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Abstract. This work continues our recent molecular dynamics investigation of the three systems
of the human ACE2 receptor interacting with the viral RBDs of SARS-CoV virus and two variants
of SARS-CoV-2 viruses. The simulations are extended and analyzed using unsupervised machine
learning models to give complementary descriptions of hidden features of the viral binding mecha-
nism. Specifically, the principle component analysis (PCA) and the variational autoencoder (VAE)
models are employed, both are classified as dimensionality reduction approaches with different fo-
cuses. The results support the molecular dynamics results that the two variants of SARS-CoV-2
bind stronger and more stable to the human ACE2 receptor than SARS-CoV virus does. Moreover,
stronger bindings affect the structure of the human receptor, making it fluctuate more, a sensi-
tive feature which is hard to detect using standard analyses. Unexpectedly, it is found that the
VAE model can learn and arrange randomly shuffled protein structures obtained from molecular
dynamics in time order in the latent space representation. This result potentially has promising ap-
plication in computational biomolecules. One could use this VAE model to jump forward in time
during a molecular dynamics simulation, and to enhance the sampling of protein configuration
space.

Keywords: Coronaviruses, human ACE2, unsupervised machine learnings, enhanced sampling,
molecular dynamics, variable autoencoder.
Classification numbers: 87.10.Tf; 87.15.ap.

1. Introduction

By the end of 2019, the Severe acute respiratory syndrome coronavirus 2 (also known as
SARS-CoV-2, or 2019-nCoV) was detected in Wuhan city, China, and spread rapidly to all over
many countries and territories, forcing The World Health Organization to declare a public health
emergency only three months later [1]. Because of the extremely fast spread rate, fast mutation
rate and the toxicity of the SARS-CoV-2, scientists are rushing to find a cure for severe acute res-
piratory syndrome caused by the virus. Although the pandemic has subdued significantly lately,
research into this viral disease remains active as ever to thoroughly understand the viral mecha-
nism, and be able to prevent or to prepare for future similar viral pandemic due to coronaviruses.

The structure of coronavirus can be divided into two parts, namely core and shell. The
viral genome is contained in the core, while the viral shell is a combination of fat lipids, envelope
proteins, and spike proteins, in which spike proteins play an important role in the entry of the
RNA viral genome into the host cell. The receptor-binding domain (RBD) is a subunit of the spike
glycoprotein (also known as protein S) attached to the viral outer shell [2, 3]. RBD recognizes
and binds to human cells through a receptor called Angiotensin Converting Enzyme 2 (ACE2)
(Figure 1) [4]. After that, the coronavirus is incorporated into the host cell to release the viral
RNA into the cytoplasm.

According to several studies [5–10], the RBD of SARS-CoV (that caused the SARS epi-
demic in June 2003) and SARS-CoV-2 have significant similarities in genome sequence and also
use the same cellular entry receptor, namely ACE2. Therefore, there is a strong need [7, 11] to
properly understand the binding mechanism between the ACE2 receptor with both of these viruses
in the coronavirus family to find important similarities as well as differences. Not only does this
knowledge assist strongly in developing antibodies or antiviral drugs based on the binding features
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Fig. 1. The binding of coronavirus spike protein (red color) to human ACE2 receptor
(blue color). The location of four significant mutations of the viral RBD is shown in
yellow (see the Discussion section for more information).

of the RBD of the SARS-CoV-2 spike protein, it also provides a solid foundation for future track-
ling of diseases caused by coronaviruses. Noticeably, not all therapeutic antibodies or antivirals
work well with different viruses of the same strain. This is because of the difference in structure
caused by mutations between virus variants [7, 11]. Therefore, to evaluate the reliability of the
physical picture, we study the interaction mechanism of the SARS-CoV-2 coronavirus with ACE2
in comparison with the interaction mechanism of other coronaviruses, specifically the original
SARS-CoV.

