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Abstract. The dynamics of a short wave packet in one-dimensional quasi-periodic lattices with
mosaic modulated on-site potentials is investigated numerically. This model is characterized by
the modulation period κ and the quasi-periodic potential strength λ . For parabolic wave packets
with a given central energy E0, we calculate the averaged time-dependent reflectance, 〈R(t)〉, for
various values of κ and λ . From the extensive numerical calculations, we show that there exist
multiple mobility edges in such a model with the number of mobility edges to be always equal to
2(κ−1).
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1. Introduction

The study of the transport and localization properties of non-interacting quantum particles
in disordered systems is an old, yet all-important problem in various branches of physics. One of
the most fundamental phenomena in such systems is localization that was first predicted by P. W.
Anderson over 60 years ago [1]. This so-called Anderson localization is well-known as a conse-
quence of the quantum interference effect of a scattered wave function in disordered media [2–4].
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According to the prediction of the scaling theory of localization [5], wave-like excitations in one-
dimensional (1D) and two-dimensional (2D) disordered systems are always localized exponen-
tially in the presence of an arbitrarily weak disorder, whereas a phase transition from extended to
localized states is expected to take place in three-dimensional (3D) case when the disorder strength
is beyond a certain critical value.

In spite of being an important element in leading to Anderson localization, the random
disorder is not a prerequisite for occurring localization. Indeed, there exists a family of systems,
the so-called quasi-periodic systems, in which potential is aperiodic but deterministic [6,7]. Unlike
disordered systems for which the metal-insulator transition may only occur in three dimensions
[8,9], quasi-periodic systems can exhibit a phase transition in one [10–13], quasi-one [14,15] and
two dimensions [16, 17]. In recent years, quasi-periodic systems have become one of the most
promising candidates to study quantum localization both theoretically and experimentally. This
arises from the fact that they are much easier to implement than those with random disorders. One
of the simplest but most famous members of the quasi-periodic family is the Aubry-André-Harper
(AAH) model [7], which exhibits a global phase transition from extended to localized states at a
critical value of the quasi-periodic potential strength. The energy-dependent mobility edge, which
corresponds to critical energy separating extended and localized states, has been proven to be
absent in the AAH model [8, 18]. Nowadays, however, it is well-known that by breaking energy-
independent duality symmetry at the transition point, such mobility edges were predicted to exist
in some generalized AAH models as well as in other quasi-periodic ones [19–21]. Some recent
experimental observations have confirmed the theoretical prediction [13, 22].

In the context of quasi-periodic systems, a class of exactly solvable 1D models has been
recently proposed by Wang and co-workers [23]. This so-called quasi-periodic mosaic model is
characterized by a positive integer number κ , the so-called inlay parameter. In the case of κ = 1,
the quasi-periodic mosaic model reduces to the familiar AAH model. By varying the inlay pa-
rameter κ (κ 6= 1), the authors have shown analytically and numerically the existence of multiple
mobility edges in this kind of model. Inspired by this work, there are some novelty and interest-
ing findings that have been shown in recent studies [24–27] for which the related aspects of the
mosaic lattice model have been considered. One of the most typical examples was demonstrated
in Ref. [24], where Zeng and co-workers [24] added a term of p-wave superconducting pairing
into the original quasi-periodic mosaic model [23]. Based on calculating energy spectra and topo-
logical invariant of the system, it has been found that the interplay between mosaic modulation in
the on-site potentials and superconducting pairing may give rise to the existence of Majorana zero
modes, which play an important role in implementing topological quantum computation [28]. In
another example, when the mosaic modulation in the on-site potentials is replaced by the mosaic
modulation in the hopping amplitudes, the obtained model is called a quasi-periodic off-diagonal
mosaic lattice one [26]. In the case of the mosaic lattice being commensurate, it has been shown
that topological edge modes with zero and non-zero energies can exist by tuning the mosaic mod-
ulations. Meanwhile, if the mosaic lattice becomes incommensurate, the Anderson localization
will show up.

The main aim of the present paper is to verify some behaviors presented in a recent work
[23] by using a formalism based on time-dependent reflection proposed in Ref. [29]. The numeri-
cal experimental results indicate that the mosaic modulation in the on-site potentials significantly
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alters localization properties. In particular, a delocalization-localization transition is found to oc-
cur at the quasi-periodic potential strength in the present model to be smaller than that in the AAH
model. In addition, the number of mobility edges in the 1D quasi-periodic mosaic systems is al-
ways equal to 2(κ−1). These findings are consistent with those presented in Ref. [23]. Note that
the reflection geometry formalism has also been employed recently by us in investigating the time
evolution of wave packets incident on a disordered mosaic lattice chain [30].

