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Abstract. CP violation is one of the problems of the physics beyond the Standard Model. It
can happen in both the quark and the lepton sectors. In the present paper, following the work
arXiv:1602.07437 [hep-ph], this problem is re-considered in the lepton sector (neutrino subsector)
within an extended Standard Model with an A4 flavour discrete symmetry with a new and more
convenient parametrization. As a result, a perturbative mixing matrix is derived. Then, the Dirac
CP violation phase δCP ≡ δ and the Jarlskog invariant JCP ≡ J are analytically obtained from
theoretically derived equations leading to the solutions δ =±1

2 π . Between the two solutions, the
solution δ =−1

2 π (i.e., 3
2 π) is more preferable as it is more consistent with the experimental data

for the inverted ordering of the neutrino masses for the gobal fit [PDG] or the normal ordering
[T2K, NOνA]). A relation between δ and J is also given in terms of new parameters. The maximum
value of Jarlskog invariant |Jmax| is found in the range 0.0237< |Jmax|< 0.034, covering the 2022-
2023 global fit values [PDG]: |Jmax

PDG| = 0.0336±0.0006 (±0.0019) at 1σ (3σ ). Other values of
J can be determined by the ralation J(δ ) and approximated by Fig. 2 between two solutions.

Keywords: neutrino mass, CP violation, Jarlskog invariant, perturbation.
Classification numbers: 13.85.-t; 03.65.Fd; 95.30.Cq; 11.30.Er and 98.80.-k.

1. Introduction

Along with other problems such as neutrino masses and mixing, the violation of the CP-
symmetry, or just the CP violation (CPV), is amongst the problems beyond the explanation of
the Standard Model (SM) [1–5], which so far has been the most successful model of elementary

©2024 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0868-3166/20171


126 Dirac CP violation phase in the neutrino sector with A4 flavour symmetry

particles and their interactions, but suffers from a number of difficulties including that from the
CPV. To solve these problems, a number of extensions of the SM have been suggested (for some
elements of physics beyond the SM, see, for example, [6]). Here we will consider the CPV within
the SM extended with an A4 flavour symmetry based on an earlier work of some of us [7]. The
CPV observed in the quark sector is not sufficient for explanation the matter-antimatter imbalance
in the Universe, it is necessary to consider it in the lepton sector, including the neutrino sub-sector.

In the SM neutrinos are massless, while the experiment has shown that they are massive
(as they oscillate) [8–12], although their masses are very tiny (see, for instance, [13]). This issue,
as mentioned above, requires the SM to be extended [6] but in most of the models extending the
SM (called beyond-SM (BSM) models for short) the quark- or lepton mixing matrices are com-
plex, leading to the CPV as a natural consequence of these BSM models. Therefore, in general,
studying CPV’s is often one of the first requirements for testing a BSM model. On the other hand,
the CPV within the SM (with at least three fermion families) is not strong enough to explain the
current matter-antimatter imbalance in the Universe. So, the study of the BSM physics is a natural
mission.

The CPV is one of Sakharov’s conditions to explain the matter-antimatter imbalance in
the Universe. After the P-symmetry violation (by the weak interactions) questioned and ob-
served [14,15], it was believed that CP-symmetry should be conserved. That is why the discovery
of the CPV (in the K meson decay) by J. Cronin, V. Fitch and collaborators in 1964 shocked the
physics community [16]. It was an indirect CPV, while the direct CPV was not discovered until
1999 when the experiments KTeV (Fermilab) and NA48 (CERN) announced its discovery [17,18].
During many years following the CPV has attracted intensive theoretical and experimental inves-
tigations [19, 20]. For 12 years, between 2001 and 2013, the CPV in decays of B- and D mesons
had been reported by the BaBar experiment (SLAC), the Belle experiment (KEK) and the LHCb
experiment (CERN). Thus, the CPV has been confirmed in the quark sector and is expected to be
observed in the lepton sector because the observed CPV in the quark sector is too small to solve the
puzzle of the dominance of matter over antimatter [19]. The T2K and NOνA experiments [21,22]
have reported the first signs of the CPV in the (flavor) neutrino oscillations, thus in the lepton
sector.