In our previous study [10], a molecular dynamics simulation of the complex of the viral
RBD bound to the human ACE2 receptor has been carried out, which stressed several aspects
of the physical mechanism of stronger binding of the new coronavirus. In this work, we extend
these simulations further, and use various machine learning approaches to study characteristics of
the binding complex, in a complementary approach to conventional molecular dynamics analy-
sis. The trajectories obtained from the molecular dynamics simulation are used as input for the
principal component analysis (PCA) and for a variational autoencoder model, both are dimension-
ality reduction unsupervised machine learning methods, to extract hidden features of the binding
dynamics. Unlike deep autoencoder [12] where each input sample is mapped into a single point,
the VAE’s latent space is expected to have similar features of phase space of thermodynamics and
statistical physics, where the volume of a region of phase space is proportional to the time spent by
the system in that region with the same energy according to the ergodic hypothesis. In the term of
latent space, the area of latent space is expected to be proportional to the time spent by our system
in that area, assuming that our simulated system is in equilibrium. Therefore, the VAE is expected
to have more physical insights than the standard deep autoencoder, hence it is used as our choice
of this class of machine learning model.

The latent space of VAE can be seen as a representation of the input data, where each di-
mension captures some aspects of the data variation. In some sense, it is similar to the “collective"
principal coordinates of PCA. However, it is not always easy to interpret physical meanings like
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the case of PCA, because the dimensions may not correspond to intuitive or meaningful concepts.
The latent space may have different properties depending on the training data, and the optimiza-
tion process. The reduced dimensionality of the latent space therefore represents hidden features
of the system investigated. Only when combined with other physics analyses, one may be able to
interpret the data more clearly. As an unexpected result, it is found that the VAE model can learn
and arrange randomly shuffled protein structures obtained from molecular dynamics in time order
in the latent space representation. This result potentially has promising application in computa-
tional studies of biomolecules. One could use this VAE model to jump forward in time during a
molecular dynamics simulation, and to enhance the sampling of protein configuration space.

2. Materials and methods

2.1. Sequence alignment and molecular dynamics simulation
Sequence alignment is a method of arranging two or more genome sequences in order to

achieve maximum similarity. It is often used to study the evolution of sequences from a common
ancestor, especially biological sequences such as protein sequences or DNA, RNA sequences.
Incorrect matches in the sequence correspond to mutations and gaps correspond to additions or
deletions. In this work, the sequence alignment is used for the viral RBDs of both SARS-CoV
virus and SARS-CoV-2 viruses to elucidate the common features as well as the viral mutations
during the time of more than a decade. From the point of view of a biophysicist, understanding the
physics of amino acids at mutations can provide important clues to the binding mechanism [10].
In this work, the primary sequences of the proteins were aligned by means of ClustalW web-
server [13] using BLOSUM matrix [14] and then visually analyzed in order to find mutations
between the SARS-CoV and SARS-CoV-2.

For atomistic simulation, the starting structure is obtained from experimental structures
with PDB ID 2AJF (for SARS-CoV RBD), 6M0J and 6VW1 (for SARS-CoV-2 RBD). From
these complexes, chain A (the human ACE2) and chain E (viral RBD) were prepared and corrected
manually to properly describe some particular structural elements. The experimental structures of
ACE2 and RBD have some missing residues in their central parts (D615 for ACE2 and A522 for
RBD). These residues were added using homology modeling methods [15–17]. The molecular dy-
namics (MD) simulations were performed by GROMACS/2018.6 software package [18]. Proteins
and ions were described by CHARMM-36 force-field [19] and glycans by GLYCAM06 force-
field [20]. The TIP3P [21] model was used for water molecules. The physiological electrolyte
concentration of the solution simulated is 150 mM NaCl. The simulation box size was chosen so
that the proteins in neighboring periodic boxes are at least 3 nm apart from each other. Since the
electrostatic screening length at 150 mM NaCl concentration is about 7 Å, this 3 nm distance is
more than enough to eliminate the finite size effect due to the long range electrostatic interactions
among proteins in neighboring simulation boxes, and small enough to keep the size of the system
manageable with our current computational resources.

The temperature of 310 K and the pressure of 1 atm were maintained by the Nose-Hoover
thermostat [22, 23] and the Parrinello-Rahman barostat [24]. The Particle Mesh Ewald (PME)
method [25] is used to treat the long-range electrostatic interaction with a real space cutoff of
1.2 nm. The van der Waals interactions were also cut off at 1.2 nm, with the appropriate cut-off
corrections added to pressure and energy. To speed up computations, all hydrogen bonds were
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constrained by the LINCS method [26]. The systems were equilibrated in NPT ensemble for 1 ns,
then simulated for 2 µs of production run.