The rest of this paper is organized as follows. In Sec. 2, we present the 1D quasi-periodic
mosaic lattice model characterized by the time-independent Schrödinger equation within the nearest-
neighbor tight-binding approximation. In addition, the numerical calculation method, as well as
the physical quantities of interest, are described briefly in this section. In Sec. 3, we present our
numerical results and discussions. Finally, in Sec. 4, we conclude the paper.

2. Theoretical model and formalism

2.1. Model
We consider a 1D tight-binding lattice model within nearest-neighbor approximation which

is described by a discrete stationary Schrödinger equation

J(ψn−1 +ψn+1)+ εnψn = Eψn, (1)

where ψn and εn are the wave function amplitude and the on-site potential at the nth lattice site,
respectively. E is the energy and J is the coupling strength between nearest-neighbor sites. From
now on, we will measure all energy scaled in units of J and set it equal to 1. In this study, we
will investigate the transport and localization properties of a model, which is the so-called quasi-
periodic mosaic lattice model [23]. This model is defined by

εn =

{
2λ cos(2πγn+φ), n = mκ,
0, otherwise, (2)

where λ is the quasi-periodic potential strength and φ is a random phase uniformly distributed in
an interval [0,2π]. γ is the spatial modulation frequency that is taken as the inverse of the golden
mean, γ = (

√
5−1)/2 [31]. The inlay parameter κ representing the period of the mosaic modula-

tion is a fixed positive integer larger than 1 and m is an integer running from 1 to N. Then the total
number of sites L is equal to κN. As mentioned above, the present model reduces to the famous
AAH model in the case of κ = 1. This model exhibits a transition from completely extended states
for λ < 1 to completely localized ones for λ > 1 without generating a mobility edge. To address
the question of how this changes for κ 6= 1, Wang and co-workers have shown that the Anderson
transition still occurs in this situation [23]. More interestingly, they have demonstrated analyti-
cally and numerically that there exist 2(κ−1) mobility edges which are distributed symmetrically
in energy spectra.

2.2. Method
We assume that a wave packet is incident from the left side of the quasi-periodic region

under consideration. Then the amplitudes of the incident, reflected, and transmitted waves, A, B,
and C are defined by

ψn =

{
Aeiqn +Be−iqn, n≤ 2,
Ceiqn, n≥ L−1, (3)
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where the wave number q is related to E by the free-space dispersion relationship E = 2cosq. In
the absence of dissipation, the law of energy conservation |B|2 + |C|2 = |A|2 should be satisfied.

In order to solve Eq. (1) numerically, we first fix ψL−1 to 1, then we obtain C = exp[−iq(L−
1)] and ψL = exp(iq). Knowing the values of ψL and ψL−1, we can solve Eq. (1) iteratively to
obtain ψL−2, ψL−3, . . . , ψ1. Using the definition of A and B given in Eq. (3), we can express them
in terms of ψ1 and ψ2:

A = e−2iq ψ2−ψ1e−iq

1− e−2iq , B =
ψ1eiq−ψ2

1− e−2iq . (4)

In this study, we focus on the behavior of the reflection coefficient r̃(E) and the reflectance
R̃(E) defined by

r̃(E) =
B
A
= e2iq ψ1eiq−ψ2

ψ2−ψ1e−iq , (5)

R̃(E) =
B

A

2

=

 ψ1eiq−ψ2

ψ2−ψ1e−iq

2

. (6)

In the time-domain, the time-dependent reflection coefficient r(t) and the disorder-averaged
time-dependent reflectance 〈R(t)〉 are given by [29, 30]

r(t) =
1

2π

∫ 2

−2
dEr̃(E) f̃ (E)exp(iEt), (7)

〈R(t)〉= 〈|r(t)|2〉= 1
(2π)2

∫ 2

−2
dE1

∫ 2

−2
dE2〈r̃(E1)r̃∗(E2)〉 f̃ (E1) f̃ ∗(E2)exp[i(E1−E2)t]. (8)

It is worth noting here that due to r(t) and 〈R(t)〉 being defined through the amplitudes of
the incident and reflected waves which exist only outside the disordered region, the integrations
(7) and (8) are restricted in the energy interval [−2,2]. To study the time dependence of r(t) and
〈R(t)〉, we consider a parabolic wave packet characterized by the spectrum

f̃ (E) =

√
15π

16σ

[
1− (E−E0)

