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Abstract. Plane symmetric inhomogeneous cosmological models for perfect fluid distribution are

investigated in the frame work of Rosen’s bimetric theory of gravitation. A negative pressure

corresponding to false vacuum state is considered. Some of the physical and kinematical properties

of the models are discussed.

I. INTRODUCTION

In recent times there have been a lot of research interests in modified theories of
gravity because of their success in explaining a lot of observational data. In this context,
Rosen’s bimetric theory of gravitation [1] has attracted much attention [2-11].The motiva-
tion behind this proposition of this biometric theory is to avoid the problem of singularity
occurring in Einstein’s general relativity. The two metric tensors assumed in the bimetric
theory are the Reimannian metric tensor gij which interacts with the matter and a flat
background metric fijthat describes the inertia forces.

Even though the large scale universe is homogeneous, some fluctuations are essential
to trigger galaxy formation. At some stage small initial perturbations must have evolved
into gravitationally bound systems. These fluctuations cause some local inhomogenerity. If
these metric fluctuations have a scale-dependent random-phase character, then amplitude
is within the range 10−4

− 10−5 [12]. Most of the cosmological models are based on the
assumption of high degree of isotropy and homogeneity of the universe which can be easily
described by the Freidman-Robertson-Walker (FRW) models. In order to take account of
local fluctuations leading to inhomogeneity in the space-time which may be responsible
for galaxy formation, it is wise to think of some anisotropic and inhomogeneous models
to understand the evolution of the early phase of universe. There are good many works
on inhomogeneous models. Bali and Tyagi [13], Pradhan et al. [14, 15] have investigated
different aspects of inhomogeneous models using different space-time.

In this work, we have investigated the inhomogeneous plane symmetric models for
perfect fluid. Considering a false vacuum state corresponding to the way inflationary
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cosmological models [16] assume, we have tried to get some plausible solutions to the
Rosen’s field equations. These solutions provide some interesting features of the universe.

The organization of the paper is as follows: In Sec. 2, basic field equations in
the frame work of Rosen’s Bimetric theory of gravitation are derived. In Sec. 3, some
inflationary cosmological models are presented and at the end, the conclusions of the work
are presented in Sec. 4.

II. BASIC EQUATIONS

At every point of space-time, there exist two line elements:

ds2 = gij dxi dxj (1)

and
dσ2 = fij dxi dxj. (2)

For an inhomogenous plane symmetric metric considered in the form

ds2 = A(−dt2 + dz2) + B(dx2 + dy2) (3)

the background flat metric will be

dσ2 = −dt2 + dx2 + dy2 + dz2 (4)

where A and B are the metric potentials considered as functions of zand t.
The field equations of Rosen’s bimetric theory of gravitation are

N i
j −

1

2
Nδi

j = −8πkT i
j (5)

where N i
j = 1

2
fab(ghighj|a)|b , k =

√

g
f
, g = det(gij) and f = det(fij). The vertical bar

denotes covariant differentiation. The energy momentum tensor T i
j for a perfect fluid

distribution is given by

T i
j = (ρ + p)uiuj + pgi

j (6)

where ρ is the rest energy density of the system and p is the proper pressure. The four
velocity vector uisatisfies the condition giju

iuj = −1.
In commoving coordinates, the field equations (5) for the metrics (3) and (4) take the
explicit forms
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where the overhead primes and dots denote differentiation of the metric potential with
respect to zand trespectively.
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Let us consider that

A = a(z) λ(t) (10)

and

B = b(z) θ(t) (11)

so that

A′

A
=

a′

a
= α(z), (12)

Ȧ

A
=

λ̇

λ
= ν(t), (13)

B′

B
=

b′

b
= β(z), (14)

and

Ḃ

B
=

θ̇

θ
= µ(t). (15)

With (12, 13) and (14, 15), the field equations (7)-(9) reduce to

α′
− ν̇ = 16πkp (16)

β′
− µ̇ = 16πkp (17)

β′
− µ̇ = −16πkρ (18)

From (17) and (18) it is clear that p+ρ = 0, which refers to the false vacuum state.
Eventhough for real energy condition, the only values p and ρ can take are p = ρ = 0,
keeping an eye on the accelerated expansion phase of the universe ( inflationary phase),
we may consider p = −ρ with finite non-zero values of p and ρ. In FRW models in general
relativity the negative pressure corresponds to a repulsive gravity and is associated with
the cosmological constant Λ. In the same footing we consider this false vacuum state in
order to explore some of the interesting features of the model in bimetric theory.

From (16) and (17) we get

α′
− β′ = ν̇ − µ̇ (19)

The possible implications of this equation are

(i) α′(z) = β′(z) = ν̇(t) = µ̇(t) = 0 (20)

(ii) α′(z) = β′(z) (21)

ν̇(t) = µ̇(t) (22)

(iii) α′(z) − β′(z) = ν̇(t) − µ̇(t) = c = constant (23)
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III. INFLATIONARY COSMOLOGICAL MODELS

Case-I

It is evident from (20) that α, β, ν and µare constant quantities. Let us suppose that
α = k, β = l,ν = m and µ = n where k, l, m, n are constants of integration. Integration of
these relations immediately yield

A = A0e
kz+mt (24)

B = B0e
lz+nt (25)

With the convenient choice A0 = B0 = 1, the metric for this model can be expressed
as,

ds2 = ekz+mt(−dt2 + dz2) + elz+nt(dx2 + dy2) (26)

From equations (17)and (18), we can have the physical properties of the model,
expressed in general, as

p = −ρ =
1

16πk

(

β′
− µ̇

)

(27)

Since β and µ are constant quantities for the present model (23), the proper pressurep
and the energy density ρ assume null values i.e p = ρ = 0. For all negative values of k and
l, the local inhomogeneity vanishes for large values of z.

