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Abstract. Hybridization function is a quantity characterizing electron hopping between an im-
purity and a host material in which the impurity resides, a full understanding of it is crucial for
studying correlation effects in various impurity problems. This work studies the hybridization
function for the Anderson impurity model describing a single-orbital impurity on a honeycomb
lattice simulating graphene and presents a calculation approach to obtain this function at low
energy. Within this approach, the general form of the hybridization function in graphene is pre-
sented and analytical expressions of low-energy hybridization spectrum are obtained. The results
quantitatively match numerical solutions for different impurity positions on the lattice. The effect
of the low-energy hybridization spectrum and the capability to predict the correlated effects of the
impurity problem are discussed thoroughly, suggesting that different types of pseudogap Kondo
effect may occur at different impurity positions.
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1. Introduction

Since its first synthesis twenty years ago [1, 2], graphene has always been the most inves-
tigated material thanks to its exotic electronic and mechanical properties, in particular the Dirac
fermion characteristic around the Fermi level [3, 4]. These unique properties also make graphene
an optimal host lattice for a wide variety of adatoms [5, 6], which may lead to potential applica-
tions such as electronic devices [7], single-ion magnets [8], single-atom catalysts [9], or tuning the
electronic properties by doping [10], etc. To step closer to the realization of those applications,
it is crucial to understand the behaviors of impurities on graphene. Typical research focuses on
electronic structures and crystal structures of the impurities on graphene, such as to determine
the defect states or impurity positions in stable states [5, 6, 11, 12]. However, when a magnetic
adatom (such as a transition metal or a rare-earth atom) is adsorbed on graphene, electron corre-
lation effect is significant, leading to more intriguing phenomena. One of the fundamental issues
is the Kondo effect of a magnetic adatom on graphene [13–16]. It is a correlation effect that is
originated from the Coulomb interaction between electrons in the adatom. Normally, for a mag-
netic adatom on metallic surface, conduction electrons from the surface cause a screening effect
to the magnetic moment of the adatom, thus when the temperature is below a specific energy scale
(the Kondo temperature), the magnetic local moment of the adatom is completely screened [17].
However, graphene is a special semimetal with linear energy dispersion around the Fermi level
and the density of states (DOS) vanishing exactly at the charge neutral point. Therefore, graphene
is a potential candidate for the realization of the so-called “pseudogap” Kondo models, a special
class of Kondo models proposed in the 1990s [18–20].

Pseudogap Kondo problem can be described using the Kondo model or, more generally,
the Anderson impurity model [20]. In this model, the DOS of the host material ν(ω) exhibits
semimetal characteristic. It vanishes at zero frequency and increases as a power law of frequency
ν(ω) ∼ |ω|r. Thus, pseudogap Kondo problems are classified by the parameter r [20]. Unlike
conventional Kondo problems, the Kondo screening phase in the pseudogap Kondo problem does
not always exist. Depending on r, one can tune the system parameters such as the impurity energy
level or the correlation strength in order to switch on the Kondo screening effect, thus observing a
quantum phase transition in the system [20–22]. Consequently, for different values of r, the phase
diagram of the pseudogap Kondo model and the nature of the quantum critical point changes
accordingly.

In this work, we focus on the problem of a single-orbital impurity placed on a graphene
sheet. We study the Anderson impurity model [23] with a honeycomb lattice as the host material,
simulating the graphene sheet. We consider the low-energy noninteracting physics of the model
depending on the position of the impurity on the lattice and attempt to obtain analytic formu-
las characterizing the hybridization between the impurity and the lattice around the Fermi level.
We also emphasize that this work does not fully treat the correlation effects but focuses on the
noninteracting aspect of the model.

The structure of the paper is as follows: Sec. 2 describes the model and introduces the
hybridization function, which is the main focus in this work. The general form of the hybridization
between the impurity and the host material is presented Sec. 3. Sec. 4 presents detailed calculations
for this hybridization at low energy and shows the analytic results in comparison with numerical
ones. Finally, Sec. 5 concludes our work.
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(a) (b)

Fig. 1. (a) The honeycomb lattice (graphene) with two sublattices A (red circles) and B
(blue circles) with impurities (green circles) at the bridge site b, at the hollow site h and at
the top site t. The distance between two nearest neighbor site of the lattice is set to 1. Two
primitive vectors are a1 = (3/2,

√
3/2) and a2 = (3/2,−

√
3/2). τB = (1/2,−

√
3/2) is

the position vector of a B site in a unit cell, τA = (0,0) for the corresponding A site is not
shown. (b) The first Brillouin zone (BZ1) of the honeycomb lattice in panel (a) (yellow
region). b1 = (−2π/3,−2π/

√
3) and b2 = (2π/3,−2π/

√
3) are two basis vectors of the

reciprocal space. K = (2π/3,2π/(3
√

3) and K′ = (2π/3,−2π/(3
√

3) are the positions
of two valleys.