2

4σ2

]
, |E−E0|< 2σ . (9)

Here E0 and σ are the central energy and the spectral width of the incident wave packet, respec-
tively. Following the existing theories of localization in the time domain, [32–35], global char-
acterization of the diffusion and localization properties of a wave packet is provided by the time
evolution of the reflectance. Specifically, a power-law decay in the long-time limit is expected for
the averaged time-dependent reflectance: 〈R(t)〉 should decrease as t−2 in the localized regime and
as t−3/2 in the diffuse regime. It is worth noting that studying the energy-dependent mobility edge
based on the measurements in the reflection geometry has substantial experimental advantages
over more conventional approaches in the transmission geometry, in that the reflectance is often
more easily measurable than the transmittance, and there exist situations where measurements in
the transmission mode are not possible. These advantages are especially relevant to fields such as
optics and acoustics. Theoretically, the formalism employed in the present work consumes less
computational resources than the conventional method of matrix diagonalization used in Ref. [23],
especially for large-sized systems.
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3. Computational results

In our calculations, we have calculated 〈R(t)〉 by averaging over 10000 different configu-
rations of εn. The step size in energy ∆E and the system size L are fixed to be 10−3 and 1000,
respectively. Besides, we consider parabolic wave packets with a fixed spectral width of σ = 0.05.
Note that the time t should be scaled by h̄/J.
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Fig. 1. ln–ln plot of the disorder-averaged time-dependent reflectance 〈R(t)〉 versus
time t when κ = 2 for (a) λ = 0.75, (b) λ = 1.0, (c) λ = 1.25, and (d) λ = 2.0. Different
curves correspond to values of the central energy E0 of the incident wave packet. It is
shown that for incident wave packets with E0 near the band edges (e.g., E0 = 1.8, the
bold dark yellow curve), 〈R(t)〉 ∝ t−2 in the long-time limit.

In Fig. 1, we plot the time evolution of 〈R(t)〉 for various values of the central energy E0
of the incident wave packet when (a) λ = 0.75, (b) λ = 1.0, (c) λ = 1.25, and (d) λ = 2.0 in
the case of κ = 2. Based on the existing theories of localization in the time domain [32–35], one
predicts that the time evolution of 〈R(t)〉 obeys a power law as 〈R(t)〉∝ t−α in the long-time limit.
In particular, for incident wave packets with E0 near the band edges (E = ±2), we observe that
〈R(t)〉 decays according to a power law with an exponent α very close to 2. This indicates the
behavior of Anderson localization for such incident wave packets. Moreover, this behavior takes
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Fig. 2. ln–ln plot of the disorder-averaged time-dependent reflectance 〈R(t)〉 versus time
t when κ = 3 for (a) λ = 0.75, (b) λ = 1.0, (c) λ = 1.25, and (d) λ = 2.0. When λ > 1 we
find that there exist two localized energy ranges around the band center (the bold black
curve) and near the band edge (the bold dark yellow curve), and one diffusive energy
range between them (e.g., E0 = 1.0, the bold navy curve).

place even in the case of λ < 1 [see Fig. 1(a)]. This means that the critical value of λ for the
occurring Anderson transition in the quasi-periodic mosaic model is smaller than that in the AAH
model. Remarkably, there appears an energy range E0 around the band center (E = 0) in which
incident wave packets exhibit deviation from the Anderson localization behavior (i.e., α 6= 2). The
width of this energy range will narrow down gradually with increasing λ [e.g., E0 ∈ (−1,1) and
(−0.8,0.8) corresponding to the cases of λ = 1.0 and 1.25] and reach a saturation width at a certain
critical value of λ [E0 ∈ (−0.6,0.6) at λ ' 2]. Within such energy intervals, although 〈R(t)〉 shows
oscillations with time, its decay can be approximately described by the law 〈R(t)〉 ∝ t−3/2 for an
intermediate time. This is considered to be a hallmark of diffusion behavior. In the diffuse regime,
the reflection of the coherent part of the wave packet from the other end of the system starts to
become visible in the reflected signal which produces peaks in 〈R(t)〉 in the long-time limit (see
the bold black curve, for example). Note that we have already plotted both 〈R(t)〉 versus time t
and ln-ln plot of 〈R(t)〉 versus time t. It has been shown that the peaks in 〈R(t)〉 appear in these
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two forms. In short, if one considers incident wave packets with E0 ∈ [0,2], there exists a critical
value of E0 above (below) which incident wave packet exhibits localized (diffuse) behavior. The
value of critical energy depends on the strength of on-site potential λ in the quasi-periodic mosaic
lattice. The set of all obtained values of critical energy when we change λ gives rise to a mobility
edge which seperates localization and diffusive phases. Similar findings are also obtained for
incident wave packets with E0 ∈ [−2,0]. This implies that there exist two mobility edges in the
whole energy band in the case of κ = 2.

