

√
T

8
√

2π3/2

(

m
3/2
φ λ2+9m

3/2
ψ λ2

2

)

+
[ζ(1/2)]2T

16π3

(

3m
3/2
φ m

3/2
ψ

2
λ2λ2+m

3
φλ

2λ1+9m3
ψλ

3
2

)

− 9ζ(3/2)T 3/2

64π7/2

√
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T 3/2(m

3/2
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3/2
ψ λ2)ζ(3/2)
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(
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3/2
φ m

3/2
ψ λλ2

2 + 4m3
ψλ

3
2

)

− ζ(3/2)T 3/2

64π7/2

√
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T 3/2(m

3/2
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3/2
φ λ1)ζ(3/2)

(2π)3/2

(

m
3/2
φ m

3/2
ψ λ3 + 4m3

φλ
2λ1

)

,
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λ(T ) = 2
δ4Ṽ CJT

δφ2
0ψ

2
0

∣

∣

∣

∣

∣

φ0=0,ψ0=0

= λ− 9ζ(1/2)
√
T

4
√

2π3/2

(

m
3/2
φ λλ1+m

3/2
ψ λλ2

)

+
[ζ(1/2)]2T

32π3
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m
3/2
φ m

3/2
ψ λ3+9m

3/2
φ m

3/2
ψ λλ1λ2+12m3

φλλ
2
1+12m3

ψλλ
2
2

)

− 3ζ(3/2)T 3/2

32π7/2

√

−µ1 +
T 3/2(m

3/2
ψ λ+4m

3/2
φ λ1)ζ(3/2)

(2π)3/2

(

m
3/2
φ m

3/2
ψ λ2λ1 + 4m3

φλλ
2
1

)

− 3ζ(3/2)T 3/2

32π7/2

√

−µ2 +
T 3/2(m

3/2
φ λ+4m

3/2
ψ λ2)ζ(3/2)

(2π)3/2

(

m
3/2
φ m

3/2
ψ λ2λ2 + 4m3

ψλλ
2
2

)

.

(26)

Eqs. (26) prove that the effective coupling constants strongly depend on temperature.
This is quite different from the relativistic case [22, 28].
It is known that in comparison with single component system phase transition in two-
component one is much more involved. The fact is that, in addition to the phase transition
caused by the mechanical instability taking place in one-component system, there exist in
binary mixture the diffusive instabilities [31, 32]. As was pointed out in Ref. [32] in order
to determine the state of two-component body it is necessary to specify three quantities,
for instance, P , T and the concentration fraction y which is defined as

y = ρ1/ρ, ρ = ρ1 + ρ2.

For symmetrical reason, we need to consider only 0 < y < 0.5. Then the condition for
mechanical stability states that

ρ

(

∂P

∂ρ

)

T, y

≥ 0, (27)

and the constraints for diffusive stabilities read
(

∂µ1

∂y

)

T, P

≥ 0 or

(

∂µ2

∂y

)

T, P

≤ 0. (28)

The numerical study for phase transition in binary mixture of Bose gases will be reported
in a forthcoming publication.

IV. CONCLUSION AND OUTLOOK

Due to growing interest in binary mixture of Bose gases we studied a non-relativistic
model of two-component complex field. Our main goal is to formulate a theoretical formal-
ism for this physical system. To this end, with the aid of the CJT approach we established
the finite CJT effective potential, which preserves the Goldstone theorem in broken phase.
This is our major success. The expression for the pressure, which depends on particle
densities, was derived by means of the fact that the pressure is determined by the effective
potential at minimum. As a consequence, the free energy was obtained straightforwardly.
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The EOS at low and high temperatures were considered. In particular, the critical
temperatures were determined, which generated various scenarios for SR, SNR/ISB with
some constraints on coupling constants. It was proved that, unfortunately, these con-
straints were altered strongly by thermal effect. In order to understand better the specific
properties of phase transition patterns in two-component Bose gases further study would
be carried out by means of numerical computation.

It is expected that the formalism developed in this work could be fruitfully ap-
plied to a realistic investigation of trapped two-component Bose gases, in which the non-
homogeneity is incorporated into consideration.
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