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Abstract. This paper proposes two novel photonic crystal fibers (PCFs) with a nitrobenzene core,
designed using hexagonal and square lattice structures. The characteristics of the PCFs were
numerically analyzed in detail and compared to selecting the proposed optimal structure for su-
percontinuum generation. This study investigates the influence of core diameter (DC) on the char-
acteristics of PCF. The fiber’s nonlinear properties are significantly enhanced by varying the core
diameter. The hexagonal PCF structures provide flatter dispersion curves and are closer to zero
dispersion than the square lattice, which is beneficial for supercontinuum generation. In contrast,
the square PCF structures show higher nonlinear coefficients and lower attenuation than the cor-
responding hexagonal structures. Based on the simulation results, six optimized structures with
all-normal and anomalous dispersion were selected to study the characteristics at the pump wave-
length. Results indicate that the proposed PCFs exhibit near-zero flat dispersion, low attenuation,
and high nonlinearity. The selected optimal structures show potential for efficient supercontinuum
generation, enabling broad and highly coherent spectra.

Keywords: photonic crystal fibers (PCFs); hexagonal lattice; square lattice; supercontinuum gen-
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1. Introduction

In 1996, Russell and his team introduced a groundbreaking optical fiber called photonic
crystal fiber (PCF) [1]. PCF, a type of optical fiber leveraging the unique properties of photonic
crystals, has gained significant attention due to its superior light transmission capabilities com-
pared to traditional fibers [2–5]. Its cladding features regularly arranged air holes running along
the fiber’s length. Extensive research has shown that PCF’s guiding and optical properties can be
tailored by altering its geometry, including adjustments to the core, cladding, air holes, substrate
material, or liquid infiltration. This flexibility allows PCFs to be used in various applications,
such as sensor fabrication, polarization-maintaining devices, biomedical applications [6–9], and
supercontinuum generation [10–15].

Supercontinuum generation (SCG) is one of the applications of PCF that we are particularly
interested in researching. SCG is produced when ultra-short optical pulses are introduced into a
highly nonlinear medium. To maximize SCG efficiency, PCFs require near-zero, flat dispersion,
low attenuation, and a small effective mode area, all of which can be achieved by tuning structural
parameters such as lattice constant, air hole size, lattice type, and core material.

In recent years, many research groups have found effective improvements in the optical
properties of PCFs filled with liquids with high nonlinear refractive index. Liquid-core PCFs can
take full advantage of all the outstanding benefits of high transparency, high nonlinearity, and large
thermo-optical coefficients of liquids to optimize the properties of fibers. Planar dispersion with
different modes such as all-normal or anomalous dispersion, and low attenuation can be achieved
in liquid-core PCFs. Some studies on liquid-core PCFs with a high nonlinear refractive index
such as ethanol (C2H5OH) [16], methanol (CH3OH) [17], carbon disulfide (Cs2) [18], chloroform
(CHCl3) [19], benzene (C6H6) [20], tetrachloroethylene (C2Cl4) [21], toluene (C7H8) [22] pro-
vide planar dispersion, however, the effective mode area is still large, the nonlinear coefficient is
relatively low and the attenuation has not yet reached the desired value because these PCFs have
the same air hole diameter in the cladding.

To our knowledge, it isn’t easy to simultaneously control the characteristic quantities in
PCF with the same air-hole diameter in the cladding. These limitations are not beneficial for SCG.
In this work, we attempted to construct a novel nitrobenzene-core PCF (C6H5NO2) design with
different pore sizes to simultaneously achieve the characteristics of flat dispersion, small effective
mode area, high nonlinear coefficient, and low attenuation. Nitrobenzene is a good choice because
its nonlinear refractive index is higher than that of some commonly used liquids such as carbon
tetrachloride (CCl4), tetrachloroethylene, and chloroform. Furthermore, it has only moderate tox-
icity [23], relatively low attenuation compared to other liquids in terms of nonlinearity, low vapor
pressure at room temperature, and easy handling [24].