2.2. Principal Component Analysis
Principal component analysis (PCA, also called covariance analysis) is a very common

and powerful tool not only in machine learning but also in general data analysis. PCA is an
unsupervised learning technique for pre−processing and reducing the dimensionality of high-
dimensional datasets while maintaining the original structure and connections. In our case of
systems of RBD−ACE2 complex, PCA is a powerful tool for analyzing protein dynamics because
of the big data of a large number of atoms of proteins over a long time of simulation.

During the simulation, we consider a subgroup of N atoms. Denote q1, ... , q3N as the
coordinates of the atoms, the covariance matrix of the σ3N×3N of 3N atoms has elements

σi j = 〈(qi−〈qi〉)(q j−〈q j〉)〉, (1)

where i and j are the indexes of coordinates, 〈·〉 denotes the time-average operator.
We obtain 3N eigenvectors v(k) and 3N eigenvalues λk by diagonalizing σ with

λ1 ≥ λ2 ≥ ·· · ≥ λ3N . (2)

The modes of collective motion and their amplitudes are specified by the eigenvectors and eigen-
values of σ . The larger the value of λk is, the more significant that mode of motion contributes to
the overall motion of the system. The principal components kth has the form

Vk = v(k) ·q = v(k)1 q1 + v(k)2 q2 + · · ·+ v(k)3Nq3N . (3)

Over a long time of simulation, not every fluctuation and deviation of atoms in the pro-
tein are equally important. The dynamics of the protein is dominated by only a few component
motions, or a few v(k) with largest eigenvalues.

In our system, the number of atoms of the RBD-ACE2 complexes is rather large (around
12500 atoms). If all atoms are used for PCA, the covariance matrix will have a size of about
37500×37500, making the calculation not only computationally expensive but also somewhat
redundant. We select only two groups of atoms from the RBD−ACE2 complexes, namely the
backbone of the viral RBD protein and the backbone of the ACE2 receptor for analyses.

2.3. Variational autoencoders
Variational autoencoders (VAE) is an advanced technique of machine learning in general

and deep learning in particular. Just like PCA, VAE is also an unsupervised learning technique
for dimensionality reduction of high-dimensional datasets. It belongs to the family of autoencoder
methods. VAE is the combination of deep autoencoder (DAE) and variational Bayesian methods
[27]. It essentially consists of two main parts: encoder and decoder (Fig. 2). The encoder is
the first half of the VAE neural network. The encoder aims to condense the input information of
protein structure by passing it through a funnel-like fully connected neural network. The latent
space generated from the encoder is just the representation of the condensed input information.
The decoder is the last half of the VAE neural network. In contrast to the encoder, the decoder
aims to use the encoder output and reconstruct the input data. In the form of the loss function, the
reconstructed data will then backpropagate from the VAE’s neural network. The key difference
of VAE from other variants of autoencoder is that it maps each input sample into an area with
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Fig. 2. (Color online) Illustration of VAE structure used in this work for systems. The
left outer most layer are the input layer with size equal to the degrees of freedom of the
system. The right outer most layer is the output layer with the same size as the input layer.
In between, there are four hidden layers for the encoder (left) and four for the decoder
(right). The model is trained to minimize the difference in the output (generated) versus
the input configuration.

a Gaussian distribution in the latent space, instead of a single point. VAE provides a statistical
way to describe the dataset’s samples in latent space. This key difference of VAE is also the
reason why it is chosen to investigate our systems instead of other variants of autoencoder such as
the deep autoencoder [12]. The VAE’s latent space is expected to have similar features of phase
space of thermodynamics and statistical physics, where the volume of a region of phase space
is proportional to the time spent by the system in that region with the same energy according
to the ergodic hypothesis. In the term of latent space, the area of latent space is expected to be
proportional to the time spent by our system in that area, assuming that our simulated system is
in equilibrium. In the case of DAE, each input sample is mapped into a single point in the latent
space. Therefore, theoretically, there are no constraints for two relative mapped points of two
extremely different protein structures. Hence, there may be less physical meaning in the case of
using DAE.