As said above, one of the sources of the CPV in the lepton sector is the complex phases of
the PMNS lepton (neutrino) mixing matrix (which is an analog in the lepton sector of the CKM
matrix in the quark sector) [19], of which only the Dirac phase can be measured in the current
neutrino oscillation experiments (the Majorana phases will be the subject of our next consider-
ation). Therefore, the determination the Dirac CPV phase (denoted below by δCP or just δ for
short) is a subject of intensive investigations in both theoretical and experimental aspects (see, for
example, [7, 19–26], and references therein).

Since CPV at a sufficient value (to accommodate the matter–antimatter asymmetry) cannot
be predicted by the Standard Model (SM), among other reasons, the SM must be extended. In the
SM, neutrinos are massless but today we know that they oscillate and, therefore, they have masses
(albeit tiny and different) and mix [9–12]. It is another reason, along with the CPV, for necessity
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to extend the SM. A necessary condition for a complex phase to appear in a mixing matrix is that
the number of fermion generations to be at least three [27]. The SM is postulated to have three
generations, no more. So far, the experiment has not yet observed the fourth and other generations
beyond the three of the SM. The latter have the same structure and identical quantum numbers
except for the masses.

One of the simplest extensions of the SM is to impose a flavor discrete symmetry A4 on the
SM (see, e.g., [26] for a review, or [7, 28, 29] for recent results on the SM with A4 modular sym-
metry). In [7] the CPV was considered in the lepton/neutrino sector within an A4 flavor symmetric
SM. In the present work we continue the latter work to investigate this problem more precisely,
based on the perturbation approach previously developed in [23]. In the next section, a very brief
introduction to neutrino mass and mixing, as well as the type-I seesaw mechanism is presented.
This will be applied to a theoretical A4 symmetric standard model introduced in Sect. 3 where the
main results of the present paper are derived.

2. A short review on neutrino masses and mixing

The discovery of neutrino oscillations [9–11] tells us that the (flavour) neutrinos να (α =
e,µ,τ) are mixing between mass-eigen states νi with different masses mi,

να =
N

∑
i=1

Uαiνi, (1)

where N is the number of mass-eigen states (or mass states, for short) and U is a unitary matrix
called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix in the case N = 3 (from
now on we will work with N = 3). Therefore, the mass states are superpositions of the flavour
states,

νi = ∑
α=e,µ,τ

U∗αiνα , i = 1,2,3. (2)

There are several ways to realize the mixing matrix U but in the three-neutrino theory it is usually
given in the following form (in the standard parametrization):

U =

 c12c13 s12c13 s13e−iδ

−c23s12− s13s23c12eiδ c23c12− s13s23s12eiδ s23c13

s23s12− s13c23c12eiδ −s23c12− s13c23s12eiδ c23c13

 , (3)

parametrised by four parameters: three angles θ12,θ23,θ13 and a phase δ ≡ δCP called the Dirac
phase. Here the following notations are used: si j = sinθi j và ci j = cosθi j with i, j = 1,2,3. In the
case of Majorana neutrinos the mixing matrix has the form

UPMNS =U×P, (4)

where
P = diag(eiα21/2,eiα31/2,1), (5)

with α21 and α31 called the Majorana phases. The neutrinos have masses but they are very very
small (according to current experimental results the upper limit of neutrino masses is under 0.1
eV scale). The smallness of the neutrino masses are explained in different ways but among the
most popular ones is the so-called see-saw mechanism (see details, for example, in [30–32] and
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references therein). There are three types of see-saw mechanism, but we will deal in the present
paper with the type-I see-saw mechanism [33–37]. This type of see-saw mechanism is illustrated
by the diagram in Fig. 1. The smallness of neutrino masses can be generated via the type-I see-

Fig. 1. Type-I see-saw neutrino effective mass [7].

saw mechanism by the introduction of a large mass scale (see more details presented, for example,
in [7, 23])

