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Abstract. In this paper we study the dynamics of a dissipative double-well Bose-Einstein conden-
sate driven by sinusoidally oscillating time-dependent inter-particle interaction. The phase-space
of system is illustrated physically by its population imbalance and phase-difference. The macro-
scopic dynamics of the model is generated within the mean-field limit. Noise in the system is
neglected since physical parameters are calculated using single moment averages only. However,
noise-noise correlation and dissipation persist in the system. We found phase-space dynamics is
sensitive to infinitesimal changes of the initial conditions. Dissipation in concurrent with large
driving frequency or amplitude of the time-dependence inter-particle interaction enhances route
to chaos.
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1. Introduction

Bose-Einstein condensate (BEC) in a double-well system attracted the interest of researchers
for its close physical analogy with Boson-Josephson Junction (BJJ) models in superconductor the-
ory. Mimicking the ideas in superconductor physics many interesting quantum features such as
tunneling transport, macroscopic coherence, modulated collapse and revival were observed in a
double-well BEC trap setting, see for instance in [1,2]. Manipulating inter-particle interaction
strengths and varying input of atomic initial numbers in the double-well yield fascinating new
phenomena such as Macroscopic quantum coherence or novel state of atom localization within
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respective trapping wells coined as the macroscopic Quantum Self Trapping (MQST), for instance
see [3,4]. Many experimental measurements followed thence such as Josephson tunneling, ther-
mally induced phase fluctuations on the double-well BEC system were reported by the researchers
of [5-7] . Measurements on Josephson’s AC and DC effects on the BJJ were made by Levy et
al. [8] and the interference-fringe experiments were made by Schmiedmayer et al. [9]. Enormous
progress has been made in the field shaping out from these fundamental studies.

In general, system interacting with environment (reservoirs) within experimental condi-
tions cannot be fully explained by purely quantum notions alone but requires also out of equilib-
rium semi-classical physics. The persistence of coherence needs to be sustained when system is
subjected to dissipation and decoherence effect. Several groups have successfully addressed this
issue and suggested how dissipation and decoherence could be tamed in the system, interested
readers may refer to these references [10—18]. This was supported by later experimental work
of [19,20]. We have explored similar line of research employing Generalized Langevin Equation
(GLE) model to study dissipation dynamics in our system of interest. Our earlier works, see for in-
stance in [21-23], elaborated the detail about double-well BEC-reservoirs system described within
mean-field approximation subjecting to Markovian and non-Markovian operational dynamics.

We modified the optical tweezer model in [24,25] simplifying it into a generic double-well
reservoir coupled system. The mentioned authors’ models were actually inspired by Wolfgang
Ketterlee MIT groups’ atom-laser experiment (Chikkatur et al. [26]). In the said experiment, each
Bose-condensate was clamped by optical tweezers and brought closer to establish Bose-Josephson
Junction. BECs are coherently coupled and atom can tunnel between the traps. A condition
for small separation between the BEC components is established to yield coherence. This is in
agreement with condition generally assumed in the double-well BEC literature.

Earlier works based on external time-dependent inter-particle interaction potential coupled
with damping can be referred to works for instance in [27,28]. Effect on the one-dimensional BEC
dynamics due to time-dependent scattering length were studied by Abdullaev et al. [29]. Coherent
atomic oscillation and resonance between coupled BEC using time-dependent trapping potential
were also studied earlier by Abdullaev et al. [30]. Analysis on double-well BEC system subjected
to both constant inter-particle interaction and dissipation has been reported by one of us in [23]
where the results are consistent, for instance, with theoretical work in [14,22,31] or experimental
observation in [7].

Implementing time-dependent inter-particle interactions into the real experimental setup
can be a challenging feat. It can be implemented by small frequency and amplitude oscillation of
external field on the double-well barrier, see detail for instance in Saha et. al. [32]. Modification
on the optical tweezers employing pulsating lasers could provide an oscillation response on atoms
in the double-well trap. We conceive this may generate oscillating inter-particle interaction effect
on the double well BEC-reservoir system which is the main focus of this work. Our model is
shown in Fig. 1.

This paper is organized in the following way. Section 2 illustrates the model of our double-
well BEC-reservoir system. We show the detailed mechanism involved in getting the phase-space
dynamical equation for our model. Later in Section 3, we describe the system by mean-field
description where physical quantities such as population imbalance, phase difference can be il-
lustrated in terms of phase portraits. In Section 4, we detail the concept of Lyapunov exponents
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which is a quantitative measure to detect chaos. Lyapunov exponents were computed numeri-
cally to characterize stability of the system in deciding whether they are periodic or non-periodic
(become chaotic). Finally, we summarize and conclude our results in Section 5.

