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Abstract. We revisit an asymmetric two-channel charge Kondo model, which has been studied in
the [Phys. Rev. B 82 (2010) 113306]. A nano-device modelling two-channel Kondo physics is a
large metallic quantum dot which is embedded into a two-dimensional electron gas (2DEG) and
connected strongly to two electrodes through two almost transparent single-mode quantum point
contacts. The 2DEG is in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526
(2015) 233]. The reflection amplitudes at the quantum point contacts are asymmetric. We find that
the thermopower and the figure of merit are decreased but the Kondo resonance width and Lorenz
number in the vicinity of the Coulomb peak are lifted due to the effects of asymmetry in Kondo
channels. We propose the method to improve the thermoelectric efficiency of the device.

Keywords: thermoelectric transport; thermopower; thermal conductance; Lorenz number; figure
of merit; charge Kondo effect.
Classification numbers: 73.23.Hk; 73.50.Lw; 72.15.Qm; 73.21.La.

1. Introduction

Thermoelectric materials generate electricity from temperature gradients, based on the See-
beck effect [1]. The mechanism of thermoelectric energy harvesting of the device is that when a
temperature difference ∆T is applied, the charge carriers will diffuse from the hot side to the cold
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side. As a result, an electrostatic potential ∆Vth is generated [2, 3]. However, the electrostatic po-
tential generated by a bulk semiconductor, metal or alloy electronic component is very low (from
a few milli-Volts to a few Volts). To achieve high voltage and power output, thermoelectric gen-
erators are often composed of dozens, even hundreds of pairs of thermoelectric components. The
efficiency of thermoelectric materials is often measured by a dimensionless figure of merit ZT [4],
which is defined as follows:

ZT =
S2GT
K

(1)

where S = −∆Vth/∆T is the Seebeck coefficient or thermopower - a measure of the magnitude
of an induced thermoelectric voltage in response to a temperature difference across the material,
G = ∂V Ie|Ih=0 and K = ∂∆T Ih|Ie=0 are the electrical conductance and thermal conductance, and
T is the temperature of the system. In order to increase the thermoelectric efficiency, the system
needs to be simultaneously enhanced thermopower and reduced thermal conductance. The inves-
tigation of thermal conductance goes beyond the study of thermopower. The relationship between
thermal conductance and electric conductance is generalized in the Wiedemann-Franz (WL) law,
characterized by the Lorenz number L(T ) ≡ K /GT . This implies that ZT = S2/L(T ). For a
macroscopic sample, L0 = π2/3. Transport through nanodevices is expected to violate the WF
law even in the Fermi-liquid (FL) regime [5]. The Lorenz number in the quantum dot (QD) within
the charge Kondo regime is reduced from a universal value at the particle-hole symmetric point,
with the reduction being proportional to the square of thermopower [6].

The QDs are quantum systems where charge carriers are strongly confined in all three
dimensions [7]. The first and most important transport phenomenon in QD devices is the Coulomb
blockade effect, which occurs when the addition of an electron to the dot requires an energy
greater than the charging energy EC = e2/2C, where C is the QD capacitance. At the Coulomb
peaks, where the dimensionless gate voltage N = CVg/e (with Vg as the gate voltage) is a half-
integer, the charge states of the QD are degenerate quadratically. These degenerate charge states
can be considered as the two spin projections of a spin S = 1/2 quantum impurity, leading to
the observation of a so-called charge Kondo effect [8–13]. For instance, in a system consisting
of a large metallic QD strongly coupled to one (or several) lead(s) through an (or several) almost
transparent single-mode quantum point contact(s) [QPC(s)], if the electron location is treated as an
iso-spin variable, the backscattering at the quantum point contacts (QPCs) transfers the “moving
in-” QD electrons to “moving out-” QD electrons and vice versa, resulting in an iso-spin flip.
The number of different channels in the Kondo model is determined either by the spin projection
quantum number of electrons [11] or by the number of single-mode QPCs [12, 13].

The Kondo channel number determines the properties of the Kondo system at temperatures
below the Kondo temperature [14, 15]. Observables of the single-channel Kondo (1CK) system
exhibit Fermi-liquid (FL) characteristics [16], while it is not the case for the observables of multi-
channel Kondo (MCK) setups. These new non-Fermi liquid (NFL) behaviors attract the attention
of physicists who are searching for and developing advanced thermoelectric materials.