Mν =−MD(MR)
−1MT

D, (6)

where Mν the mass matrix of light left-handed neutrinos and MR is the mass matrix of heavy right-
handed neutrinos with masses running in the range from the eV scale until the Planck scale. We
should note that the recently established upper bound ∑mν < 0.09 eV of the neutrino total mass
[38] allows a small, even at keV or eV, scale of MR [39–41]. To diagonalize the matrix Mν we use
the perturbation method [42] by developing Mν = M0ν +W , where W is a small matrix compared
to M0ν which is the tri-bimaximal (TBM) [43] approximation of Mν . Thus the eigenvectors |n〉
and the eigenvalues m of Mν is developed around the eigenvectors |n0〉 and the eigenvalues m0 of
M0ν ,

|n〉= |n0〉+ ∑
k 6=n

λnk|k0〉 (7)

and
m = m0 + 〈n0|W |n0〉, (8)

respectively. Here
λnk = (|m0

n|− |m0
k |)−1Vnk, (9)

Vnk = 〈n0|W |k0〉. (10)

3. A4 flavour symmetric standard model

Let us first recall the main content of the model suggested in [7] with a focus on the see-
saw-I scenario. The field ingredient of the model is given in Table 1. It consists of the scalar
sector, the lepton sector and additional (sterile) neutrinos.
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Table 1. Field content of an A4 flavour symmetric model [7].

`L `Ri Φh ΦS ΦS′ ΦS” NT NS NS′ NS”
Spin 1/2 1/2 0 0 0 0 1/2 1/2 1/2 1/2

SU(2)L 2 1,1,1 2 1 1 1 1 1 1 1
A4 3 1,1’,1" 3 1 1’ 1" 3 1 1’ 1"

3.1. Scalar sector
In the scalar sector of the considered model there are four scalar fields: one SM-Higgs-like

SU(2)L-doublet Φh transforming as an A4 triplet, and three SU(2)L singlets ΦS,ΦS′ and ΦS” being
also A4 singlets. Let us see the structure of the vacuum expectation values (VEV’s) of the scalar
fields. The scalar field Φh as an A4 triplet has the form

Φh = (φh1,φh2,φh3)
T , (11)

where φhi are SU(2)L-doublets,

φhi =

(
ϕ
+
i

ϕ0
i

)
, i = 1,2,3. (12)

The VEV structure of Φh is thus

〈Φ0
h〉= (〈ϕ0

1 〉,〈ϕ0
2 〉,〈ϕ0

3 〉)T = (v1,v2,v3)
T . (13)

The VEV structure of the fields ΦS,ΦS′ ,ΦS” is simply

〈ΦS〉= σ1,〈ΦS′〉= σ2,〈ΦS”〉= σ3. (14)

After shifting with the VEV’S the scalar fields are represented as follows,

φh1 =

(
ϕ
+
1

v1 +
h1+iη1√

2

)
,φh2 =

(
ϕ
+
2

v2 +
h2+iη2√

2

)
,φh3 =

(
ϕ
+
3

v3 +
h3+iη3√

2

)
(15)

and
ΦS = σ1 +ξ1,ΦS′ = σ2 +ξ2,ΦS” = σ3 +ξ3. (16)

3.2. Charged-lepton sector
The lepton sector contains the SM left-handed lepton SU(2)L-doublet `L now also trans-

forming as an A4 triplet, and the SM right-handed lepton SU(2)L-singlet `Ri which also is an
A4-singlet. As our main goal is to get neutrino masses we consider here only the Yukawa term of
the Lagrangian.

−LY = y1( ¯̀LΦh)`R1 + y2( ¯̀LΦh)
′′`R2 + y3( ¯̀LΦh)

′`R3 +h.c. (17)

After the symmetry breaking (the scalars to get VEV’s) it becomes

−LY =(y1(v1 ¯̀L1 + v2 ¯̀L2 + v3 ¯̀L3)`R1 + y2(v1 ¯̀L1 +ωv2 ¯̀L2 +ω
2v3 ¯̀L3)`R2

+ y3(v1 ¯̀L1 +ω
2v2 ¯̀L2 +ωv3 ¯̀L3)`R3)+h.c. (18)
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From here we can immediately obtain the lepton mass matrix

M` =

 y1v1 y2v1 y3v1
y1v2 ωy2v2 ω2y3v2
y1v3 ω2y2v3 ωy3v3

 . (19)

We must work in the basis where the mass matrix of the charged leptons is diagonal. Furtunately, it
can be achieved if v1 = v2 = v3 = v which is exactly the condition for the minimal scalar potential
[7], then M` gets a diagonal form

M` =UL.diag(me,mµ ,mτ), (20)

where

UL =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 (21)

with
me =

√
3y1v; mµ =

√
3y2v; mτ =

√
3y3v. (22)

As me � mµ � mτ the coefficients yi must satisfy the constraints y1 � y2 � y3. The
neutrino part of the lepton sector will be considered separately in the next section.