A large number of works focusing on the study of the characteristics of C6H5NO2-core
PCFs and applying these results to SCG have been carried out in recent years [25–28]. Vu et
al. studied the characteristics of hexagonal nitrobenzene core PCFs [25]. The paper showed the
possibility of obtaining small effective mode areas, low attenuation, and the resulting dispersion
operating in the anomalous dispersion regime. Lanh et al. demonstrated the feasibility of broad
and coherent SG spectra in C6H5NO2-core PCF structures [26]. For the first structure, Lanh et al.
obtained SC in the range of 0.8–1.8 µm, for the second structure in the range of 0.8–2.1 µm, and
for the third structure 1.3–2.3 µm. Yanchen et al. presented a nitrobenzene core PCF with a high
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nonlinear coefficient of 1.43 W−1.m−1 contributing to the spectral broadening spanning from 1.0
to 2.3 µm [27]. Most recently, Wen et al. produced a highly uniform SC in a C6H5NO2-core PCF
with eight elliptical air holes in the innermost ring of the cladding [28].

The common feature of previous studies on nitrobenzene core PCFs is that the air holes
have equal diameters. Therefore, the values of the characteristic quantities in these reports have
not been optimized and have resulted in low SCG performance.

Traditionally, the research on PCFs had mainly focused on three primary lattice structures:
circular [9, 10], square [11, 12], and hexagonal [13]. These studies have reported achievements
such as high negative dispersion, low confinement loss, and broad bandwidth. However, the op-
timal PCF design for each lattice type has not been fully evaluated. While some works have
examined the impact of fill factor and lattice constant on PCF properties for each lattice type,
there is still a need for comprehensive evaluation. For example, Dudley et al. explored the effect
of structural parameters on PCF properties for various lattices, the results were not applied to SC
generation [14].

Furthermore, many studies have overlooked the influence of varying air hole diameters
in different cladding rings on PCF performance. Most previous designs used uniform air hole
diameters, optimizing dispersion but not effectively addressing mode area and attenuation [22–26].

To address these limitations, we designed two novel nitrobenzene-core PCFs using hexag-
onal and square lattices, with varying air hole diameters in the rings to control PCF properties. We
varied the air hole diameter in the first ring (d1) and the lattice constant (Λ) to study the effect of
core diameter on the nonlinear properties of the fibers. Furthermore, in this study, we compared
the properties of PCF in two different types of lattices to determine the optimal structure suitable
for SCG, which has not been done in previous nitrobenzene studies [25–28].

2. Numerical modeling of PCF

In our simulations, the Lumerical Mode Solutions (LMS) software was utilized for nu-
merical analysis. The geometry of the C6H5NO2-core PCF is depicted in Fig. 1. The fiber is
constructed using silica (SiO2) as the base material, with nitrobenzene filling the core. This con-
figuration increases the refractive index contrast between the core and cladding, enhancing light
confinement within the core. The nitrobenzene is introduced into the core using either a fusion
splicer technique [29] or a microfluidic injection system with laser writing technology [30]. The
high nonlinear refractive index of nitrobenzene, measured at n2 = 671× 10−20 m2W−1 at 1064
nm [23], is approximately 240 times greater than that of silica [31], making it a superior choice
for filling hollow-core PCFs. Its refractive index surpasses other liquids such as CHCl3 [19],
CCl4 [32–34], C2Cl4 [21, 35], and C7H8 [22]. Nitrobenzene, a pale-yellow oil with a characteris-
tic almond scent, is insoluble in water.

Saito et al. [36] demonstrated that the characteristics of PCFs are significantly influenced
by the size variations of the air holes within the lattice rings. The size of the holes in the first ring,
closest to the core, has a direct impact on dispersion properties, including flatness, the presence
of normal or anomalous dispersion, and shifts in the zero-dispersion wavelength (ZDW). The
attenuation, on the other hand, is primarily determined by the remaining rings. Based on this idea,
we designed two PCF structures (hexagonal and square PCF) and investigated the influence of core
diameter (DC) variation on PCF properties. In which, the core diameter was determined using the
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formula:
DC = 2Λ−1.1d1. (1)

The air holes in the first ring have a diameter (d1) determined by the filling factor d1/Λ, where Λ

is the lattice constant, and d1/Λ ranges from 0.3 to 0.8, with increments of 0.05. The air holes in
the remaining lattice rings have a consistent diameter, corresponding to a filling factor of d/Λ =
0.95. The lattice constants used are Λ = 1.0 µm, Λ = 1.5 µm, and Λ = 2.0 µm, respectively. Our
design introduces new features that minimize attenuation and effective mode area while optimizing
chromatic dispersion for improved performance.

