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Abstract. We report on the second-order phase transition of two-dimensional (2D) magnetic ma-
terials under the influence of random anisotropy in the context of the Blume-Capel model em-
ploying an effective field theory and the differential operator method. By analyzing the temper-
ature dependence of magnetization, we thoroughly explore the second-order ferromagnetic-to-
paramagnetic (FM-PM) phase transition at the critical temperature Tc. When the magnitude of
the random anisotropy D and its probability p is sufficiently large, the magnetization equation be-
comes divergent and unsolvable at a critical temperature, indicating the emergence of a tricritical
point and a first-order phase transition. Additionally, we produce a phase diagram for the second-
order phase transition presenting the relation between the critical temperature and the anisotropy
amplitude at various probabilities.

Keywords: Blume-Capel model, random anisotropy, effective field theory, differential operator,
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1. Introduction

Rich phase diagrams have been revealed in double perovskite metal oxides [1-3]. These
materials are synthesized through chemical doping, which introduces multi-valent ions [4], lead-
ing to disordered spin systems. In such systems, the magnetic behavior becomes notably complex
and distinct compared to materials with periodic, symmetric crystal structures. The presence of
anisotropic interactions directly impacts the variation of spin interactions within the crystal lattice,
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greatly influencing the magnetic properties of the material. In particular, anisotropic interactions
are often accompanied by various anomalous physical phenomena, such as multicritical phenom-
ena, which have garnered considerable attention from researchers [5].

Among numerous efforts to explain the multicritical phenomena, the Blume-Capel (BC)
model emerges as an ideal model with the ability to perfectly illustrate the critical behavior of
3He—*He mixtures in aerogel [6,7]. This model was first introduced by Blume [8] and later in-
dependently by Capel [9-11] in 1966. It is a widely studied mathematical model in statistical
mechanics, typically applied to spin-1 systems with additional anisotropic crystal field interac-
tions. In this model, a variety of multicritical phenomena are exhibited, including a phase diagram
where disordered paramagnetic and ordered paramagnetic phases are separated by a transition line,
which shifts from a second-order phase to a first-order phase at the tricritical point (TCP). Various
physical systems involving multicritical behavior, such as multicomponent fluids, ternary alloys,
and several magnetic problems, have been explained within the context of this model [5].

To describe the disorder in double perovskite metal oxides, a random crystal field is intro-
duced into the BC model. Several theoretical techniques have been used to study the BC model
with a random crystal field, including the mean-field approximation (MFA) [12], Bethe lattice
approximation (BLA) [13], cluster variational method (CVM) [7], pair approximation [14], finite
cluster approach (FCA) [15], Monte Carlo simulation [16], renormalization group (RG) [17], and
effective field theory (EFT) [18]. These studies have explored various random crystal field distri-
butions, such as the Gaussian and bimodal distributions, however, the results consistently show the
presence of multiple multicritical points. The bimodal distribution, due to its simplicity, provides
a clearer understanding of the effects of dopants.

In addition, despite extensive research employing effective field theory [18, 19], the phase
diagram of the BC model with a random crystal field remains a subject of debate, particularly re-
garding to the temperature dependence of magnetization - a crucial feature to validate the tricritical
point. To address this, our current work aims to provide a transparent depiction of the temperature
dependence of magnetization for various values of the random parameters from the perspective
of the BC model with a bimodal distribution for random field. We also produce a phase diagram
illustrating second-order magnetic phase transition with tricritical points and give comprehensive
explanation underlying physical mechanisms of each regime.

2. Model and formalism

The Hamiltonian of the spin-1 Blume—Capel model with a random crystal field is given by

H= —J(Z)Sij:JrZDi(Sf)Z, (1)
i,] 14

where S is the z-component of spin variable associated with site i, which takes the values S =
0,+1. The first term indicates ferromagnetic interactions among all pairs of nearest-neighbor
spins, with the exchange interaction J = 1. The random anisotropic field D; at site i follows the
bimodal distribution law:

P(D;) = p8(Di— D)+ (1—p)&(Dy). 2)

In chemically doped double perovskites, the interactions among ions of the same valence gen-
erate one specific crystal field value, while interactions among ions of different valences create
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another. Consequently, the distribution of the crystal field depends on the concentration of ions
with different valences, which can be effectively described by a bimodal distribution. It was fur-
ther demonstrated that the bimodal distribution can approximate the Gaussian distribution when
studying the BC model with a random crystal field [20]. For its simplicity, the bimodal distribu-
tion has been widely adopted in the investigation of the Blume-Capel model with random crystal
fields [16, 19].
Hamiltonian (1) is then rewritten in the form,
H=-) {ESi-Di(5})’}, (3)

1

where E; =J Z; S;: expresses the interaction energy between the spin at site i and all of its nearest-
neighbors. Then, the thermodynamic average of an arbitrary physical quantity ((A)), is computed
as a function of Hamiltonian (3):