2. Formalism

2.1. Model
In this work, we focus on the Anderson impurity model [23], which is a fundamental model

to describe magnetic impurity on a lattice and fully contains the single-channel Kondo physics.
Specifically, our impurity problem is simplified as an s-wave single-orbital impurity placed on a
graphene sheet. In this model, conduction electrons of the host material (graphene) are assumed
noninteracting, while impurity electrons are correlated, as described by the onsite Hubbard inter-
action. The Hamiltonian has three parts: (1) Hlatt describing the hoppings of conduction electrons
on the lattice of the host material, (2) Himp describing the impurity electrons, and (3) Hhyb charac-
terizing the hybridization between the host material and the impurity.

H = Hlatt +Himp +Hhyb. (1)

Graphene, the host material, is a two-dimensional semimetal which can be well-described
by a honeycomb lattice as illustrated in Figure 1(a). At the charge neutral state, each site of the
graphene sheet has a valence electron of pz orbital, which can be assumed as a single-orbital site
containing only one electron on average. These electrons are conductive, noninteracting, and can
hop between lattice sites. Thus, the lattice Hamiltonian Hlatt has a quadratic form characterizing
the kinetic energy of these electrons, of which the general form reads

Hlatt = ∑
kαβσ

c†
kασ

hαβ (k)ckβσ − ∑
kασ

µc†
kασ

ckασ , (2)
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where c†
kασ

(ckασ ) is the creation (annihilation) operator for electron of spin σ , k is the vector in
the first Brillouin zone (BZ1) of the honeycomb lattice [see Fig. 1(b)], α and β are the sublattice
indices, and µ is the chemical potential. ĥ(k) is a 2× 2 k-dependent hopping matrix, describing
all possible kinds of electron hopping in the lattice. To construct ĥ(k) matrix, one employs the
tight-binding approach, which considers only electron hoppings between sites in short distances
such as the nearest-neighbor hopping (t), the next nearest-neighbor hopping (t ′), etc. As we focus
on the low energy region around the Fermi level, the nearest neighbor hopping t is the dominant
term. Thus for simplicity, we only keep t in our calculations (which will be used as the basic
energy scale) and neglect hoppings to sites further than the nearest ones. Then the tight-binding
form of ĥ(k) is [24]

ĥ(k) =
(

0 πk
π∗k 0

)
(3)

where

πk =−teik·τB
(

1+ e−ik·a2 + e−ik·(a1−a2)
)
. (4)

With only the hopping t, in order for the graphene lattice at the charge neutral point, a requirement
to observe the pseudogap Kondo physics [20], the chemical potential must vanish. Consequently,
we keep µ = 0 throughout this work.

The local Hamiltonian of the impurity Himp for the Kondo problem normally contains terms
characterizing the correlation in the impurity [25]. For the single-orbital s-wave impurity, Himp is
composed of the well-known Hubbard interaction Un↑n↓ (where U is the interaction strength, nσ

is the impurity electron occupancy operator) and a term corresponding to the impurity energy level
εd . However, as we do not fully treat the correlation effects originated from the impurity, Himp is
not considered in this work.

The hybridization Hamiltonian is the part that describes the hoppings of electrons between
the impurity and the host material

Hhyb = ∑
k,α,σ

(
Vkαc†

αkσ
dσ +V ∗kαd†

σ cαkσ

)
, (5)

where d†
σ (dσ ) is the creation (annihilation) operator of impurity electrons, Vkα is the hybridization

strength presented in the k-space.