(a) (b)

Fig. 1. Cross-sectional view of nitrobenzene-core PCF showcasing (a) a hexagonal lattice
structure (H-PCF) and (b) a square lattice configuration (S-PCF).

The total dispersion of the fiber arises from both waveguide and material dispersion. This
dispersion can be calculated using the following equation:

D =−λ

c
d2Re[neff]

dλ 2 , (2)

where Re[neff] refers to the real part of the effective refractive index for the guided mode, λ denotes
the pump wavelength in micrometers, and c is the velocity of light in a vacuum [37].

The refractive indices for fused silica and C6H5NO2 are computed using the Sellmeier
equation, as indicated in:

n2
Fused silica(λ ) =1+

0.6694226λ 2

λ 2 −4.4801×10−3

+
0.4345839λ 2

λ 2 −1.3285×10−2 +
0.8716947λ 2

λ 2 −95.341482
,

(3)

n2
Nitrobenzene(λ ) = 1+

1.30628λ 2

λ 2 −0.02268
+

0.00502λ 2

λ 2 −0.28487
, (4)

where the coefficients Ai and Bi are material-dependent [38, 39].
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The nonlinear coefficient of PCF, expressed in units of (W−1km−1), is derived using the
formula:

γ =
ω

c

(
n2

Ae f f

)
=

2π

λ

(
n2

Ae f f

)
, (5)

where ω is the angular frequency, and Aeff is the effective mode area, a key parameter in PCF. The
effective mode area is inversely related to the nonlinear coefficient and is calculated by:

Aeff =

(
∞∫

−∞

∞∫
−∞

|E(x,y)|2dxdy
)

∞∫
−∞

∞∫
−∞

|E(x,y)|4dxdy

2

, (6)

where E is the electric field amplitude [37].

3. Result and Discussion

3.1. Dispersion Characteristics
The dispersion characteristics of nitrobenzene-core PCFs with varying core diameter (DC)

values are shown in Fig. 2 (a1-a3) H-PCF and (b1-b3) S-PCF.
The variation in dispersion characteristics with respect to core diameter and lattice param-

eters (DC and Λ) is shown in Fig. 2. The lattice parameters significantly influence the dispersion
curves, resulting in a variety of dispersion behaviors. For a small lattice constant (Λ = 1.0 µm),
both S-PCF and H-PCF exhibit normal and anomalous dispersion, with one or two zero-dispersion
wavelengths (ZDWs). As the DC parameter increases, the ZDWs shift towards longer wavelengths.

In the case of anomalous dispersion, a single ZDW is observed for S-PCF when DC =
1.67 µm and DC = 1.615 µm. For H-PCF, anomalous dispersion with a single ZDW occurs for
the cases DC = 1.67 µm, DC = 1.615 µm, and DC = 1.56 µm. Notably, the ZDW for S-PCF shifts
further into longer wavelengths compared to H-PCF. When DC reaches 1.175 µm or lower, S-PCF
shows anomalous dispersion with two ZDWs, while for H-PCF, this behavior appears at DC =
1.45 µm. Additionally, the first and second ZDWs of S-PCF are observed at longer wavelengths
compared to those of H-PCF.

When Λ exceeds 1.0 µm, all-normal dispersion is no longer present, and the dispersion
curves shift from normal to anomalous dispersion for both fiber types. Furthermore, for a fixed
Λ value (Λ > 1.0 µm), the ZDW shifts to longer wavelengths as DC increases. These findings
suggest that adjusting the core diameter (the air hole diameter d1 in the first ring) of the PCF
structure allows for precise control over the desired dispersion characteristics.

Dispersion plays a critical role in SCG, and flat dispersion fibers facilitate broader SCG.
Therefore, optimizing fiber structures to achieve flat or near-zero dispersion curves with ZDWs
matching the pump wavelength is a key objective in dispersion tuning. Different dispersion prop-
erties will give different SCG spectral characteristics. When pumping the fiber in the all-normal
dispersion regime, the obtained SCG spectrum is broad, flat-topped, low noise, and high coher-
ence. Meanwhile, pumping in the anomalous dispersion regime will obtain a very large SCG
spectrum up to several octaves (larger than the all-normal dispersion case) but the spectrum has
high noise and low coherence.
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Fig. 2. (Color online) The dispersion characteristics of nitrobenzene-core PCFs with
varying core diameter (DC) values (a1-a3) H-PCF and (b1-b3) S-PCF.