(e PH . Yo e Pr-a
<<A>>,=<<W>> :<<gslﬂﬂ>> N

with the inverse temperature 3 = 1/kgT, the canonical thermal average symbolized by the inner
brackets (...), and the random configurational average identified by the outer brackets (...),. Us-
ing the Callen identity [21], the average magnetic moment m = ((S})),, and the average squared
moment g = ({(5%)?)), are obtained as follows:

=)= (e o5, ®
0= = ((Gomnrpmn it ) ) ©

2cosh(BEy) + PPk
Using the differential operator method [22], we convert the right-hand sides of the two expressions
above into algebraic equations involving different orders of the order parameters m, ¢, and the
average value of the anisotropy coefficient D as a standard parameter.

e (o)),
g=((5%gnD0)) | . ®)

where V, = % denotes the differential operator. The functions f(x,Dy) and g(x, D) are given by:

r

2sinh(x)
D)= ——"— 9
f<x7 k) 2COSh(x)+€BDk ( )

2cosh(x)
D)= ——-— . 10
g(x’ k) 2COSh(X) +eﬁDk ( )

Calculating the average over random configurations:
. p 1—p
F(x,D)= | P(D Dy)dD; = 2sinh 11
(5.0) = [ PO 5D aDy = 2sinte) | P E L a
G(x,D) = / P(Dy)g(x,Dy) dDy = 2cosh(x) P RS ey N BT
2cosh(x) +ePP ~ 2cosh(x) +1
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Substituting F(x,D) and G(x, D) into the order parameters m, g (7) (8):
m—= <<e’BE"V">> F(x,D)|,_,. (13)

= < <eﬁEka>>r G(x,D)|,_y. (14)
where the term ((ePFVx)) is defined using the van der Waerden identity [23] for spin-1 systems:

<<eﬁEkvX>>r _ <<H [1 +sinh(BJV,)S5 + (cosh(BIV,) — 1)(5;)2} >> . (15)

r

We now apply the approximation process from effective field theory (EFT) [24]:
((siss3(s3)%)), = (s, ((s3)), ((s5)), ((Gs))), - (16)

Thus, the order parameters m, g are described as follows:
m = {1+ msinh(AV,) + [cosh(AV,) — 1]¢}* F (x, D) |x—o, 17
g = {1+ msinh(AV,)+ [cosh(AV,) — 1]¢g}* G(x,D)|—o, (18)
where A = BJ, and the exponent z is the nearest-neighbor spin number.

For the 2D square lattice considered in this paper, z = 4, and the order parameters m, g are
represented by a pair of self-consistent equations:

m:Al(q)m+A3(q)m3, (19)
q = Bo(q) + Ba2(q)m’ + B(q)m". (20)
1-Ai(q)

The solution to equation (19) is m(g) = , which is then substituted into equation

A3(q)
(20) to derive a self-consistent function dependent only on g. The solution for g is subsequently

substituted back into equation (19) to determine the average magnetic moment .

3. Results and discussion

Firstly, we examine the temperature dependence of the magnetization for pure BC systems
with p = 1, considering two non-positive cases of the random anisotropy magnitude D = 0 and
D — —oo,

In Fig. 1, for p =1 and D = 0, the spin-1 BC model is equivalent to a 3-state Ising model
with spin values of 0, and +£1. The system exhibits two distinct phases: ferromagnetic (FM) and
paramagnetic (PM), which transition at the critical temperature 7c = 2.19. Below T, the strongly-
coupled spins in parallel arrangement induce a non-zero magnetic moment characterizing for the
FM state. Above T, thermal energy breaks this alignment, causing the spins to become randomly
oriented, leading to a near-zero magnetic moment of the PM state. In the absence of anisotropy,
the FM-PM phase transition is completely smooth, a typical indication of the second-order phase
transition.

For p =1 and D — —oo, the strong anisotropy, presented by the second term in Hamiltonian
(1), forces all spins to align along the z-axis, with only two possible spin states 41, while the
transverse state (spin value 0) is suppressed. Consequently, the spin-1 BC model reduces to the
standard Ising model for spin-1/2. This leads to a second-order FM to PM phase transition at
the critical temperature T = 3.10, between the exact value 2J/In(1 4 v/2) ~ 2.269J [25] and the
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Fig. 1. The temperature dependence of the magnetization for a 2D square lattice with
p=1in2cases: D=0and D — —oo.