2.2. Hybridization function
The hybridization function ∆(z) is the main object in this study. It is a quantity characteriz-

ing dynamically the connection between the impurity and the host material (the graphene sheet),
which mostly occurs in the context of dynamical mean-field theory [26]. Normally it is represented
in the frequency domain, thus we use a generalized frequency z as the variable for the function.
∆(z) is the remaining term attached with Vkα after integrating out all creation and annihilation
operators of conduction electrons c†

αkσ
,cαkσ [17,26,27]. For the case of the honeycomb latttice in

this work, the form of the hybridization function is

∆(z) = ∑
kαβ

V ∗kα

[(
1z− ĥ(k)

)−1
]

αβ

Vkβ . (6)
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The hybridization function enters the formula of the impurity one-particle Green function
as [26]

Gσ (z) =
1

z− εd−∆(z)−Σσ (z)
. (7)

Σσ (z) is the impurity self-energy representing the correlation effect at the impurity, which depends
strongly on the interaction strength (the Hubbard coefficient U in this case, the Anderson impurity
model) and vanishes when there is no interaction. There are various complicated methods to treat
the correlation effect and obtain the self-energy [26, 28]. However, understanding ∆(z) provides
a qualitative perspective of the final results even without further calculations for the correlation
effect. Moreover, graphene, as a special two-dimensional material, might result in novel charac-
teristics of the hybridization. Therefore, the hybridization function is under investigation in this
study.

We also note that the generalized frequency z used in Eq. (7) allows for deriving different
forms of the Green function. If replacing z by the Matsubara frequency iωn = (2n+ 1)π/β , one
obtains the Matsubara Green function (which is useful when deploying stochastic methods such
as Quantum Monte Carlo [28]); if replacing z by ω + i0+ (ω − i0−), one obtains the retarded
(advanced) Green function, from which the spectral function is directly derived [29].

3. General form of ∆(z)

In conventional pseudogap Anderson impurity model, the pseudogap feature is often de-
scribed based on the DOS of the host material [20], which has the form ν(ω)∼ |ω|r, whereas the
“pseudogap” feature that the impurity awares of comes directly from the hybridization function.
However, in conventional model, the DOS has a theoretical form ν ∼ |ω|r, the hybridization spec-
trum h(ω) =− 1

π
Im∆(ω + i0+) is only different from the DOS by a prefactor, thus it is acceptable

to consider only the DOS when treating the pseudogap feature. In realistic calculations, when
treating the host material as a lattice, the hybridization spectrum can be strongly different from the
DOS depending on where the impurity is located on the lattice.

The honeycomb lattice simulating graphene exhibits linear DOS around the charge neutral
point [4]. From our previous work [24], the hybridization function can be significantly modified
depending on the position of the impurity on the lattice. However, detailed calculations for these
results have not been given. This work will present our full derivation for the analytic forms of
∆(ω) at low frequency and discuss the physics implied from these results.

We focus on the three most common positions of impurity on graphene lattice [16]: (1) on
top of an atom (at the top site t), (2) at the bridge site b, and (3) at the hollow site h [depicted in
Figure 1(a)]. First, we assume that

Vkα =
1√
N

(
ak
bk

)
, (8)

where the forms of ak and bk depend on impurity position on the lattice, N is an integer represent-
ing the number of unit cells of the graphene lattice (N→∞). Eq. (6) can be rewritten in the matrix
form

∆(z) =
1
N ∑

k

(
a∗k b∗k

)
·
(

z πk
π∗k z

)−1

·
(

ak
bk

)
. (9)
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We denote

Mk =

(
z πk

π∗k z

)−1

. (10)

Difficulties arise when one attempts to calculate retarded function (by replacing z by ω + i0+) as
he/she needs to treat of the simple poles in Mk properly in order to obtain Dirac delta functions in
the hybridization spectrum h(ω) =− 1

π
Im∆(ω + i0+).

To treat the poles in Eq. (9), we separate simple poles into different terms and keep track of
them during the calculations. First, we write Mk in the diagonal form

Mk = Pk ·Dk ·P†
k , (11)

where Dk is diagonal matrix

Dk =


1

z−|πk|
0

0
1

z+ |πk|

 , (12)

and Pk is the transformation matrix

Pk =
1√
2

 πk

|πk|
−πk

|πk|
1 1

 . (13)

We then obtain

∆(z) =
1
N ∑

k

[
(|ak|2 + |bk|2)/2+Re(πka∗kbk)/|πk|

z−|πk|
+

+
(|ak|2 + |bk|2)/2−Re(πka∗kbk)/|πk|

z+ |πk|

]
.