4. Neutrino mixing matrix and Dirac CPV phase

As seen in [7], apart from the active neutrinos contained in the lepton electroweak doublet
`L the neutrino sector contains also additional spinors treated as sterile neutrinos of which all are
electroweak singlets, while one of them is an A4 triplet, and the rest are A4 singlet. The Yukawa
term of the neutrino Lagrangian is given as follows

LY ν = LD
Y ν +LM

Y ν , (23)

where

LD
Y ν = yν

Ta( ¯̀LΦ̃h)3aNT + yν
T b(

¯̀LΦ̃h)3sNT + yν
S ( ¯̀LΦ̃h)1NS + yν

S′(
¯̀LΦ̃h)1”NS′+ yν

S”( ¯̀LΦ̃h)1′NS” +h.c.
(24)

and

LM
Y ν = yν

T 1(N
c
T NT )1ΦS + yν

T 2(N
c
T NT )1′ΦS′′+ yν

T 3(N
c
T NT )1′′ΦS′

+ yν
1 (N

c
SNS)1ΦS + yν

2 (N
c
S′NS′′)1ΦS + yν

3 (N
c
S′NS′)1′′ΦS′ (25)

+ yν
4 (N

c
SNS′′)1′′ΦS′+ yν

5 (N
c
S′′NS′′)1′ΦS′′+ yν

6 (N
c
SNS′)1′ΦS′′ ,

where Nc denotes the charge conjugation of N. Looking at this Yukawa Lagrangian we get the
Dirac mass matrix

Mν
D =

 0 yν
Tav3 yν

T bv2 yν
S v1 yν

S′v1 yν
S”v1

yν
T bv3 0 yν

Tav1 yν
S v2 ω2yν

S′v2 ωyν
S”v2

yν
Tav2 yν

T bv1 0 yν
S v3 ωyν

S′v3 ω2yν
S”v3

 , (26)
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where (v1,v2, v3), with v1 = v2 = v3 := v, are the VEV’s of the fields (φh1,φh2,φh3), respectively,
and the Majorana mass matrix

Mν
R =


a11 0 0 0 0 0
0 a22 0 0 0 0
0 0 a33 0 0 0
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 a64 a56 a66

 , (27)

where

a11 = yν
T 1σ1 + yν

T 2σ2 + yν
T 3σ3,

a22 = yν
T 1σ1 +ω

2yν
T 2σ2 +ωyν

T 3σ3,

a33 = yν
T 1σ1 +ωyν

T 2σ2 +ω
2yν

T 3σ3,

a44 = yν
1 σ1, a45 = a54 = yν

6 σ3,

a55 = yν
3 σ2, a56 = a65 = yν

2 σ1,

a66 = yν
5 σ3, a64 = a46 = yν

4 σ2. (28)

From here on, we will use the notations MD ≡Mν
D and MR ≡Mν

R for short. The mass matrix

Mν =−MD(MR)
−1MT

D (6)

in the basis of the diagonalized mass matrix of the charged leptons has the form

M̃ν =U†
L MνU∗L =

 A B C
B E D
C D F

 . (29)

For this stage we do not need explicit expressions of the elements A, B, C, D, E and F of the
latter matrix but, anyway, they are given in [7]. Unlike the latter work, where the perturbation is
performed around the elements of the matrix UT BM, here the argument is slightly different (but
equivalent), namely, the perturbation is done around the TBM mixing angles θ T BM

i j .