Based on our initial simulations, we propose six optimized fibers with ideal dispersion
properties for detailed analysis and orientation for SCG application, as outlined in Table 1.
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Table 1. The structural parameters of the proposed PCFs.

# Λ (µm) DC (µm) Pump wavelength (µm)
HF1 1.0 1.505 1.56
HF2 2.0 3.340 1.55
HF3 1.0 1.395 1.3
SF1 1.0 1.230 1.3
SF2 2.0 3.340 1.61
SF3 1.0 1.175 1.25

The dispersion characteristics of the proposed fibers are presented in Fig. 3. In the hexago-
nal lattice, the fibers with optimal dispersion are selected as HF1 (1), HF2 (2), and HF3 (3). Mean-
while, SF1 (4), SF2 (5), and SF3 (6) are the fibers with optimal dispersion selected in the square
lattice. HF1 and SF1 are pumped in the normal dispersion regime. HF2 and SF2 are pumped
in the anomalous dispersion regime with one ZDW. HF3 and SF3 are pumped in the anomalous
dispersion regime with two ZDWs. Obviously, in the investigated wavelength region from 0.5 to
2 µm, the dispersion profiles of H-PCFs (HF1, HF2, and HF3) are flatter in the larger wavelength
region than those of S-PCFs (SF1, SF2, and SF3). In particular, HF1 fiber is the flattest and closest
to the horizontal axis, its flatness ranges from 1.3 to 1.8 µm, which is very valuable for SCG.

For the H-PCF, fiber HF1 was used for SCG in the all-normal dispersion regime with a
pump wavelength of 1.56 µm, as this is near the maximum dispersion value, allowing for the
broadest SC spectrum. Fiber HF2, operating in the anomalous dispersion regime, is expected to
generate a wide SC spectrum at a pump wavelength of 1.55 µm, given that its ZDW is closest
to the pump wavelength at 1.502 µm. Fiber HF3 has a pump wavelength of 1.3 µm (ZDW1 =
1.16 µm, ZDW2 = 1.32 µm), and it also exhibits anomalous dispersion. The dispersion values
for fibers HF1, HF2, and HF3 at their respective pump wavelengths are −3.18 ps.nm−1.km−1,
6.22 ps.nm−1.km−1, and 5.34 ps.nm−1.km−1.

For the S-PCF, fiber SF1 operates in the all-normal dispersion regime with a pump wave-
length of 1.3 µm, close to the peak dispersion value. Fiber SF2 exhibits anomalous dispersion with
a ZDW at 1.607 µm, so a pump wavelength of 1.61 µm was selected for this fiber. Fiber SF3 has a
pump wavelength of 1.25 µm (ZDW1 = 1.2 µm, ZDW2 = 1.3 µm). The dispersion values for fibers
SF1, SF2, and SF3 at their pump wavelengths are −10.76 ps.nm−1.km−1, 0.39 ps.nm−1.km−1,
and 2.74 ps.nm−1.km−1, respectively.

Figure 4 illustrates the attenuation of the fundamental mode as a function of wavelength for
the proposed fibers. From Fig. 4, we can see that the attenuation of the proposed S-PCF is lower
than that of H-PCF. All six optical fibers exhibit relatively low attenuation values with minimal
differences in the wavelength range below 1.5 µm. However, for wavelengths between 1.5 and
1.8 µm, attenuation increases significantly. The attenuation values at the pump wavelength for
fibers HF1, HF2, HF3, SF1, SF2, and SF3 are 6.52 dB/m, 4.92 dB/m, 0.27 dB/m, 6.10 dB/m,
0.17 dB/m, and 0.04 dB/m, respectively. The low attenuation of these fibers is one of the key
advantages of this design.

Figures 5 and 6 show the dependence of the effective mode area and the nonlinear coef-
ficient on the wavelength for the fundamental mode of the proposed fibers. The nonlinear coef-
ficient, which is inversely proportional to the effective mode area, is crucial for determining the
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input pulse power needed for SCG. A high nonlinear coefficient is beneficial for selecting a low in-
put pulse power in practical applications. At the pump wavelength, the nonlinearity coefficients for
fibers SF3, SF1, HF3, HF1, SF2, and HF2 are 2351 W−1km−1, 2107 W−1km−1, 1958 W−1km−1,
1496 W−1km−1, 441 W−1km−1, and 471 W−1km−1, respectively. The small core size and high
symmetry of S-PCF result in stronger light confinement in the core, leading to a higher nonlin-
ear coefficient compared to H-PCF. The parameters characterizing the nonlinear properties of the
proposed fibers are more optimal than some PCFs infiltrated with other high nonlinear coefficient
liquids [19, 21, 22]. These are also the outstanding advantages of the PCFs in our research.