(14)

Thus in Eq. (14), we separate ∆(z) into two terms corresponding to two simple poles z =±|πk| as
described above.

4. Results

Similar to the construction of Hlatt , the hybridization part Hhyb is constructed using the tight-
binding approach, where the hoppings of electrons between the impurity and nearby lattice sites
are considered. Therefore Vkα is the Fourier transform of the real space tight-binding hybridization

Vkα =
1√
N ∑

R
e−ik·(R+τα−Rimp)V (R+ τα ,Rimp), (15)

where R is the lattice vector (position vector of a unit cell), τα is the position vector of an atom
belonging to sublattice α (A or B) in a unit cell, Rimp is the position of the impurity on the lattice,
V (R+ τα ,Rimp) is the hopping of electrons between site R+ τα and the impurity. We note that all
the vectors in Eq. (15) are assumed two-dimensional vectors. If the impurity is at a distance above
the graphene sheet, without the loss of generality, we choose Rimp as the projection of the impurity
vector to the lattice.

Normally, the dominant term of V (R+ τα ,Rimp) is the nearest-neighbor hybridization (in
analogy to tight-binding electron hopping), which we denote as v0. The amplitudes of further
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Fig. 2. The hybridization spectra h(ω) for different impurity positions. (a), (c), (e):
The spectra h(ω) corresponding to impurity at the t site, b site and h site, respectively,
for the whole active range ω from −3t to 3t. (b), (d), (f): The expanded view of h(ω) in
panels (a), (c), (e), respectively, with ω in the range [−0.8t,0.8t]. The vertical dashed line
in each panel marks the Fermi level. The red dashed curves are h(ω) at low frequency
plotted using the analytic formulas obtained in the main text.

hybridizations decrease exponentially with respect to the distance to the impurity. It is reasonable
for low-energy physics problem such as the Kondo effect to consider only the nearest neighbor
terms in Eq. (15)

V (R+ τα ,Rimp) =

{
v0 at min |R+ τα −Rimp|,
0 otherwise. (16)

Even for the same v0, the number of nearest neighbor sites as well as the distance to the impurity
changes depending on the position of the impurity. Thus, it is important to treat the hybridization
function separately at each impurity position. In the following subsections, we present our deriva-
tion for the analytic form of the hybridization spectrum h(ω) =− 1

π
Im∆(ω+ i0+) at low frequency

for 3 common impurity positions on graphene lattice. The result for each position is justified by a
plot comparing the numerical calculation of the spectrum (blue solid line) with the analytic curve
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(red dashed line) in Figure 2. The numerical results of h(ω) are obtained by directly calculating
Eq. (14), while the analytic results are derived separately for each case of impurity position. The
validity of the analytic expressions is further analyzed and confirmed in Appendix 1

We also note that while knowing the stable position of the impurity is essential to interpret
the Kondo physics in graphene, the ground-state position of the impurity depends very much on its
chemical element. While alkali metals (Na, K ...) or alkaline earth metals (such as Ca) with only
s electrons tend to stay at the hollow site due to their spherically-symmetric s orbital [5], elements
without spherically-symmetric valence electrons such as boron is more likely located at the bridge
or at the top site [30,31]. Transition metals, on the other hand, are more complicated due to their d
valence electrons, the ground-state impurity position varies [6]. Thus determining precise position
of impurity on the graphene lattice is still an open question, which is however beyond the scope of
this paper.

4.1. At the t site
When the impurity is on top of a carbon atom in the graphene sheet, the impurity hybridizes

directly with that atom underneath. Assuming the atom underneath belongs to the sublattice A, we
obtain ak = v0 and bk = 0. Replacing these ak and bk into Eq. (14), the hybridization function is
directly proportional to the onsite Green function of the lattice

∆(z) =
v2

0
2

1
N ∑

k

(
1

z−|πk|
+

1
z+ |πk|

)
. (17)

Considering the retarded function (z→ ω + i0+), we have the hybridization spectrum

h(ω) =− 1
π

Im∆(ω + i0+)

=
v2

0
2

1
N ∑

k
[δ (ω−|πk|)+δ (ω + |πk|)] .