Weiss-field result 4/. Our calculated critical temperatures for the two non-positive values of the
random anisotropy in the pure spin-1 BC model are consistent with Ref. [26].
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Fig. 2. The temperature dependence of the magnetization for a 2D square lattice with
p = 1 and different values of the anisotropy magnitude D.
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The impact of different positive anisotropy magnitudes on the second-order phase transi-
tion in the pure spin-1 BC model (p = 1) is explored in Fig. 2. For 0 < D < 1.89, the system
consistently undergoes a second-order FM-to-PM phase transition, with the critical temperature
Tc decreasing as the anisotropy magnitude increases. This indicates that as the dopant introduces
stronger anisotropy, the spins tend to align more along the transverse direction (spin value 0)
rather than the z-direction. Consequently, the exchange interaction energy between spins weak-
ens, requiring less thermal energy to disrupt the system’s phase order, resulting in a lower critical
temperature Tc.

In addition, for D > 2, magnetization is suppressed at all temperatures. These findings align
with Ref. [9] using molecular field theory, suggesting that for D < %ln(4), the system consistently
exhibits a second-order phase transition. Furthermore, as D approaches 2 (1.89 < D < 2), the
self-consistent magnetization equation diverges, yielding no reasonable solution in this range.
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Fig. 3. The temperature dependence of the magnetization for a 2D square lattice with
anisotropy amplitude D = 1.5 and different probabilities p.

In Fig. 3, we also examine the effect of disorder by analyzing how magnetization depends
on temperature for a fixed anisotropy magnitude of D = 1.5, while varying the probability p. For
this anisotropy value, a second-order phase transition occurs at every probability p. It implies that
increasing the probability reduces the critical temperature T because of the spin tendency to align
in the transverse direction (spin state 0) rather than along the z-axis.

The temperature dependence of magnetization is analyzed for different values of the prob-
ability p and the anisotropy amplitude D to determine the critical temperatures. These critical
temperatures are then used to construct a 7¢-D phase diagram, shown in Fig. 3. In this phase dia-
gram, the solid lines represent the second-order phase transition. For each curve with p < 0.6, the
phase diagram is clearly divided into two regions: the upper right corresponds to the paramagnetic
(PM) phase, while the lower left represents the ferromagnetic (FM) phase. For p = 0, the phase
transition line appears as a horizontal line at T = 2.19, as no anisotropy is present, effectively
reducing the spin-1 BC model to a 3-state Ising model for spin-1.
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Fig. 4. Tc-D phase diagram of the spin-1 BC model with random anisotropy in a square
lattice for different probabilities p. The black points represent the tri-critical points
(TCP).

For 0 < p < 0.6, the self-consistent equation for magnetization has a unique solution at
every temperature, regardless of the anisotropy magnitude D. This behavior is accompanied by
a second-order FM to PM phase transition, where the critical temperature T decreases as D in-
creases for a given p. As the anisotropy parameter D becomes sufficiently large for each p, the
critical temperature 7¢ saturates and remains constant. This occurs because, at high enough values
of D, the lowest energy state consists entirely of transverse spins (spin state 0), which remains
unchanged even with further increases in D. For example, when p = 0.6 and D > 5, the critical
temperature stabilizes at 7¢ = 0.25.

For p > 0.7, as the anisotropy parameter D increases, the phase transition curves break at the
black points. Indeed, in the vicinity of D < zJ/2p, the self-consistent equation for magnetization
becomes divergent and unsolvable at a particular temperature. The horizontal coordinate of these
black points represents the anisotropy value D where this divergence begins, while the vertical co-
ordinate corresponds to the specific temperature at which it occurs. According to Landau’s theory
of phase transitions, at the critical temperature of a first-order phase transition, multiple magneti-
zation values satisfy the self-consistent equation, meaning this divergence signals the occurrence
of a first-order phase transition. Thus, the temperature where this divergence takes place is the
critical temperature T¢. Additionally, since the black points indicate where the phase transition
changes from second-order to first-order, they are the tricritical points (TCP).

For p > 0.7 and D > zJ /2p, magnetization is suppressed at every temperature.

4. Conclusions

Using the EFT formalism and the differential operator method, we have studied the mag-
netism of two-dimensional disordered magnetic systems, such as double perovskites, within the
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framework of the spin-1 BC model with a random crystal field. For various values of the proba-
bility p and the anisotropy parameter D, which are directly related to the concentration of dopants
and the doping element, we analyzed the temperature dependence of magnetization. This depen-
dence reveals the nature of the phase transition and the critical temperature 7¢, which is used to
construct a phase diagram in the T-—D plane.

This phase diagram is distinctly separated into two parts by a second-order FM to PM phase
transition line for each probability value in the range p < 0.6. For p = 0, this line is horizontal due
to the absence of anisotropy. For 0 < p < 0.6, as the anisotropy parameter D grows, the critical
temperature T¢ declines. However, once D reaches a certain threshold, 7¢ stops decreasing and
remains constant.

For p > 0.7, as D increases, the phase transition curves become discontinuous and termi-
nate at the black points shown in Fig. 4. At these points, the divergence of the self-consistent
magnetization equation indicates the presence of a first-order phase transition, identifying these
points as tricritical points (TCPs). Furthermore, the behavior of the first-order phase transition
curves in the phase diagram inspires further research.
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