It has been shown that the thermopower S in a charge Kondo circuit (CKC) is greatly en-
hanced compared to that of bulk metals [11, 17, 18]. The enhancement increases further when
the Kondo channel number is raised from one to two [6, 11, 17] and the CKCs are scaled up to
clusters [19–21]. In this paper, we examine the effects of asymmetry in Kondo channels on the
thermopower S, Lorenz number L(T ), and the figure of merit ZT of an asymmetric two-channel
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Fig. 1. Schematic of a charge Kondo circuit (CKC, grey color) is weakly coupled to a
large electrode (pink color) through a tunnel barrier. The CKC consists of a large metal-
lic island (QD, cross-hatched area), which is embedded in a two-dimensional electron
gas (2DEG, plain area) and connects to two large electrodes through single-mode QPCs.
These QPCs are controlled independently, so their reflection amplitudes generally differs
from one another (|r1| ≠ |r2|). The 2DEG is in the integer quantum Hall regime at the
filling factor equals to 1 . The red line with arrows denotes the chiral edge mode, which
backscatters at the center of the narrow constriction. The CKC is at a reference tempera-
ture T , while the left reservoir is at a higher temperature of T +∆T .

CKC (see Fig. 1). We find that the efficiency of a CKC is influenced by the reflection amplitudes
at the QPCs but is only slightly affected by their difference.

The paper is organized as follows. We describe the theoretical model in Sec. II. Equations
for the thermoelectric coefficients are presented and discussed in Sec. III. We conclude our work
in Sec. IV.

2. General formulas for thermoelectric coefficients

In this section, we present the experimental implementation and general formulas for the
thermoelectric coefficients. The corresponding theoretical model and detailed calculations for the
thermoelectric coefficients have been demonstrated in Refs. [6, 11]. Therefore, we provide the
final formulas for the reader’s convenience.

2.1. Experimental setup and theoretical model
A two-channel charge Kondo device (see Fig. 1) was first theoretically proposed in Refs.

[8, 9, 11] and later implemented in a breakthrough experiment [12]. The QD, formed by a large
metallic island (the cross-hatched area surrounded by the black line), is electronically connected
to a 2DEG (the pink and gray continuous areas). The 2DEG is connected to two large electrodes
through two QPCs. Applying a strong magnetic field perpendicular to the 2DEG plane can control
the 2DEG in the integer quantum Hall regime at the filling factor equals to 1. The QPCs are



320 Effects of asymmetry in Kondo channels on thermoelectric efficiency

fine-tuned (by field effects in the split gates, not shown here) to the high transparency regime
corresponding to weak backscattering (|r j| ≪ 1, j = 1,2) of the chiral edge mode (red solid lines
with arrows). In general, |r1| ̸= |r2| indicates that the CKC is in the asymmectric two-channel
regime. The symmetric case occurs when |r1|= |r2|= |r|. The CKC at the reference temperature
T , is weakly coupled to a large electrode that is at a higher temperature of T +∆T (pink color)
through a tunnel barrier. The temperature drops at the weak link.

Hamiltonian describing the two-channel charge Kondo device (see Fig. 1) in which the QD
coupled weakly to the left lead and strongly to the two other ones on the right side through two
QPCs, has form

H = H0 +HC +HL +HR (2)

where H0 characterizes electrons in QD and in the left (L) and two right (R) leads,

H0 = ∑
k

εka†
kak +∑

p
εpd†

pdp + ivF ∑
α,λ

∫
∞

−∞

dxψ
†
α,λ ∂xψα,λ . (3)

Here, ak and dp denote the spinless electrons in the left lead and in the QD at the left tunnel barrier,
correspondingly. The third term in Eq. (3) describes the one-dimensional electrons in the two right
contacts (two QPCs named in Fig. 1) (in h̄ = kB = e = 1 units). ψα,λ are operators describing one-
dimensional fermions in the QPCα (with α = 1,2), the iso-spin index λ takes values λ =↑ for
electrons in the QD-QPC and λ =↓ for electrons in the right electrodes, vF is Fermi velocity.

Second term in the Eq. (2), the so-called charging Hamiltonian, describes the Coulomb
interaction in the QD,

HC = EC [n̂L + n̂R −N]2 , (4)

where EC = e2/2C is the charging energy (C is the QD capacitance), n̂L is the integer-value op-
erator of electrons entered through the left (tunnel) contact, while n̂R = ∑α ψ

†
α,↑ψα,↑ denotes the

number operator ofthe electrons entered through the two QPCs (from the two right leads), N is
dimensionless parameter controlled by the gate voltage Vg as N =CVg/e.