(18)

Thus the hybridization spectrum is exactly the DOS of graphene multiplied by a prefactor v2
0

2

h(ω) =
v2

0
2

ν(ω). (19)

Figure 2(a) shows the numerical calculation of h(ω) for impurity at the t site, which indeed ex-
hibits the shape of graphene DOS where only the nearest neighbor hopping t is included.

We attempt to expand the hybridization spectrum to low energy in order to understand its
behaviors and predict the solution of the impurity problem. It is well-known that around the valley
K and K′ of graphene [defined in Fig. 1(b)], the energy dispersion relation is linear with respect to
the wave vector [4]. Thus if defining ~q as the vector in the k space determining the distance from
the valley K or K′ (~k = ~K +~q or~k = ~K′+~q, respectively) and the magnitude q = |~q|, for q� |~K|,
the energy dispersion relation is [4]

εk ≈±vFq, (20)
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where vF = 3t/2 is the Fermi velocity. The DOS of graphene around the Fermi level is contributed
by energy dispersion around the two valleys

ν(ω) =
1
N ∑

k∈BZ1
δ (ω− εk)

=
∫

BZ1

d2k
ABZ1

[δ (ω−|πk|)+δ (ω + |πk|)]

≈ 2
ABZ1

∫
∞

0
qdq

∫ 2π

0
dφδ (ω− vFq)+δ (ω + vFq)

=
4π

ABZ1

|ω|
v2

F
,

(21)

where ABZ1 is the area of the first Brillouin zone. The k-integral is conducted around the two
valleys K and K′, where the polar coordinate ~q = (q,φ) is in use. The factor of 2 corresponds
to the two valleys. Let Ac = (2π)2/ABZ1 be the area of a unit cell of the lattice, we obtain from
Eq. (21) the DOS around the Fermi level as [4]

ν(ω) =
Ac

πvF

|ω|
vF
. (22)

Therefore, at the t site, the hybridization spectrum in proximity to the Fermi level reads

h(ω) =
v2

0Ac

2πvF

(
|ω|
vF

)
. (23)

Fig. 2(b) confirms this linear behavior by comparing the numerically calculated h(ω) with the
lines plotted using Eq. (23). Consequently, as the hybridization spectrum is exactly the same as
the DOS of graphene (different by only a prefactor v2

0
2 ), an s-wave single-orbital impurity on top

of a carbon atom well represents the case of the pseudogap Kondo model at r = 1.

4.2. At the b site
When the impurity is away from the t site, the situation changes. At a glance, the hy-

bridization spectrum is no longer symmetric around the Fermi level [see Figs. 2(c), (e)] due to the
hybridization of the impurity with sites of both sublattices [24]. When the impurity is at the b
site [Figs. 2(c)], the hybridization spectrum for ω < 0 is slightly larger than that for ω > 0, which
does not exist in the conventional pseudogap Kondo model. Nevertheless, the behavior of the
hybridization spectrum at low energy is more important, which is fully derived in this subsection.

At the b site, using Eqs. (15) and (16), the hybridization strength has the form

ak =
v0

exp

(
ikτB

2

)
, (24)

bk = a∗k =
v0

exp

(
−ikτB

2

)
. (25)
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As a result, the hybridization function is

∆(z) =
v2

0
N ∑

k

[
v2

0 +Re(αka∗kbk)

z−|πk|
+

v2
0−Re(αka∗kbk)

z+ |πk|

]
=

v2
0

N ∑
k

[
1

z−|πk|
+

1
z+ |πk|

]
+

1
N ∑

k

[
Re(αka∗kbk)

z−|πk|
−

Re(αka∗kbk)

z+ |πk|

] (26)

After replacing z by ω + i0+ and calculating the imaginary part of ∆(z), the hybridization
spectrum h(ω) composes of two terms: the first summation in Eq. (26) turns into the DOS of
graphene, while the second summation can be obtained analytically at low frequency

h(ω) = v2
0ν(ω)+

∫ d2k
ABZ1

[Re(αka∗kbk)δ (ω−|πk|)−Re(αka∗kbk)δ (ω + |πk|)] . (27)

In proximity to one of the two valleys such as K, we have~k = ~K+~q. Again we use the polar coor-
dinate system ~q = (q,φ) and conduct expansion over q = |~q| to the lowest order for the spectrum
around the Fermi level. At the lowest order of q, |πk| = vFq+O(q3), the Dirac delta functions
in Eq. (27) do not depend on φ , allowing us to integrate only the numerator Re(αka∗kbk) over the
polar angle φ . The result is greatly simplified∫ 2π

0
Re(αka∗kbk)dφ =

∫ 2π

0
Re

v2
0e−ikτBπk

|πk|
dφ

= v2
0
(
−πq+O(q3)

)
.