Fig. 3. (Color online) The dispersion properties of the proposed PCFs.

Fig. 4. (Color online) The attenuation properties of the proposed PCFs.
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Fig. 5. (Color online) The effective mode area properties of the proposed PCFs.

Fig. 6. (Color online) The nonlinear coefficients of the proposed PCFs.

Table 2 presents a comparison between the properties of the proposed fibers and previously
reported values. The six fibers introduced in this study demonstrate lower attenuation compared
to the works listed in Table 2 [19, 21, 22]. In the normal dispersion regime, fibers #HF1 and #SF1
exhibit smaller effective mode areas than those previously reported, leading to significantly higher
nonlinearities. Specifically, the nonlinearities of fibers #HF1 and #SF2 are 9 times and 12 times
greater than those reported in Ref. [22]. Additionally, in the anomalous dispersion regime, the
effective mode areas in our study are considerably smaller than those in the compared works.
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Table 2. The value of quantities characterized is calculated at the pump wavelength of
the proposed PCFs.

Label Pump λ (µm) D [ps.(nm.km)−1] Aeff (µm2) γ (W−1.km−1) Lk (dB/m)

HF1 1.56 -3.18 2.059 1496 6.52
HF2 1.55 6.22 6.538 471 4.92
HF3 1.30 5.34 1.57 1958 0.27
SF1 1.30 -10.76 1.462 2107 6.10
SF2 1.61 0.39 6.978 441 0.17
SF3 1.25 2.74 1.31 2351 0.04
F1 [19] CHCl3 1.03 -24.00 1.5 1290 -
F2 [19] CHCl3 1.03 7.60 4.48 440 -
F1 [21] C2Cl4 1.56 -15.00 433.2 156.9 4.0
F2 [21] C2Cl4 1.56 3.20 16.67 40.79 4.2
F3 [21] C2Cl4 1.03 -4.85 359.1 189.3 5.3
I0.3 [22] C7H8 1.55 -7.78 7.79 1200 0.4
I0.3 [22] C7H8 1.55 -1.19 78.9 - 1.2

These findings indicate that the proposed fibers have optimized dispersion characteristics, making
them well-suited for SCG.

4. Conclusion

The properties of the newly developed nitrobenzene-core photonic crystal fibers (PCFs)
with square and hexagonal lattice designs were thoroughly assessed and compared. Key optical
characteristics such as loss, dispersion, effective mode area, and nonlinearity coefficient were ex-
tensively analyzed. The impact of lattice type, core diameter, and lattice constant on these proper-
ties was explored to optimize both structures. Variations in the fiber geometries resulted in diverse
dispersion behaviors, and the ability to finely tune dispersion parameters was achieved by adjust-
ing the core diameter and the lattice constant. We selected six fiber structures with flat all-normal
(HF1: DC = 1.505 µm, Λ = 1.0 µm; SF1: DC = 1.23 µm, Λ = 1.0 µm) and anomalous dispersion,
with one (HF2: DC = 3.34 µm, Λ = 2.0 µm; SF2: DC = 3.34 µm, Λ = 2.0 µm) or two (HF3:
DC = 1.395 µm, Λ = 1.0 µm; SF3: DC = 1.175 µm, Λ = 1.0 µm) zero-dispersion wavelengths to
conduct further model analysis of the PCF characteristics. The proposed fibers exhibit low loss,
which stands out as a key feature of this work. Although the hexagonal lattice structure displays
less uniform dispersion curves than the square lattice, it offers a flatter dispersion curve, closer
to zero dispersion, which is highly advantageous for supercontinuum generation. In contrast, the
square lattice PCF structure shows higher nonlinearity and lower attenuation compared to their
hexagonal counterparts. These simulation results provide valuable insights for designing optical
fibers to produce supercontinua with broad, flat, and smooth spectra.
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