Just like PCA, only the backbone atoms of the RBD-ACE2 complexes are chosen for the
input data for feeding to the VAE model. Besides, positions of Cβ are selected additionally for
supplying the information of residue’s directions for VAE. The total number of atoms is 3906.
Conventionally, the raveled distance matrix of atom coordinate is used as the input data. How-
ever, in this case, the raveled distance matrix is an array with a length of more than 15× 106

(3906× 3906), a huge number for building and optimizing VAE model. Therefore, in this case,
the distance matrix is improved to keep the distances of atoms having less than three neighbor
atoms in between. Accordingly, the number of distances drops to 11712, which is reasonable for
our machine learning purpose. The system structures are extracted from the 2 µs trajectory every
1 ns.

The number of the input layer is equal to the number of distances between selected atoms,
that is 11712. The numbers of nodes of each layer in the VAE’s encoder are chosen to decrease
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gradually, i.e. 1340, 153, 18, and 2. Similarly, layers of the VAE’s decoder have 2, 18, 153, 1340,
and 11712 nodes respectively.

In this work, the code of VAE is built and developed in Python 3.8. The data preprocessing
procedure is carried out using the MDAnalysis library [28] for easy reading, writing, and analyz-
ing trajectories from MD simulations in GROMACS formats. For machine learning, the Keras
package [29] with Tensorflow library [30] is used. The total trainable parameters for our model is
about 32 million parameters. The source code of VAE model can be provided to interested readers
upon a reasonable request.

3. Results and discussions

3.1. Sequence alignment and molecular dynamics simulation
The viral genome sequence is not as stable and conservative as the human ACE2 receptor.

The viral genome sequences change over time because of a number of mutating events. The viral
receptor-binding domain sequence alignments are described in Fig. 3. The sequence identities
between 2AJF with 6VW1 and 6M0J are 83.3% and 71.1% respectively. The sequence identity
between 2 variants 6VW1 and 6M0J is 85.7%. These identity scores imply that the RBD of all
investigated viruses has similar structures and sequences. This result can be explained by the fact
that the investigated viruses all belong to the coronavirus family. Also from the sequence align-
ments, it is observable that there are many mutations and they are evenly distributed throughout
the viral sequences. We choose to focus on mutations between SARS-CoV and SARS-CoV-2 that
are not-conservative and appear in both SARS-CoV-2 variants. There are four significant mutation

Fig. 3. (Color online) The sequence alignments of the viral RBD of 6VW1 and 6M0J for
two variants of SARS-CoV-2 virus, and of 2AJF for SARS-CoV virus. Below the viral
RBD protein sequences is a key denoting conserved sequence (*), conservative mutations
(:), semi−conservative mutations (.), and non−conservative mutations ( ). Some missing
residues (in the crystal structures) at the terminals of sequences are faded out.

positions that are close to the binding interface with the receptor ACE2. These four mutation po-
sitions are colored yellow as already shown in Fig. 1. They may hold an important explanation for
the stable and strong binding of the SARS-CoV-2 viruses, as our previous work already suggested
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by using molecular dynamics analyses [10]. Here we only demonstrate a few properties needed
for discussion of our results with unsupervised machine learning models, namely the standard
deviation and fluctuations of the backbone atoms. The results are shown in Figs. 4 and 5.

Fig. 4. (Color online) The root mean square deviations of the backbone of the human
ACE2 receptor and of the viral RBD protein.

In general, Fig. 4 revealed that the RMSDs of the viral RBD is less variable than the RMSDs
of the human ACE2 receptor over 2 µs of simulation. The saturation time of the viral RBD is about
50 ns in comparison with the much higher saturation time of the ACE2 receptor which is nearly
400 ns. Thus, the first 500 ns of simulation was dropped for the subsequent equilibrium analyses.
Not only the saturation time but also the magnitudes of the deviation of the receptors tend to
slightly increase and be higher than that of the viral binding domains. These observations can be
explained by the fact that the ACE2 receptor has almost 600 residues whereas the viral RBD is
smaller and has only about 200 residues. Apparently, the size of the receptor makes it less variable
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than the RBD even though the RMSD is almost always less than 4 Å and all systems are supposed
to be stable.