(28)

Replacing |πk| by its first order term into Eq. (27), the hybridization spectrum for ω around the
Fermi level is

h(ω) = v2
0ν(ω)+ v2

0
2π

ABZ1

∫
∞

0
dqq2 [δ (ω + vFq)−δ (ω− vFq)] . (29)

As we focus on the region around the Fermi level, the integrating region is composed of the
neighborhoods of the two valleys K and K′, resulting a factor of 2 in the above formula. Given
that ABZ1 = (2π)2/Ac, we have

h(ω) = v2
0ν(ω)+

v2
0Ac

2π

−ω2

v3
F

sgn(ω). (30)

From Eq. (22), at the lowest ω order, ν(ω) =
Ac

πvF

|ω|
vF

, the final form of h(ω) up to the second

order of ω is

h(ω) =
v2

0Ac

πvF

(
|ω|
vF
− 1

2
ω2

v2
F

sgn(ω)

)
. (31)

In Eq. (31), one can see that the lowest order of ω exhibits r = 1-pseudogap Kondo model,
asymmetric contributions start at the second order of ω , which increases the spectrum for ω < 0
and decreases it for ω > 0, consistent with Fig. 2(c). The expanded view of h(ω) in Fig. 2(d),
which plots the numerical h(ω) in comparison with the curve of Eq. (31), justifies the correctness
of our calculation. The low-energy characteristic of the Kondo effect means that the dominant
term in Eq. (31) is indeed the first order term in ω , which does not exhibit the asymmetry in h(ω).
Therefore, for impurities at the b site, the asymmetry in the hybridization spectrum does not affect
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much the pseudogap Kondo effect, explaining why the phase transition for impurity at this position
is not significantly different from that at the t site, as seen elsewhere [24].

4.3. At the h site
Lastly, when the impurity is placed at the h site of the graphene lattice, there are six nearest

neighbor sites located at each vertex of the hexagon to which the impurity belongs. Given that
there are only two nearest neighbor sites for the impurity at the b site and one for the impurity at
the t site, there can be a significant change in the hybridization spectrum when the impurity is at
the h site. In other words, the coordination number of the impurity may play an important role in
the hybridization function.

Indeed, Fig. 2(e) shows significant differences in h(ω) for the h-site case as compared with
the t- and b-site cases. In the following, we will present our analytic calculation and show that
the lowest order ω term of h(ω) for impurity at the h site is no longer the first order and that the
hybridization weight around the Fermi level is strongly diminished.

Employing Eq. (15), the hybridization strength Vkα has the components

ak = v0π
∗
k , (32)

bk = v0πk, (33)

similar to the off-diagonal elements in the tight-binding matrix in Eq. (3) (where πk is from
Eq. (4)). Replacing these ak and bk into Eq. (6), the form of the hybridization function becomes

∆(z) =
v2

0
N ∑

k

[
|πk|2 +Re(π3

k /|πk|)
z−|πk|

+
|πk|2−Re(π3

k /|πk|)
z+ |πk|

]
. (34)

Again, when focusing on the neighborhood of the Fermi level, the same procedure as those in
the calculations for the t site and b site case is applied. In the k-integral, we only concentrate on
the region around the valleys K and K′. Again, the variable for integration is changed from k to
q = k−K (or q = k−K′)

∆(z) =
v2

0
ABZ1

∫
∞

0
qdq

∫ 2π

0
dφ

[
|πk|2 +Re(π3

k /|πk|)
z− vFq

+
|πk|2−Re(π3

k /|πk|)
z+ vFq

]
. (35)

In Eq. (35), we can integrate first the variable φ with the integrands being the numerators in the
expression.