The volume scale factor of the model can be expressed by

τ = AB = exp[(k + l)z + (m + n)t] (28)

which clearly represents an inflationary vacuum universe.

Case-II

In view of (21) and (22), we may consider

α(z) = β(z) (29)

and
ν(t) = µ(t)(z). (30)

Baring the discrepancies in the proportionality constants, from (29) and (30) it can be
ascertained that A ∝ B.

Integration of (29) and (30) yield

A = A1 exp

(∫

βdz +

∫

µ dt

)

(31)

and

B = B1 exp

(∫

β dz +

∫

µ dt

)

. (32)

The metric for this model can now be expressed as

ds2 =
[

A1(−dt2 + dz2) + B1(dx2 + dy2)
]

exp

(∫

βdz +

∫

µdt

)

. (33)

The present model (33) is more involved and the metric potentials are expressed
in the quadrature form. This is because of the nature of the metric chosen to describve
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the model, and since A ∝ B , p = −ρ, all the field equations(7)-(??) reduce to a single
equation. In such a situation it is not easy to get a particular solution for the equations
and the metric potentials are to taken in quadrature form or else chosen arbitrarily to
satisfy the physical situations of the universe. Consequently, the properties of this model
can not be directly ascertained and they depend upon the choice of the functionals β and
µ.

The interesting feature of the model is that if we chose β = z and µ = t, we get
the same result as earlier i.e. p = −ρ = 0. It may be noted here that linear functions of
β and µ do not lead to the survival of the model in Rosen’s bimetric theory. Any other
convenient choices of the functional β and µ may provide some determinate solutions to
the model.

The volume scale factor for the model can be expressed as

τ = A1B1 exp

[

2

{∫

β dz +

∫

µ dt

}]

. (34)

The inflationary nature of the model depends upon the functionalµ. For a choice of
β = z andµ = t, τ = A1B1 exp[z2 + t2], which represents an accelerating universe.

If we assume that the local inhomogeneity should be removed for large values of
z and the universe be witnessed by an accelerating expansion phase it is worthwhile to
chose , of course in an arbitrary manner, β = −

k1

z2 and µ = 3k2t
2, for which the metric

potentials can be expressed as A = A1 exp
[

k1

z
+ k2t

3
]

and B = B1 exp
[

k1

z
+ k2t

3
]

, where

k1 and k2are positive constants. The physical properties of the model for these convenient

choice can be represented by p = −ρ = 1
16πk

[

2k1

z3 − 6k2t
]

. With the growth of time, the

inhomogeneity in the space time decreases whereas the properties of the model evolve
gradually. At the beginning the values of p and −ρ depend upon the local inhomogeneity
of the space time.

Case-III

From (23), we get

a(z) = a1 exp

(

c

2
z2 + c1z +

∫

β dz,

)

(35)

b(z) = b1 exp

(∫

β dz

)

, (36)

λ(t) = λ1 exp

(

c

2
t2 + c2t +

∫

µ dt

)

, (37)

θ(t) = θ1 exp (µ dt) , (38)

where a1, b1, c1, c2, λ1, θ1 are constants. In view of (35)-(38) and (10)-(11), the metric
potentials can be expressed as

A = A2 exp

[

c

2
(z2 + t2) + c1z + c2t +

∫

β dz +

∫

µ dt

]

(39)
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B = B2 exp

(∫

β dz +

∫

µ dt

)

(40)

where A2, B2, c2 are constants.
The metric for this model can be written as

ds2 =
{

A2

(

−dt2 + dz2
)}

exp

[

( c

2
+ 1
)

(z2 + t2) + c1z + c2t +

∫
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∫
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]

+
{

B2

(

dx2 + dy2
)}

exp

[∫
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∫
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]

.

(41)

In this model also the metric potentials are expressed in quadrature forms and the
properties of the model depend upon the choice of the functionals β and µ. For the
convenient choice of β = z and µ = t, p = −ρ = 0 leading to a vacuum state. We may
infer that any other convenient choices may lead to interesting features of the model.

With suitable functional forms i.e. β(z) = z and µ(t) = t, the metric can be
expressed as

ds2 =
[

{

A2

(

−dt2 + dz2
)}

exp
[( c

2
+ 1
)

(z2 + t2) + c1z + c2t
]

+
{

B2

(
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]

× exp

[
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2

]

.

(42)

The volume scale factor of the model (10), can be expressed as

τ = A2B2 exp

[

c

2
(z2 + t2) + c1z + c2t + 2

∫

β dz + 2

∫

µ dt

]

(43)

which will represent an accelerating universe only if the contribution from 2
∫

β dz + 2
∫

µ dt

does not cancel out the contribution from c
2
(z2+t2)+c1z+c2t. However, for any increasing

functions β and µ, the model represents an inflationary model.

IV. CONCLUSION

In the present work, we have investigated the inhomogeneous plane symmetric mod-
els for perfect fluid distribution in the frame work of Rosen’s Bimetric theory of gravitation.
In order to get some determinate solution we have assumed the inflationary kind of solu-
tions i.e p = −ρ, which represent a false vacuum state. The usual p=ρgquation of state
provide only the vacuum solution i.e. p=gρ = wu The solutions to the field equations
are obtained in quadrature form. Any convenient choice of the functional β and µ will
lead interesting inflationary solutions of the model. However the choice, β(z) = z and
µ(t) = t reproduce the earlier vacuum models (i.e p = −ρ = 0) of Sahoo[10]. With certain
convenient choice of the metric potentials corresponding to the physical situations of the
universe, it can be ascertained that the local inhomogeneity is removed for large values of
z and the properties of the model depend both upon the space and time coordinates of
the space time. At the beginning of the universe, the properties depend upon the local
inhomogeneity.
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