Similarly, in Fig. 2, we depict the time evolution of 〈R(t)〉 for different values of E0 and λ

when κ = 3. It is found that when λ < 1 [see Fig. 2(a)], almost all incident wave packets are diffuse
except for incident wave packets with E0 near the band edges which show the localization behavior,
〈R(t)〉 ∝ t−2. However, when λ > 1 [see Figs. 2(b)-(d)] we find that there exist two energy ranges
around the central values of E0 = 0 and E0 = 1.8 indicating the localization behavior, one energy
range around the central value of E0 = 1.0 indicating the diffusive behavior. This implies that there
are four mobility edges in the quasi-periodic mosaic lattice model with κ = 3. The appearance of
alternating diffusive and localized energy intervals in the whole energy band is also shown to exist
for the larger values of κ . The number of such energy intervals, hence mobility edges increases
with increasing κ . This argument is supported by the numerical data shown in Fig. 3. Accordingly,
there present two diffusive energy ranges around the central values of E0 = 0 and E0 = 1.4 for
which 〈R(t)〉 ∝ t−3/2, and one localized energy range between them for which 〈R(t)〉 ∝ t−2. This
means that there are six mobility edges in the case of κ = 4.
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Fig. 3. ln–ln plot of the disorder-averaged time-dependent reflectance 〈R(t)〉 versus time
t when κ = 4 and λ = 2.0 for different values of E0. The appearance of alternating
diffusive and localized energy intervals is observed clearly in this case.
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Fig. 4. ln–ln plot of the disorder-averaged time-dependent reflectance 〈R(t)〉 versus time
t when E0 = 0 and λ = 2.0 for different values of κ . The cases of κ = 2, 4 and 6 indicate
the diffusive behavior, whereas the ones of κ = 3 and 5 show the localization one.

Based on the results presented in Figs. 1, 2 and 3, we conclude that the inlay parameter κ

alters significantly diffusive and localized properties. The presence of the mosaic modulations in
the on-site potentials is shown to be able to give rise to the existence of multiple mobility edges
in the 1D quasi-periodic lattice. In particular, the number of mobility edges is found to be always
equal to 2(κ − 1) in the system under consideration. This was first pointed out by Wang and co-
works when they considered the same problem but with the alternative formalism [23]. Before
closing the present study, we pay special attention to the case of E0 = 0. In Fig. 4, we present the
time evolution of 〈R(t)〉 at E0 = 0 when λ = 2.0 for different values of κ . Interestingly, it is found
that the incident wave packet with E0 = 0 traveling in a quasi-periodic mosaic system with even
κ will always be diffusive while those with odd κ will become localized when the strength of the
quasi-periodic potential becomes sufficiently strong (λ > 1).

4. Conclusions

In this paper, we have numerically investigated the diffusion and localization properties of
a wave packet in the 1D mosaic lattice whose quasi-periodic on-site potentials are modulated for
equally spaced sites. Using the formalism proposed in Ref. [29], we have calculated and analyzed
the time evolution of the reflectance. Based on the numerical results we find and confirm that
the interval of the mosaic modulation (also known as the inlay parameter) κ alters diffusive and
localization properties significantly. Like the AAH model, the Anderson transition is also found to
take place in the quasi-periodic mosaic model but the critical value of the quasi-periodic potential
strength is smaller than that in the AAH model. However, in contrast to the AAH model for which
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no mobility edges exist, the appearance of multiple mobility edges has been found in the lattice
model under consideration. The number of mobility edges is associated with the inlay parameter
and equal to 2(κ − 1). In addition, an incident wave packet with the central energy around the
center of the band will always be diffusive for even κ whereas it will become localized for odd
κ in the case of quasi-periodic potential strength becomes sufficiently strong. All our results are
consistent with the results presented by Wang and co-workers [23].
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