Kq =
∫ 2π

0

[
|πK+q|2±Re

π3
K+q

|πK+q|

]
dφ . (36)

At small q, Kq exhibits an interestingly simple form

Kq =
9πq2

2
+O(q3). (37)

Substitute Kq into Eq. (35) and put in a factor of 2 for the contributions of two valleys K and K′

∆(z) =
2v2

0
ABZ1

∫
∞

0
dq

9πq3

2

(
1

z− vFq
+

1
z+ vFq

)
. (38)
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We change z→ ω + i0+ and calculate the imaginary part for the hybridization spectrum h(ω)
(using Ac = (2π)2/ABZ1)

h(ω) = v2
0

9Ac

4π

∫
∞

0
dq q3 [δ (ω− vFq)+δ (ω + vFq)] . (39)

This integral is easily calculated, leading to the final form of the hybridization spectrum at the
lowest order of ω as

h(ω) = v2
0

9Ac

4πvF

(
|ω|
vF

)3

. (40)

It is interesting that for the case of the impurity at the h site, |ω|3 is the lowest order, differ-
ent from the other two cases where the first order of ω is the lowest one. Our comparison between
numerical calculation and Eq. (40) in Fig. 2(f) confirms the validity of the analytic calculation of
h(ω) at small ω . Furthermore, Appendix 1 analyzes this case in detail, showing that numerical
calculations indeed converge to Eq. (40).

The h-site case therefore exhibits a different kind of pseudogap Kondo problem with r = 3
(parameter r is mentioned in Sec. 1). As a result, the r = 3-pseudogap model has different physics
from the r = 1 case. When fully considering the correlation effect, r = 1 model exhibits the
behaviors of the “upper critical dimension” in analogy to the critical field theory, in which there
is logarithmic correction to many kinds of scaling laws [32] and nontrivial renormalization group
(RG) fixed points disappear above this limit [33, 34]. Above this “upper critical dimension”, the
full solution of the r = 3 case is expected to be obtained with an appropriate mean-field approach
or perturbative RG calculation.

Furthermore, when comparing Eq. (40) with the hybridization spectra of other cases at
low energy, assuming the same v0, the prefactors ∼ v2

0
Ac

πvF
are of the same order, while ω can

be written in a dimensionless variable ω

vF
. As vF = 3t

2 is of order t, for ω near the Fermi level
(ω� vF ), the spectral weight of h(ω) at the h site is much smaller than that of the other two cases
for a wide range of ω (from −0.5t to 0.5t). In practice, this depletion in the spectrum leads to
extreme experimental conditions in order to observe the Kondo screening phase. Realization of
the pseudogap Kondo effect on graphene lattice, especially for impurity at the h site, thus can be a
nontrivial task.

5. Conclusions

In this work, we have studied the hybridization function for the pseudogap Anderson model
on the graphene lattice, where the DOS around the Fermi level is ∼ |ω|r (r = 1 for graphene).
We did not fully solve the pseudogap impurity problem, instead, we introduced an approach for
deriving analytical formulas for the hybridization spectrum at low-energy for different impurity
positions, which are crucial for predicting the solution of the impurity problem.

We have derived analytic expressions of the hybridization spectrum at low frequency for
three impurity positions and summarized in Table 1. These expressions show that it is important
to consider the lattice effects even for low-energy physics such as the Kondo effect. In our case,
depending on the position of the impurity on the lattice, the hybridization spectrum can be changed
drastically from the |ω| to |ω|3 behavior as the impurity changes from the top or bridge site to the
hollow site on the graphene lattice. It implies that the nature of the pseudogap Kondo physics
is significantly affected. The pseudogap problem with |ω| behavior represents the “upper critical
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Table 1. Summary of the hybridization spectrum h(ω) =− 1
π

Im∆(ω + i0+) at the lowest

order of |ω|/vF for three cases of impurity located at t, b and h positions. Ac =
3
√

3
2 is the

area of the unit cell of the graphene lattice, vF = 3t
2 is the Fermi velocity.