2. Double-well BEC out-coupled to reservoirs
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Fig. 1. Schematic model of a double-well BEC-dual reservoir system.

A double-well loaded with Bose-Einstein condensate atoms can be well-described by the
following Hamiltonian:

hU (t
Hyys =hoa'a+hob'h+nQ(a'b+b'a) + RU)

(a"a"aa+b'b7bb) (1)
where sets (4',4) and (b',b) are the creation and annihilation operators of the boson at traps A
and B, respectively. The first two terms describe free Hamiltonian with frequencies w, AQ is the
tunnelling splitting. We have introduced a time-dependent inter-particle interactions U(t) in the
above equation whose detail is given in the following section.

The two separate reservoirs (or multi-mode fields) attached at each trap (A, B) are repre-
sented by Hy =Y a)kA,tAk and Hg =Y a)kézék. In this model, we assume the reservoirs are com-
posed of closely spaced oscillators with frequencies . The corresponding creation and annihila-
tion operators are (AZ,Ak) and (é,t,ék), for which we suppose the reservoirs are in thermal equi-

librium satisfying (X*(0)) = (X(0)) = 0 while (X, (0)X/(0)) = Swn;(wp) and (X4(0)X(0)) =0
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for X = {A,B}. Here nj(w) = 1/[exp(wy/kgT;) — 1] for j = A,B are the thermal average bo-
son numbers, with kg Boltzmann constant and (7y,7p) the temperatures of reservoirs A and B
respectively. We set Ty = Tp to avoid temperature gradient between the traps that causes heat flow
in certain direction. Interaction between the system and reservoirs is denoted by the following
sub-Hamiltonians

2
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U:J
I
;n
@)
°°3
@)
Ud>

where g, or f; are the bi-linear out-coupling function of traps A or B respectively. With the
provided information above, the total Hamiltonian of the system (interacting double-well BEC)
coupled to a dual-reservoirs lucidly denoted by the relation Hryq = Hgys + Hy + Hp + Hyyga +
Hyys—p. The dynamical property of this system can be studied by solving the Heisenberg equation

of motion ‘fft) = —% [0, A1pa1) as known from the text-books [33,34]:
da’\ . A . 7 . AT A A ! !/ / !
P —iwd—iQb—iU(t)a'aa+ Fa(t) —/ dt'K(t —t")a(t") 3)
db . . . /
E:—za)b—zﬂa—lU() "bb + /dtMt—t b(t'), 4)

where, Fy () = —i Y gxAx (0) exp(—iayt) and Fp(t) = —i Yy fiBi(0) exp(—iwyt) correspond to the
noise operators with reservoir variables whereas the last terms are the dissipation part with memory
kernels K (1) = Y g7 exp(—iayt) and M(t) = ¥ fZ exp(—iaxt). The choices of memory kernels
will determine whether the system runs under Markovian or non-Markovian operational dynam-
ics. For instance, memory kernel in the form constant x &(t —1t') or constant x exp(*=*) with
T as memory correlation time, yields Markovian or non-Markovian dynamics [33, 34]. We ex-
tensively used the latter two types of memory kernels in our earlier works [21,22]. The role of
Markovian type dissipation is to recover the system at drastic rate their equilibrium state been
perturbed strongly by reservoir fluctuations. In other word, system can drastically recede from out
of equilibrium. In this work we choose the memory-less dissipation kernels Ks(¢) = Q;6(¢) and
Mg(t) = Q26(¢) corresponding to out-coupling dissipation strengths (Q1,0>) of trap A and B re-
spectively. With these forms of memory kernels, we obtained the following Markovian dynamical
equations:

da

= —i0a—iQb—iU()a'aa+ Fa(t) - Q1a(r) ®)
%:—iw@—iga—w( Vbbb + Fp(t) — 02 b(t), (6)

The following section details how the above coupled equations with operator variables are trans-
formed into computable complex variables which gives physical meaning.
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3. Markovian dynamics in the mean-field limit

In the present work, we average out equations (5)-(6). The third-order moment appearing on
the right-hand side of the equations is decorrelated by approximation (dfdd) ~ (d")(d)(d) where
d = {a,b}. This truncation is valid in the macroscopic limit and when the many-particle quantum
state is close to pure BEC [16]. In other word, the macroscopic dynamics of BEC with large
number of atoms (N — o) is valid and well prescribed by the mean-field approximation [2—4, 14].