The tunnel Hamiltonian, which describes the weak coupling between the left lead and the
QD, reads

HL = ∑
k,p
(tLDa†

kdpF̂ +h.c.), (5)

where tLD ≪ 1 is hopping amplitude and F̂ is the charge-lowering operator, which obeys the
commutation relation

[
F̂ , n̂L

]
= F̂ . We notice that the operator dp can be expressed through the

fermionic operator in the 1D system as ∑p d†
pdp →∑α ψ

†
α,↑ (−∞)ψα,↑ (−∞) with ψα,↑ (x)∼ eiφα (x).

The Hamiltonian HR demonstrating the backward scattering in the QPCs on the right side
is written as

HR = ∑
α

∫
∞

∞

dx
[
ψ

†
α,↑(x)Vα(x)ψα,↓e−i2kF x +h.c.

]
, (6)

where Vα(x) is a short range QPCα’ isospin-flip potential. The reflection amplitudes of the QPCα

is determined by |rα |=Vα(2kF)/vF (kF is Fermi momentum).
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2.2. The formulas
To study the thermoelectric effects at the weak link between the left electrode and the QD

in the linear response regime [∆T,e∆Vth]≪ T , we consider both the charge current Ie and the heat
current Ih across the tunnel contact:(

Ie
Ih

)
=

(
Lee Leh
Lhe Lhh

)(
∆V
∆T

)
, (7)

where Li j are thermoelectric coefficients which are related to the Onsager factors [22] . In fact,
Lee is the electric conductance, Leh is the thermoelectric coefficient, so thermopower S and thermal
conductance K are written as follows

S =
Leh

Lee
, K = Lhh −T

L2
eh

Lee
. (8)

The Lorenz number is written as

L(T ) =
Lhh

T Lee
−S2. (9)

To gain a better understanding of thermal conductance and figure of merit, we define the Mahan-
Sofo (MS) factor as [23]

ms = T
L2

eh
LhhLee

=
T Lee

Lhh
S2. (10)

The Lorenz number and the figure of merit in the linear regime are expressed as functions of ms
as

L(T ) =
Lhh

T Lee
(1−ms) , (11)

ZT =
ms

1−ms
. (12)

The MS factor must be dimenssionless and satisfies 0 < ms < 1. It is straightforward to see that
the figure of merit ZT reaches its maximum value when the MS factor approaches 1.

The computations for the above currents involve the local density of states (DoS) ν(ϵ)
of the QD at the weak link. The currents are considered in the linear response regime and are
computed based on the DoS, the Fermi distribution functions of the QDs at the weak link, and the
tunnel matrix element |tLD|, which characterizes the weak coupling between the left electrode and
the QD. In the spirit of Matveev-Andreev theory [11], the DoS ν(ϵ) is related to the correlation
function K (1/2T + it), which describes the interactions in the QD

ν(ϵ) = νDT cosh
( ϵ

2T

)∫ ∞

−∞

eiϵtK
( 1

2T + it
)

cosh(πTt)
dt, (13)

where νD stands for the DoS of the QD which is no longer renormalized by the electron-electron
interactions, while the correlation function K (1/2T + it) characterizes for these interactions [K(τ)
= ⟨Tτ F̂(τ)F̂†(0)⟩ (Tτ is the time-ordering operator, the imaginary time τ runs from 0 to β = 1/T )].
The details of the derivativation for the electric conductance and thermoelectric coefficient are
presented in Refs. [6,11]. Finally, one can express the formulas for the thermoelectric coefficients
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as

Lee =
π

2
GLT

∫
∞

−∞

dt
K
( 1

2T + it
)

cosh2(πTt)
, (14)

Leh =− iπ2GLT
2

∫
∞

−∞

dt
sinh(πTt)
cosh3(πTt)

K
(

1
2T

+ it
)
, (15)

Lhh =
π3GLT 2

2

∫
∞

−∞

dt

[
2− cosh2(πTt)

]
K
( 1

2T + it
)

cosh4(πTt)
. (16)

where GL = 2πνLνD|tLD|2 (νL stands for the DoS of the non-interacting left lead) is a conductance
of the tunnel area, assuming that the electrons in the left lead and QD are noninteracting.