Among the viruses, the RMSDs of the RBD of the two new viruses are around 1.5 Å,
dramatically lower than that of SARS-CoV virus which is approximately 3 Å. In the same trend
as RBD, the ACE2 in the new virus systems show lower RMSD values, especially in the 6M0J
system, than the ACE2 in the old virus system. Therefore, the 6M0J and 6VW1 systems are
evidently more stable than the 2AJF system.

Fig. 5. (Color online) The root mean square fluctuations of the backbone of the human
ACE2 receptor and of the viral RBD protein.

RMSF is often used to measure the stability of the protein backbone. For the human ACE2
receptor, the overall RMSF trends of all three systems are similar with each other (Fig. 5). This
is reasonable because all three ACE2 structures from simulated systems have identical sequences
and structures. Some small changes can be explained by the two following reasons. The first



108 SARS-CoV-2 viral receptor binding domain and variational autoencodere

change is that residues at the N- and C-termini have few constraints causing a higher magnitude
of fluctuation. The second change, more importantly, is that the structures of proteins used for the
simulations are from the experiments where the proteins are frozen and crystallized. Therefore,
when simulated at 310 K, the protein structures slightly change and have thermal fluctuations.
These fluctuation differences are insignificant because most residues have RMSF differences less
than 1 Å.

For the viral RBD protein, the residue indexes are aligned according to the sequence align-
ments shown in Fig. 3. The RMSF of the viral RBD of the two SARS-CoV-2 variants are very
close to each other implying that the two viruses behave very similarly especially from residues
larger than 120. The binding interface can be determined from residue 120 to residue 170. There-
fore, there is almost no difference in the behavior of the two SARS-CoV-2 viruses.

The second observation is that all four significant mutations of SARS-CoV-2 viruses make
the viruses more stable with fewer thermal fluctuations at their positions. The four mutations occur
at residues 123, 139-140, 150-152, and 166 (denoted as small black downward triangles in Fig. 5)).
The RMSF of RBD of SARS-CoV-2 viruses at these residues is smaller than that of SARS-CoV
virus. Especially at residue 150-152, the RMSF of RBD of SARS-CoV virus is almost twice as
much as that of the new viruses. This significant change is supposedly caused by the insertion of
Glycine amino acid combined with the substitution of two Proline amino acids in the SARS-CoV
sequence making the backbone more flexible to move closer to the ACE2 receptor and to attach to
it more tightly.

The third observation is that there are still some abnormal peaks of RMSF such as at around
residue 113 of RBD of 6VW1 system or at around residue 50 of RBD of 2AJF system. However,
these residues are relatively far from the binding interface region, thus having no remarkable effect
on those four significant mutations. Discounting these, the interface mutations comprise most
significant differences between the RMSFs of the viral proteins. The most distinguished mutation
is the substitution of -PP for GVE. Because Glycine (G) is a small, light, and soft residue, the
insertion and substitution make the sequence softer (mass), longer (geometry), and easier to reach
the receptor. This mutation clearly causes the most significant difference in Fig. 5 of viral protein
around residue index 150, with both of the SARS-CoV-2 viral proteins being much more stable.

3.2. Principal Component Analysis
To analyze the dynamics of proteins throughout a long simulation, PCA is performed on

all three systems. The first 500 ns of the simulations is dropped to ensure that the system is
well equilibrated. The trace of the covariance matrix is an effective measurement of the overall
backbone flexibility of the human ACE2 receptor and the viral RBD protein. The trace of the
covariance matrix of the protein backbones of our three systems, namely 6VW1, 6M0J and 2AJF,
are computed and displayed in Table 1. From this table, the traces of ACE2 receptors increase
steadily from the 2AJF system to the 6M0J system. This result is reasonable because it is in line
with our RMSD and RMSF calculations shown above. Fig. 4 showed that the ACE2 displacement
difference between the first and the last system configuration of the 6M0J system is the largest and
that of the 2AJF system is the smallest. This infers that the ACE2 receptor is more flexible in the
6M0J system than in the 2AJF system. Opposite to the trace of the ACE2 receptor, the traces of
the viral RBD decrease from the 2AJF system to the 6M0J system. By a similar argument, this
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result is expected. This result also showed that the viral RBD of the two new viruses is more stable
than the SARS-CoV virus RBD.