Defining o = (@), a* = (at), B = (b) and B* = (b"), at the same time ignoring average
fluctuations effect due to the large reservoirs each sides, i.e., both (F4 ) and ( Fp ) vanish, equations
(5)-(6) are then transformed into the following set of mean-field coupled differential equations:

do

,3?:(4w—QOa—mm—ﬂmmea, (7
P _ (0 0)p 00— U()BPB. ®)

Total number of atoms at any instance can be computed using relation n(¢) = |ot|> + |B|* = na(t) +
ng(t). Though, single order moment for noise vanishes in the system, second-order moments
(F X (t)Fa(r")) and (Fj (t)Fp(t')) are not negligible. Computation of physical parameters such as
population imbalance z(t) and phase difference 6(¢) only requires first order moments. Re-writing
the complex number variables (¢, B) as o = |a|exp(if,) and B = |B|exp(iBy), the population
imbalance and relative phase are defined by:

_ e —1BI?
z(t) = Ta )]
0(1) = 6,(t) — 6y(1), (10)

where, (6,, 6) are the phases of each trap (A, B) respectively. Performing some algebra using
the above re-definitions on the equations above, we can illustrate phase portrait (z(t),0(¢)) of the
system that satisfies the following set of coupled equations [22,31]:

d

£Z_2MSin9+C(1—ZZ)7 (1D
dd 2zcos@

46 _ Ut 12
dt  J1-2 0z, "

where U (¢) is the inter-particle interaction function explicitly depending on time 7 and dissipation
bias constant is { = Q1 — Q,. Time has been scaled in unit Q. We consider a function U (t) =
x (14 ysin Qpt) where ¥ is the inter-particle interaction strength while y and Qp are the driving
amplitude and oscillating frequency. The said inter-particle interaction function is similar to the
one used by Saha et al. [32]. The considered function has explicit time dependence making the
non-linear ODE equations (11)-(12) non-autonomous which is cumbersome to solve. Introducing
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new parameter ¢ = Qpt, converts back the equation into following solvable autonomous non-
linear ODE:

d
jj:_z 1—12sin9+C(1—z2), (13)
dd 2zcosB )

_ 2Lcost 14
ar T ig e "
do
9 o 15
- 5 (15)

Control parameters of the above equations are the inter-particle interaction amplitude %,
dissipation bias strength { and driving frequency Qp respectively. Further, the two-dimensional
phase-space (z, 0) described by equations (11)-(12) has been expanded into three-dimensional
phase-space (z, 6, ¢) described by equations (13)-(15). The latter set of equation satisfy the
criteria for possible chaos:

e Poincare-Bendixson theorem [35] ruled out the existence of chaos in a two-dimensional
system. We have three variables now.

e Equations describing the system has to be non-linear [35-37]. The above set of equa-
tions are obviously non-linear.

As an initial test, we check the phase portrait of population imbalance z(t) versus phase
difference 0(¢) as a function of inter-particle interaction, driving amplitude and frequencies. The
trajectories initiated by close-by selected initial conditions generated by the set of dynamical equa-
tions (13)-(15) is illustrated in Figures 2-3.

Qualitatively, we observe an evolution of phase from Quantum coherent state (elliptical
trajectory orbits) to localized state called the Macroscopic self-trapping state (hyperbolic trajec-
tories) as reported for the effect due to constant inter-particle interaction dissipation pair on the
system [22,23] or in references [14,31].

An extra information revealed by the illustrated portrait is the sensitivity of trajectories to
the initial condition. Quantitative measure on the divergence due to small increment in initial
condition is analysed in the next section.

Non-regular dynamics is clearly noticeable as driving frequency is approaching Q = /3
in tandem with increase of inter-particle interaction. Their effect is amplified by the increase in
driving amplitude as one compares Fig. 2 and Fig. 3.