The computation of the thermoelectric coefficients in Eqs. (14-16) requires the explicit
form of the correlation functions K (1/2T + it). These correlation functions were first computed
using the perturbation theory, considering the smallness of the reflection amplitudes |r j| of the
QPCs in the temperature regime: max

[
|r j|2EC

]
≪ T ≪ EC. The thermoelectric transport of a

2CK system is controlled by (bosonic) charge and spin fluctuations at low frequencies (below EC).
We notice that the effect of small |r j| on the charge modes is negnigible in comparison with the
Coulomb blockade; however, it dramatically alters the dynamics of the unblocked spin modes.
Therefore, it is neccessary to investigate the spin modes by applying the refermionization method.
The procedure beyond the perturbative solution is referred to as nonperturbative treatment [11].
Previous works (see Refs. [11, 17, 21]) have shown that the results of the nonperturbative solution
recover the perturbative results. It is thus sufficient to consider the problem in a nonperturbative
treatment.

3. Main results

In this section, we present the obtained formulas for the Onsager coefficients and the MS
factor using the nonperturbative method. It is important to estimate the input parameters and select
the appropriate value for the figure of merit ZT .

The correlation function for the two-channel CKC in the nonperturbative treatment, con-
cerning the reflection amplitudes of the QPCs, is expressed as [11]

K(τ) =
πT Γ

γEC

1
|sin(πT τ)|

∫
∞

−∞

eωτ

(ω2 +Γ2)
(
1+ eω/T

)dω

− T
EC

(
s2 −a2) sin(2πN)

|sin(πT τ)|
ln
(

EC

T +Γ

)∫
∞

−∞

dω
ωeωτ

(ω2 +Γ2)
(
1+ eω/T

) , (17)

with s = |r1|+ |r2|, a = ||r1|− |r2||, Γ is the Kondo-resonance width in the vicinity of Coulomb
peaks

Γ(N) =
2γEC

π2

[
s2 cos2(πN)+a2 sin2(πN)

]
, (18)

and γ = eC ≈ 1.78 (C ≈ 0.577 is Euler’s constant). Following Ref. [17], the Kondo resonance
width at a Coulomb peak is always finite for any asymmetry in the Kondo channels.
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Fig. 2. The Kondo-resonance width Γ(r1,r2,N)/Γ(r0,r0,1) as a function of gate voltage
N for different asymmetric reflection amplitude set r1 = 0.13,r2 = 0.11 (orange line),
r1 = 0.14,r2 = 0.1 (black line), r1 = 0.15,r2 = 0.09 (red line), and reference symmetric
set r0 = 0.12 (blue dashed line). The insert is the zoomed in of the main plots in the
vicinity of the Coulomb peak.

We find that the first term of the correlation function K(τ) is symmetric in energy, while
the second one is asymmetric. It is sufficient to consider the first term in Eq. (17) to compute Lee
and Lhh, but the second term in Eq. (17) must be taken into account for the Leh calculation. The
thermoelectric coefficients are obtained as

Lee =
GLT
8γEC

FG

(
Γ

T

)
, (19)

with FG is a dimensionless function expressed as

FG (p) =
∫

∞

−∞

du
p

u2 + p2
u2 +π2

cosh2 (u/2)
, (20)

where p = Γ/T , u = ω/T . The Leh is computed as

Leh =− GL

24π

T
EC

(
s2 −a2)sin(2πN) ln

(
EC

T +Γ

)
FT

(
Γ

T

)
, (21)

with

FT (p) =
∫

∞

−∞

du
u2

u2 + p2
u2 +π2

cosh2 (u/2)
. (22)

The Lhh can be expressed as

Lhh =
GL

48γ

T 2

EC
FH

(
Γ

T

)
, (23)
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Fig. 3. Density of states ν(ϵ)/νD as a function of energy ϵ/EC for different values of the
gate voltage: N = 0 or N = 1 [panel a)], N = 0.5 [panel b)], and N = 0.4 [panel c)]. All
plots are at temperature T/EC = 0.01, for different asymmetric reflection amplitude set
r1 = 0.13,r2 = 0.11 (orange line), r1 = 0.14,r2 = 0.1 (black line), r1 = 0.15,r2 = 0.09
(red line), and reference symmetric set r0 = 0.12 (blue dashed line).
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with

FH (p) =
∫

∞

−∞

du
p

u2 + p2

(
u2 +π2

)(
u2 +3π2

)
cosh2 (u/2)