Table 1. The trace of the co-variance matrix of the projections of the protein backbones
on the two largest principal components.

2AJF 6VW1 6M0J
Trace
(nm2)

ACE2 receptor 10.118 15.500 19.197
viral RBD 3.012 2.729 1.820

Fig. 6. (Color online) The probability density in the plane of the two largest principal
components from the PCA of the backbones structure of proteins. Note that the colorbar
scale (right most figures) is the same for all RBD or ACE2, but they are different between
RBD and ACE2. Similarly, for the range of axes, the same range is used for all RBD or
ACE2, but they are different between RBD and ACE2.

Figure 6 shows the probability density of the two largest principal components from the
PCA of the backbones structure of proteins. The projections on the third-highest principal show
some simple normal distribution, thus are ignored and not shown here. From Fig. 6, the brightness
of an area indicates the likelihood that the system configuration localizes in this area. The sharper
and brighter the region is, the more preferable the system stays at that region, and vice versa.

The first set of three subfigures (the first row) of Fig. 6 displays the sharpest and brightest
area of the ACE2 receptor in the 2AJF system. Despite a large number of spots, the ACE2 receptor
is comparatively stable. The two remaining subfigures of 6VW1 and 6M0J systems show the dim
and blurred spots implying that even considering the two most outstanding motion modes, the
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systems still tend to vibrate freely. The second set of three subfigures (the second row) of Fig. 6
tells a contrary story. The probability density of the RBD protein backbone of the 2AJF system
is very dim and unclear. On the other hand, the probability density shown in the two remaining
subfigures of 6VW1 and 6M0J is brilliant and very sharp. It means that the RBD protein in 6VW1
and 6M0J systems is very localized and stable throughout the simulation. These results are in
good agreement with the observations that the RBD of SARS-CoV-2 viruses are more stable than
that of SAR-CoV virus from previous works [10,31–33]. Our PCA analyses indicate an additional
effect, that their ACE2 receptor vibrates harder. A reasonable explanation for this is that the RBD
protein binds stronger and more stable to the ACE2 in 6M0J and 6VW1 systems making them
vibrate together.

Overall, our PCA unsupervised learning analyses have enhanced molecular dynamics anal-
yses. Not only it confirms the stronger and more stable bindings of viral RBD to human ACE2
in the case of SARS-CoV-2 viruses, but also demonstrates the slightly destabilizing effect that
stronger binding has on the human ACE2 for which our previous molecular dynamics could not
sensitively detect.

3.3. Variable autoencoder model
Let us now move to VAE analyses, another unsupervised learning model in the same ap-

proach of dimensionality reduction. Fig. 7 shows the latent space projection of variational autoen-
coder trained on the distance matrix of the RBD-ACE2 complex of the 6M0J system. In our first
thought, we expect the latent space to represent the classified system configurations in clusters
with reference to the potential energy. However, the results shown in Fig. 7 tell a totally different
story. From running VAE, one sees that the latent space of VAE is able to represent protein struc-
tures linearly according to their simulation time instead of their potential energy (Figures 7b and
7d). In MD simulation of proteins of biophysical systems, the simulation time 1 ns is not too big
but still long enough for proteins to perform some significant changes in their structure. During the
VAE training, the input protein structures are 1 ns-simulation-apart from each other and shuffled.
However, VAE somehow can learn and organize the data representation in the latent space linearly
in time instead of energy (Fig. 7b). This result is unexpected, and can have very promising appli-
cations in computational biomedicine, such as predicting the next system configurations based on
some simulated configurations, speeding up simulation time, or potentially enhancing sampling
of the configuration space. Nevertheless, this result is not completed yet and still needs further
investigations and extension to other systems.