Spectrum t site b site h site

h(ω)
v2

0Ac

2πvF

(
|ω|
vF

)
v2

0Ac

πvF

(
|ω|
vF

)
9v2

0Ac

4πvF

(
|ω|
vF

)3

dimension” limit in analogy to that in the critical field theory, while for |ω|3 behavior, quantum
fluctuations are diminished, the impurity problem might be treated by an appropriate mean-field
approach. More importantly, from experimental aspects, it suggests that one pay more attention to
the impurity position on the lattice when conducting experiments to study the Kondo effect. The
strong dependence of the hybridization function on the impurity position exposes difficulties for
the observation of pseudogap Kondo effect on graphene. In particular, when the impurity is at
the hollow site, the hybridization spectrum is depleted around the Fermi level, thus it requires
extreme conditions such as very small temperature, parameter fine-tuning and high-resolution
spectral measurement techniques, etc. to observe the Kondo effect. Because it is not easy to
pin down the position of the impurity, it results in an overall difficulty that hinders experimental
realization of the pseudogap Kondo effect on graphene.

This calculation approach is simple yet efficient for obtaining analytical form of the input
hybridization function or even bare Green function, which is important for determining and clas-
sifying the pseudogap Kondo problem under investigation. It can be applied to more complicated
system, for example, instead of the s-wave impurity, one can study the hybridization for a d-wave
or f -wave multi-orbital impurity, which is more realistic for experiments with transition metal
or rare-earth adatoms. The low-frequency hybridization function can thus be obtained for each
kind of d or f orbital. We believe that, following this direction, one can have a qualitative picture
of more complicated Kondo effects, allowing for further understanding of correlated adatoms on
graphene.
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Appendix 1: Convergence of the numerical solutions

Figure 2 is our main figure, which confirms the correctness of the analytic expressions in
the main text by directly comparing them with numerical calculations of the hybridization spec-
tra. Our numerical solutions contain an approximation because of a broadening η introduced to
approximate the Dirac delta function by a Lorentzian, which causes a systematic error. This η

parameter is inserted naturally during the analytical continuation process (the general frequency
z in Eq. (6) is replaced by ω + iη). The numerical exact solution could be obtained in the limit
η→ 0+. However it is computationally not feasible as the computational cost increases rapidly to
infinity as η→ 0. In this appendix, we carry out the η-scaling analysis to show that our numerical
solutions approach the analytic results.

We focus on the case of the impurity at the h site as the difference between the analytic
formula [Eq. (40)] and the numerical solution in this case is the largest. Figure 3(a) shows the
difference between numerical calculations and the analytic results |h(ω)−hanalytic(ω)| in the low-
frequency region. The decrease of the difference in direct proportion with the decrease of η at
ω = 0 suggests the linear relation between this difference and η . We verify this relation in Fig. 3(b)
by linearly fitting the hybridization spectrum at ω = 0 with respect to η . Fig. 3(b) exhibits a perfect
linear relation between h(ω = 0) and η . Extrapolation to η = 0 results in h(ω = 0) = 5(3)×10−5,
which almost vanishes, consistent with Eq. (40) at ω = 0. It allows us to estimate h(ω) at η → 0
limit by linearly extrapolating h(ω) for a wide range of ω . The extrapolated h(ω) is nearly the
same as the analytic form in the range −0.2t < ω < 0.2t. (For larger frequency, it requires higher
order terms of ω for better accuracy.)

The peculiar point is at ω = t, which is the frequency for the van Hove singularity in
h(ω), where the extrapolation does not work. As we plot in Fig. 3(c), the linear relation between
h(ω = t) and logη means that h(ω = t) diverges exponentially with respect to 1/η , which is
indeed a characteristic of the van Hove singularity [35]. Therefore, linear extrapolation near the
van Hove singularity requires much smaller η to maintain the same quality. However, as we focus
on low frequency, the van Hove point is beyond the range of interest and does not severely affect
the convergence of h(ω) to the analytic formula.

Therefore, this appendix shows that, for impurity at the h site, the spectral function behaves
in a well-known manner with respect to η and that it indeed converges to the analytic form of h(ω)
at low frequency. Other cases of impurity at the t and b sites are expected to behave in a similar
manner. Thus it justifies the validity of our analytic derivation of h(ω) at low frequency.
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Fig. 3. (a) Plot of the difference |h(ω)− hanalytic(ω)| between the analytic formula
[Eq. (40)] and the numerical calculation of h(ω) for the case of the impurity at the h
site. The broadening η decreases corresponding to curves appearing in the top-down di-
rection. The dashed curve is the linearly extrapolated h(ω) as η → 0. (b) Linear fit (red
line) of the hybridization spectral value at ω = 0 with respect to η . (c) Linear fit (red
line) of the hybridization spectral value at ω = t with respect to log(η/t).
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