The experiment data [19] gives the mixing angles at best fit value (with 3σ CL)

θ12 = 33.94o, θ23 = 46.05o, θ13 = 8.60o, (30)

corresponding to the experimental PMNS mixing matrix Uexp
PMNS at the best fit value

Uexp
PMNS =

 0.8221 0.5695 0.1530e−iδ

−0.4337−0.0883eiδ 0.6252−0.6024eiδ 0.6533
0.3716−0.0883eiδ −0.5373−0.0624eiδ 0.7609

×P. (31)

It does not deviate much from the TBM mixing matrix

UT BM =


√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

 , (32)
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which corresponds to the mixing angles

θ
T BM
12 = 35.26o, θ

T BM
23 = 45.00o, θ

T BM
13 = 0.00o. (33)

We can consider the latter differing slightly from the experimentally obtained mixing angles (30)

θ12 = θ
T BM
12 +δθ12, (34)

θ23 = θ
T BM
23 +δθ23, (35)

θ13 = θ
T BM
13 +δθ13, (36)

where

δθ12 =−1.32o, δθ23 = 1.05o, δθ13 = 8.60o. (37)

Compared with δθ12 and δθ23 the perturbation δθ13 is not really very small but it is quite small if
compared with the general scale of θ T BM

i j (e.g., θ T BM
12 = 35.26o, θ T BM

23 = 45.00o) and could serve
us to obtain a good perturbative result. Therefore, we can consider UPMNS perturbatively around
the tri-bimaximal (TBM) mixing matrix UT BM as follows

Ũ(θ12,θ23,θ13) = Ũ(θT BM +δθ)≈U(θT BM)+∆U(δθ) (38)

Here, we use Ũ for the perturbative mixing matrix instead of U used for the mixing matrix in the
standard parametrization (3). The closer Ũ is to U , the better our model is. Thus, we can develop
Mν perturbatively around the mass M0ν ,

Mν = M0ν +δMν , (39)

where M0ν diagonalizable by the matrix UT BM and δM is the peturbation part. Puting MD pertur-
bative around its TBM value (as MR is very large we assumed it is non-perturbative)

MD = M0D +δD, δD�M0D and MR = M0R +δR, δR≈ 0

in (6) and using
M−1

R = (MR +δR)−1 ≈M−1
R

we can write
M0ν = M0D.(MR)

−1.MT
0D (40)

and
δMν = M0D.M−1

R .δD+δD.M−1
R .MT

0D. (41)

The mass matrix M0ν , being a TBM limit of Mν at yS′ = yS” = yS, has the following form

M0ν =M0DM−1
0R MT

0D

=


3(a44+a46)y2

Sv2

(a44−a46)(a44+2a46)
− 3a46y2

Sv2

a2
44+a44a46−2a2

46
− 3a46y2

Sv2

a2
44+a44a46−2a2

46

− 3a46y2
Sv2

a2
44+a44a46−2a2

46

3a46(a44+a46)y2
Sv2

(a44−a46)(a44+2a46)(a44+3a46)
3(a2

44+a44a46−a2
46)y

2
Sv2

(a44−a46)(a44+2a46)(a44+3a46)

− 3a46y2
Sv2

a2
44+a44a46−2a2

46

3(a2
44+2a44a46−a2

46)y
2
Sv2

(a44−a46)(a44+2a46)(a44+3a46)
3a46(a44+a46)y2

Sv2

(a44−a46)(a44+2a46)(a44+3a46)

 . (42)

Then, it is not difficult to find

Mdiag
0ν

=UT BMM0νUT
T BM = diag(m01,m02,m03), (43)
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with

m01 =−
3y2

Sv2

a44−a46
, m02 =−

3y2
Sv2

a44 +2a46
, m03 =

3y2
Sv2

a44 +3a46
. (44)