. (24)

The MS factor is obtained as

ms =
2γ2

3π2

(
s2 −a2)2

sin2 (2πN) ln2
(

EC

T +Γ

)
F2

T
(

Γ

T

)
FH

(
Γ

T

)
FG

(
Γ

T

) . (25)

From Eq. (25), we find that 0 < ms < 0.3337|r1|2|r2|2 ln2 [EC/(T +Γ)], so the MS factor is pre-
dicted much smaller than 1. Therefore, we estimate ZTmax ≈ 0.33|r1|2|r2|2 ln2 [EC/2Γ] at the tem-
perature T ≈ Γ. It is consistent with the result in Ref. [21].

The motivation of this work is to investigate the effects of asymmetry in the Kondo channels
on quantum transport in the CKC. We thus choose the reference reflection amplitude r0 = (r1 +
r2)/2 as the symmetric case for the corresponding asymmetric r1, r2. We first examine this for the
Kondo resonance width (see Fig. 2). In the vicinity of the Coulomb peaks, the asymmetry in the
Kondo channels lifts the Kondo resonance width [17]. The greater the asymmetry, the higher the
value of Γ. This fact can be seen easily when one rewrites Eq. (18) as Γ(N) = (2γEC/π2)[|r1|2 +
|r2|2 + 2|r1||r2|cos(2πN)]. At the Coulomb peak N = 0.5, we have Γ(0.5) = (|r1| − |r2|)2 ≥ 0.
The finite gap at N = 0.5 characterizes for the spin mode. It means that both charge and spin
modes in the asymmetric two channel Kondo model are massive. The finite channel asymmetry
results in a crossover from the non-Fermi liquid (NFL) behavior (symmetric case) to Fermi liquid
(FL) behavior (asymmetric case) (this effect is discussed in detail in Ref. [17]). The crossover
is triggered by the appearance of a finite Majorana level width at the Coulomb peak position [∝
sin2(πN)]. The value of the gap corresponds to the energy scale below which the FL properties of
the model are restored. The NFL-2CK intermediate coupling fixed point is hyperbolic (unstable).
The channel asymmetry is a relevant perturbation that drives the system away from the unstable
2CK fixed point to the stable FL-1CK strong coupling fixed point.

In order to check more the effects channel asymmetry to thermoelectric transport, we plot
the DoS as a function of energy in Fig. 3. In panels a) and b), where the DoS is plotted at
the Coulomb valley (N = 0 or N = 1) and Coulomb peak (N = 0.5), one can observe symmetry
in energy. This explains why the thermopower vanishes at these points. In the vicinity of the
Coulomb peak, an asymmetry in energy appears, as shown in panel c). We also find that when the
asymmetry between the two Kondo channels (characterized by a/r0) increases, the DoS decreases.
Furthermore, we predict that the asymmetry between the two Kondo channels does not affect the
symmetry in energy of the DoS.

Applying this fact to Eqs. (20), (22) and (24) at a given temperature, we consider the ratios
FT/FG, FH/FG, and F2

T /FHFG as functions of p = Γ/T , which are demonstrated in Fig. 4. We
predict that the asymmetry in the Kondo channels reduces the thermopower, MS factor, and figure
of merit, but increases the Lorenz number.

Figure 5 shows the thermopower S as a function of gate voltage N (upper panel) and the
maximum of thermopower Smax as a function of temperature T/EC (lower panel) for different sets
of asymmetric reflection amplitude compared to the reference symmetry set. When the asymmetry
is increased, especially when a/r0 is large enough, the thermopower is visibly decreases.

The results we obtained for the Lorenz number (see Fig. 6) align with those discussed in
Ref. [6]: the Lorenz number is reduced from a universal value corresponding to the particle-hole
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Fig. 4. The ratios FT/FG [panel a)], FH/FG [panel b)], and F2
T /FHFG [panel c)] as func-

tions of variable p = Γ/T .