The second observation is that, there are two clusters of the representative data in the latent
space as the histogram of latent space projections clearly shows. Fig. 7c shows two distinct regions
of the representative data (colored deep dark blue). On the other hand, these two regions exactly
match two different simulation stages according to Fig. 7b. Combining the results, we can draw a
conclusion that during the simulation, the system is moving from a local minimum state to another
local minimum state. This moving is extremely difficult to observe in previous MD analyses.
Moreover, it is native that there are still thermal fluctuations in a local minimum causing the
different values of potential energy of the system (shown in Fig. 7d). The upper region is bigger
and covers about two-third color spectrum or two-third of simulation time equally. Therefore,
this local minimum state movement happens recently and there also needs further simulations and
investigations.
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is very dim and unclear. On the other hand, the probability density shown in the two remaining
subfigures of 6VW1 and 6M0J is brilliant and very sharp. It means that the RBD protein in 6VW1
and 6M0J systems is very localized and stable throughout the simulation. These results are in good
agreement with the observations that the RBD of SARS-CoV-2 viruses are more stable than that
of SAR-CoV virus from previous works [10, 31, 32, 33]. Our PCA analyses indicate an additional
effect, that their ACE2 receptor vibrates harder. A reasonable explanation for this is that the RBD
protein binds stronger and more stable to the ACE2 in 6M0J and 6VW1 systems making them
vibrate together.

Overall, our PCA unsupervised learning analyses have enhanced molecular dynamics anal-
yses. Not only it confirms the stronger and more stable bindings of viral RBD to human ACE2 in
the case of SARS-CoV-2 viruses, it also able to see the slightly destabilizing effect that stronger
binding has on the human ACE2 for which our previous molecular dynamics could not sensitively
detect.

3.3. Variable autoencoder model
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Fig. 7. (Color online) Latent space projection of variational autoencoder trained on the
distance matrix of RBD-ACE2 complex of 6M0J. The training procedure was done after
60 epochs. Figure (a) shows the projection without labeling data. Figure (b) and (d) show
the projection with data labeled to time frame and potential energy respectively. Figure
(c) shows the histogram of the projection points from Figure (a).

Fig. 7. (Color online) Latent space projection of variational autoencoder trained on the
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shows the histogram of the projection points from Fig. (a).

Finally, Fig. 8 shows interesting dependence of the VAE results when it is trained using
different numbers of epochs. As the number of epochs increases, the distribution of representative
points in the latent space tends to form a line. In other words, the first latent vector seems to
linearly depend on the second latent vector at epoch 100. Therefore, the representation in the latent
space would become less informative and less useful. This is a well-known knowledge in training
machine learning models: the model becomes overfitted at a large number of epochs because the
model starts memorizing the data instead of learning it. We plan for more investigations in the
future to improve our model, optimizing its parameters and hyperparameters and extend it to a
broader spectrum of systems.

4. Conclusions

In this work, three systems of the human ACE2 receptor interacting with the viral RBDs of
SARS-CoV virus and two variants of SARS-CoV-2 viruses are modeled and simulated and anal-
ysed using unsupervised machine learning models. Both standard and machine learning analyses
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (Color online) Latent space projection of variational autoencoder trained on the
distance matrix of RBD-ACE2 complex of 6M0J. The training procedure was done after
10, 50 and 100 epochs. In the first row, all the projections are shown with data labeled to
time frame. In the second row, the histrogame of distribution in the latent space are
shown.

agree with each other and support the picture that the two variants of SARS-CoV-2 show stronger
binding and form more stable complex with the human ACE2 receptor than SARS-CoV virus
does. Moreover, the stronger bindings can affect the structure of the human receptor, making it
fluctuate more, hence slightly becoming less stable. This is a sensitive feature which is hard to
detect using standard analyses.

Even though, protein structures obtained from molecular dynamics simulation are randomly
shuffled before feeding to the VAE model, the VAE interestingly can learn and arrange them in
time order in representation in the latent space. This result is unexpected, but the application
of this result is very promising. One could use VAE for jumping forward in time during a MD
simulation, as well as for enhanced sampling of configuration space. Nevertheless, our results are
reportedly preliminary, more rigorous investigation to optimize parameters and hyperparameters
of the model are needed in the future.
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