That means to obtain the true mass matrix Mν we must make perturbation of the coupling coef-
ficients and other parameters of the model around the TBM ones. Namely, Mν can be obtained
from M0ν by perturbative shifts:

yS′ = yS + ε1, yS” = yS + ε2, (45)

with ε1 and ε2 (ε1 6= ε2) very small compared to yS . Then, following the method of [7] the mass
matrix Mν can be diagonalized perturbatively as follows

mν = Ũ†MνŨ = diag(m1,m2,m3) (46)

with the matrix Ũ has the form

Ũ =


√

2
3 +
√

1
3 x

√
1
3 +
√

2
3 x

√
2
3 y+

√
1
3 z

−
√

1
6 +
√

1
3 x+

√
1
2 y∗

√
1
3 −
√

1
6 x+

√
1
2 z∗

√
1
2 −
√

1
6 y+

√
1
3 z

−
√

1
6 +
√

1
3 x−

√
1
2 y∗

√
1
3 −
√

1
6 x−

√
1
2 z∗ −

√
1
2 −
√

1
6 y+

√
1
3 z



= UT BM +


√

1
3 x

√
2
3 x

√
2
3 y+

√
1
3 z√

1
3 x+

√
1
2 y∗ −

√
1
6 x+

√
1
2 z∗ −

√
1
6 y+

√
1
3 z√

1
3 x−

√
1
2 y∗ −

√
1
6 x−

√
1
2 z∗ −

√
1
6 y+

√
1
3 z

=UT BM +∆U, (47)

where

x = −ε1 + ε2

3
√

2yS
, (48)

y =
a46(ε1− ε2)

2(a44 +2a46)yS
i, (49)

z = − a46(a44 +3a46)(ε1− ε2)√
2(a44−a46)(2a44 +5a46)yS

i. (50)

It is easy to see x,y and z (their modulus) are very small numbers. The difference with [7] is
that in this paper we diagonalize M, instead of M†M as done in [7] (see (82) in [7]). It is found
that the matrix Ũ in (47) can be re-parametrized by fewer parameters. This re-parametrization
allows the matrix elements of Ũ to be expressed in shorter forms more convenient for further de-
velopment. For direct use here we only give the element U13 explicitly in terms of new parameters.

Comparing (47) with the matrix UPMNS in the standard parametrization (3) we immediately
find

s13e−iδ =
√

2/3y+
√

1/3z. (51)

Then, inserting y and z from (49) and (50) into (51) gives

s13e−iδ ≡ s13(cosδ − isinδ ) =−i
(t−1)

2
√

6(t +1)(t +2)
(ε1− ε2)

yS
. (52)
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where the new parameter t =
a44

a46
and ε± =

(ε1± ε2)

yS
is used. To find a solution, especially a nu-

merical one, of this equation we need to know more about the parameters involved in. Let us
demonstrate a case where we can exactly solve the equation (52).

Assuming tentatively (for simplicity) the parameters t,yS and εi in (52) are real we readily
get

s13 cosδ = 0 (53)

and

s13 sin(δ ) =
(t−1)

2
√

6(t +1)(t +2)
ε−. (54)

As s13 6= 0 according to the experimental data [19], the latter equations lead to

cosδ = 0 =⇒ δ =±π

2
(55)

and

s13 =±
(t−1)

2
√

6(t +1)(t +2)
ε−. (56)

We can rewrite (56) as

s13 =


(t−1)

2
√

6(t+1)(t+2)
ε− for δ = π

2 ,

− (t−1)
2
√

6(t+1)(t+2)
ε− for δ =−π

2 .
(57)

It is observed that s13 takes its TBM value s13 = 0 when t = 1 (i.e. a44 = a46 ) or/and ε1− ε2 = 0
(equivalent to the TBM condition yS′ = yS”, as expected). Therefore, t−1 and ε− ≡ ε1− ε2 should
be small. Thus, it is more convenient to use t as a parameter along with εi and ys. The Eq. (57)
allows the determination of the angle θ13 perturbatively and in terms of the new set of parameters.

We note that δ = ±π

2
of (55) are solutions of a mathematical equations which in princi-

ple can be applied to either the normal ordering (NO) or the inverted ordering (IO) of neutrino
masses and the choice of which of the two solutions is made by fitting with the experimental

data. [19, 21, 44–46]. With the reference to the experimental data the solution δ =−π

2
(or

3π

2
) is

more preferable in both the NO- and IO cases, for the global fit [19], NOνA [46,47] and T2K [48],
all at 3σ . This result is quite good but is still conditional and, thus, may not be the actual solution
because of the assumption made conditionally above about the reality of the parameters in (52),
while in general some parameters can be complex. However, the method is good, we just need to
further adjust the parameters. This is a subject of a later work.