symmetric point. The decrease in the Lorenz number with increasing temperature depends on the
temperature region: it is significant at low temperatures and less pronounced at higher tempera-
tures (see Fig. 6 b) as an example). Moreover, we also show in Fig. 6 a) that the Lorenz number in
the vicinity of the Coulomb peak is increased slightly by a/r0. The Lorenz ratio L(T )/L0, which
is always equal to or greater than 1.5 as it is shown in Fig. 6 c), satisfies the generalized WF law at
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Fig. 5. The thermopower S as a function of gate voltage N at temperature T/EC = 0.01
(upper panel) and maximum of thermopower Smax as a function of temperature T/EC
(lower panel) for different asymmetric reflection amplitude set r1 = 0.13,r2 = 0.11 (red
line), r1 = 0.14,r2 = 0.1 (black line), r1 = 0.15,r2 = 0.09 (orange line), and reference
symmetric set r0 = 0.12 (blue dashed line).

low temperature in the case of strong electron-electron correlations. This confirms the conclusion
in Ref. [24] that Lorenz ratios contain information of the Anderson’s orthogonality catastrophe.

We plot the figure of merit ZT as a function of the gate voltage N [Figs. 7 a) and b), and 8 a)]
and its maximum as a function of temperature T/EC [Figs. 7 c) and 8 b)]. The parameters in Fig. 7
indicate that ZT reaches maximum values at the gate voltage N situated between Coulomb peak
and Coulomb valley (covering the perturbative solution). They approach the Coulomb peak as
the temperature is reduced to zero, where only the nonperturbative treatment is applicable. From
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Fig. 6. a) Lorenz number L(T ) as a function of gate voltage N at temperature T/EC =
0.001. b) L(T ) as a function of temperature T/EC at gate voltage N = 0.5. c) Ratio
L(T )/L0 as a function of temperature T/EC at gate voltage N = 0.5. All plots are for
different asymmetric reflection amplitude set r1 = 0.13,r2 = 0.11 (orange line), r1 =
0.14,r2 = 0.1 (black line), r1 = 0.15,r2 = 0.09 (red line), and reference symmetric set
r0 = 0.12 (blue dashed line).
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Fig. 7. Figure of merit ZT as a function of gate voltage N at different temperatures:
T/EC = 0.001 [panel a)], T/EC = 0.01 [panel b)], and maximum of figure of merit
ZTmax as a function of temperature T/EC [panel c)], for different asymmetric reflec-
tion amplitude set r1 = 0.13,r2 = 0.11 (orange line), r1 = 0.14,r2 = 0.1 (black line),
r1 = 0.15,r2 = 0.09 (red line), and reference symmetric set r0 = 0.12 (blue dashed line).
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Fig. 8. Figure of merit ZT as a function of gate voltage N at temperature T/EC = 0.03
[panel a)], and maximum of figure of merit ZTmax as a function of temperature T/EC
[panel c)], for different reflection amplitude set r1 = r2 = 0.24 (red dotted line), r1 = r2 =
0.22 (blue line), r1 = 0.24,r2 = 0.2 (black line), and r1 = r2 = 0.2 (orange dashed line).

Figs. 7 c) and 8 b), we predicts that the maximum figure of merit ZTmax attains its highest value
at T/EC ≈ 0.03. We find that ZT and ZTmax decrease as the asymmetry a/r0 increases compared
to their values at r0 (see Fig. 7). Additionally, Fig. 8 shows that ZT and ZTmax increase when the
average of the reflection amplitudes |r0| is raised. However, the constraints of the model require
that |r j| be small enough. Therefore, we conclude that the figure of merit of a single-site CKC is
much smaller than 1.

As we can see from Fig. 7 c), the temperature regime |r0|2EC ≪ T ≪ EC, along with the
smallness of the reflection amplitude |r0|, satisfies the condition for applying the perturbative
solution, but is not the optimal range for maximizing the figure of merit ZT . This suggests that
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we should consider the thermoelectric efficiency of the charge Kondo circuits in the vicinity of the
intermediate coupling fixed point which requires non-perturbative analysis.

4. Conclusion

In summary, we revisited the thermoelectric transport of a system in which a single-site
CKC is weakly coupled to a large electrode through a tunnel barrier. The temperature drops at the
weak link [6, 11, 17]. The CKC consists of a large QD strongly coupled to the electrodes through
two QPCs [12]. The reflection amplitudes at the QPCs are asymmetric (|r1| ̸= |r2|) [17]. In the
spirit of Andreev-Matveev theory [11], we apply the Abelian bosonization and refermionization
technique to solve the 2CK model nonperturbatively. We present the formulas for the thermo-
electric coefficients and the MS factor. The thermopower, figure of merit, and their maximum
values are illustrated in graphics. The Lorenz number is also investigated. We conclude that the
thermopower, MS factor, and figure of merit are reduced, while the Lorenz number is increased
slightly due to the asymmetry in the Kondo channels. It is important to tune the reflectrion ampli-
tudes at the QPCs to be symmetric. Furthermore, we propose scaling up the CKCs to clusters or
lattices to enhance the thermoelectric efficiency of an implemented device.