4. Lyapunov exponents to test chaos

Let us consider an n-dimensional non-linear ordinary differential equation system with con-
stant coefficients of the form:

7.=AZ+F(1). (16)

Stability of the system can be analysed by studying the divergence or convergence of tra-
jectories generated by infinitesimally separated initial conditions. In other word, dynamics of
the system is sensitive to changes in initial conditions. For instance, let Z(t) and Z,(r) be two
trajectories generated by closely separated assumed initial conditions. The time-dependent sepa-
ration between them is 6Z(t) = Z(t) — Z,(t). Then the evolution of small increment between the
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Fig. 2. Phase portrait (0(t), z(t)) for driven dissipative dynamics as a function of
inter-particle interaction x (panels left to right with increasing order y = {1.0,2.0,2.5})
and driving frequencies (top to bottom panels with increasing order Qp = {0, %,%}).
Driving amplitude is fixed ¥y = 0.35. The initial conditions used in the simulation is

(2(0),6(0), $(0))={(0.28,0.,0,),(0.3,0.,0.)}. Phase difference 6 is taken in unit radian.
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Fig. 3. The same as in Fig. 2. for driving amplitude y = 0.5.
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trajectories can be obtained from the linearized solution of the equation:
SZ(1) = J(x,)-SZ(1),
fi(®)

where, J(x,) is the Jacobian matrix whose elements J;;(t) = 77 |x, are evaluated at initial values
X,. Here f; are the elements of vector F in Eq.(16). The real parts of the n-different eigenvalues
M Az, ..., A, of the Jacobian matrix J is naturally the Lyapunov exponents, where the largest value
of them is defined by [38,39]:

amn

11820

6Z,(1)|
The above Lyapunov characteristic exponents are computed numerically and depicted in Figures 4
and 5. To analyse the results, we follow criterion of reference [39], also can be found on Dynamical
System and Chaos text-books such as [35-37,40]). The criterion states that the system attractors
reduce to

Amax(t) = 1i -
max(1) o 57,1050 1

(18)

(1) stable fixed points if all the Lyapunov exponents are negative,

(2) a limit cycle if one Lyapunov exponent is zero and the remaining exponents are all
negative,

(3) k-dimensional torus if the first kK Lyapunov exponents vanish while the remaining ones
are negative,

(4) chaotic (strange attractor) if at least one Lyapunov exponent is positive.
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Fig. 4. Evolution of Lyapunov exponents for the system corresponding to Fig. 2.
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Fig. 5. Evolution of Lyapunov exponents for the system corresponding to Fig. 3.

Note that Figures 4 and 5 correspond to Figures 2 and 3 respectively. The Lyapunov expo-
nents give precise quantitative picture compared to the phase portrait results. For example the far
right top panels of Figures 4-5 look chaotic but they are not reflected by the Lyapunov exponents
counterparts. Based on the said criterion and result of Figures 4 and 5, we can infer that the onset
of chaos occurs when inter-particle is large (here our maximum is ¥ = 2.5) coupled with larger
driving frequency (here our maximum is Qp = 7/3).

5. Conclusion

We have studied the dynamics of a double-well BEC dual reservoir subjected to time-
dependent inter-particle interaction and dissipation. The system considered here works under
Markovian operational dynamics culminated from the delta-correlated memory dissipation kernel.
The macroscopic dynamics of the model is described within mean-field approximation, which
means noise in the system is averaged out by taking single moment. However, the two point
noise-noise correlation term is not negligible. They are simply not visible since single moment
physical parameters depicted in this work do not require the cumbersome two-point correlations
calculations.

Physical parameters of the system were obtained by solving equations (11)-(12) numeri-
cally using MATLAB ODE-45 solver which employs in-build fourth order Runge-Kutta (RK4)
algorithm. The solver is tested reliable in solving non-stiff ordinary or non-linear differential
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equations such as Van der Pol or Duffing equations. Small parameter values were used to yield
converging results. We found the following results:

(1) the trajectories solution of the dynamical equation is highly sensitive to the small
changes in the initial conditions as illustrated by the phase portraits,

(2) the onset of chaos is induced by the increase in driving frequency Qp,

(3) presence of dissipation, stronger inter-particle interaction strength coupled with the
driving amplitude enhances the route to chaos. The region to predict chaos was located
near attractor (repeller) state of the non-driven case.

This work has its own limitations. Calculating physical parameter via mean-field approximations
neglects noise and the rich physics that should culminated from the noise-noise correlations effect.
However, dissipation still persists in the system. The use of delta-correlated memory kernel in the
GLE (Generalized Langevin Equation) generates Markovian operational dynamics. The work can
be extended to further involving non-Markovian system by using Ornstein-Uhlenbeck (OU) or
step-functional memory kernels in the GLE. Findings of this study can be used in the application
of quantum information processing or precision measurements.
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