The Jarlskog invariant [49], J = Im[Ue1Uµ1U∗e2U∗
µ1], being a measurement of the CPV, can

be expressed in terms of t as follows

J =
(t2−2t−11)

6
√

3(2t3 +7t2 + t−10)
ε+ sin δ = |Jmax|sinδ . (58)
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The relation (58) between J and δ is depicted in Fig. 2. From the latter we see that the the

Fig. 2. The dependence between J and δ with ε+ ∈ [6.10−3,10−2] and t ∈ [−2.0417,−2.028]
.

maximal value of J is within the interval |Jmax| ∈ [0.0237− 0.0340], covering the latest values
|Jmax

PDG|= 0.0336±0.0006 (±0.0019) at 1σ (3σ ) by PDG. Other values of J can be detremined by
Eq. (58) and approximated in Fig. 2. These values of J fit the experimental data of J if ε+ and t
running in the diapasons given in the capture of the figure.

5. Conclusion

The SM is a very successful theory but it also suffers some problems, such as neutrino mass
and mixing, CP violation, etc., which are beyond the explanation ability of the SM. By construc-
tion neutrinos are massless in the SM, while CP violation, if any, within the SM cannot explain the
matter-anti matter imbalance of the Universe. Therefore, in order to explain the problems beyond
the SM the latter must be modified or extended. In the present paper we study a model extending
the SM with an A4 flavour symmetry previously proposed in [7] but studied there differently. Thus,
using the type-I see-saw mechanism and following the perturbation method developed earlier [23]
by some of us we obtained a theoretical mixing matrix and masses, as well as the Dirac CPV phase
and Jarlskog invariant in a good agreement with the current experimental data for the CPV in the
lepton sector [21, 22].

Finally, it is worth noting that one of previous works of our group [50] also considered an
extended SM with A4 flavor symmetry, but compared to the current model considered here, it was
a different model with different field content. In [50], although the Dirac phase δ was found to
be quite consistent with the experimental data at the time, the Jarlskog invariant was not taken
into account. Moreover, in [50] the Dirac phase was determined via an analytical dependence of
δ on the mixing angles θi j, while here, it is determined by comparing the perturbatively obtained
UPMNS matrix (of the model) with its theoretical form in the standard parametrization.
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Appendix A. Brief presentation of the group A4

A4 is the even permutation group of four objects [26, 51, 52]. It, geometrically isomorphic
to the symmetry group of a regular tetrahedron, has 12 elements. The latter can be generated by
two generators S and T satisfying the relations

S2 = (ST )3 = T 3 = 1 (59)

The representations of this group include three one-dimensional unitary representations denoted
by 1, 1’ and 1", generated the generators S and T given, respectively, as follows

1 : S = 1; T = 1,

1′ : S = 1; T = ei2π/3 = ω,

1′′ : S = 1; T = ei4π/3 = ω
2,

and a three-dimensional unitary representation 3 generated by the generators

T =

 1 0 0
0 0 1
1 0 0

 ; S =

 1 0 0
0 −1 0
0 0 −1

 ; (60)

Representation theory and applications of a group often require to know the multiplication and
decomposition rule of a product of its (irreducible) representations. In the case of A4 these rules
read

1×1 = 1, (61)
1′×1′′ = 1, (62)
1′′×1′ = 1, (63)
1′×1′ = 1′′, (64)
1′′×1′′ = 1′, (65)

3×3 = 1+1′+1′′+3s +3a, (66)
To be more explicite, the product of two triplets

a = (a1,a2,a3), b = (b1,b2,b3), (67)

can be decomposed into three singlets and two triplets as follows

1 = (ab) = (a1b1 +a2b2 +a3b3), (68)

1′ = (ab)′ = (a1b1 +ω
2a2b2 +ωa3b3), (69)

1′′ = (ab)′′ = (a1b1 +ωa2b2 +ω
2a3b3), (70)

3a = (ab)a = (a2b3,a3b1,a1b2), (71)
3s = (ab)s = (a3b2,a1b3,a2b1). (72)
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