Acknowledgements

This research in Hanoi is funded by Vietnam Academy of Science and Technology (pro-
gram for Physics development) under grant number KHCBVL.06/23-24.

References
[1] T. J. Seebeck, Über den Magnetismus der galvanischen Kette, Abh. Akad. Wiss. Berlin 1820-21 (1822) 289.
[2] J. F. Li, W.S. Liu, L.D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia

Mater. 2 (2010) 152.
[3] Y. Du, K. F. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, T. Lin, Thermoelectric fabrics: toward power

generating clothing, Sci. Rep. 5 (2015) 6144.
[4] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current

research and future prospects, Energy Environ. Sci. 2 (2009) 466.
[5] G. Benenti, G. Casati, K. Saito, and R. Whitney, Fundamental aspects of steady-state conversion of heat to work

at the nanoscale, Phys. Rep. 694 (2017) 1.
[6] D. B. Karki, Coulomb blockade oscillations of heat conductance in the charge Kondo regime, Phys. Rev. B102

(2020) 245430.
[7] Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, H. Grabert and M. H. Devoret,

Plenum Press, New York (1992).
[8] K. Flensberg, Capacitance and conductance of mesoscopic systems connected by quantum point contacts, Phys.

Rev. B 48 (1993) 11156.
[9] K. A. Matveev, Coulomb blockade at almost perfect transmission, Phys. Rev. B 51 (1995) 1743.

[10] A. Furusaki, K. A. Matveev, Theory of strong inelastic cotunneling, Phys. Rev. B 52 (1995) 16676.
[11] A. V. Andreev, K. A. Matveev, Coulomb blockade oscillations in the thermopower of open quantum dots, Phys.

Rev. Lett. 86 (2001) 280; Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling,
Phys. Rev. B 66 (2002) 045301.

[12] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna and F. Pierre, Two-channel Kondo
effect and renormalization flow with macroscopic quantum charge states, Nature 526 (2015) 233.

[13] Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon,
and F. Pierre, Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit, Science 360
(2018) 1315.



332 Effects of asymmetry in Kondo channels on thermoelectric efficiency

[14] A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University
Press, Cambridge, 1993.

[15] P. Nozières and A. Blandin, Kondo effect in real metals, J. Phys. France 41 (1980) 193.
[16] L. D. Landau, The Theory of a Fermi Liquid, Sov. Phys. JETP 3 (1957) 920.
[17] T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov, Thermoelectric transport through a quantum dot: Effects of

asymmetry in Kondo channels, Phys. Rev. B 82 (2010) 113306.
[18] R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, Thermopower of a Kondo spin-

correlated quantum dot, Phys. Rev. Lett. 95 (2005) 176602.
[19] T. K. T. Nguyen and M. N. Kiselev, Seebeck effect on a weak link between Fermi and non-Fermi liquids, Phys.

Rev. B 97 (2018) 085403.
[20] T. K. T. Nguyen and M. N. Kiselev, Heat conductance oscillations in two weakly connected charge Kondo circuits,

Comm. Phys. 32, 331 (2022).
[21] T. K. T. Nguyen, H. Q. Nguyen, and M. N. Kiselev, Thermoelectric transport across a tunnel contact between two

charge Kondo circuits: Beyond perturbation theory, Phys. Rev. B 109 (2024) 115139.
[22] L. Onsager, Reciprocal relations in irreversible processes. I., Phys. Rev. 37, 405 (1931); L. Onsager, Reciprocal

relations in irreversible processes. II., Phys. Rev. 38 (1931) 2265.
[23] G. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. USA 93 (1996) 7436.
[24] M. N. Kiselev, Generalized Wiedemann-Franz law in a two-site charge Kondo circuit: Lorenz ratio as a manifes-

tation of the orthogonality catastrophe, Phys. Rev. B 108 (2023) L081108.


	1. Introduction
	2. General formulas for thermoelectric coefficients
	2.1. Experimental setup and theoretical model 
	2.2. The formulas

	3. Main results
	4. Conclusion
	Acknowledgements
	References

