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Abstract. We study the dynamics of a double-well BEC system subjected to oscillating dissipation.
The macroscopic model is described within the mean-field approximation while the noise effect
due to large reservoir fluctuation has been averaged out to zero. We chose a simple dissipative
memory kernel to produce a time-dependent oscillating dissipation. Our numerically calculated
phase-space portraits and Lyapunov exponents show an enhanced route to chaos as one increases
the driving dissipation amplitude.
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1. Introduction

The system of interacting Bose-Einstein Condensate (BEC) confined within a double-well
out-coupled to reservoirs brings about many interesting quantum phenomena that have a close
analogy with superconductor physics. Atom tunelling between the two wells induces phenomena
such as population collapse and revival oscillations, see for instance the articles [1, 2].

Macroscopic quantum coherence is then established within the system. When stronger
repulsive inter-particle interaction is present in the latter system, population imbalance oscilla-
tions get suppressed, and upon reaching a critical value, atoms start to localize forming what is
known as the macroscopic quantum self-trapping state (MQST) [3,4]. Experimental measurement
on thermal-induced phase fluctuations, Josephson’s AC and DC effects, and interference fringe
patterns on the double-well BEC system were the many fascinating features reported earlier by
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experimental groups [5–9]. It became the stepping stone for further profound progress in the
theoretical and experimental studies on the subject matter.

In an experimental setting, the system-environment condition requires one to consider clas-
sical instead of pure quantum physical reality. Dissipation and decoherence complicate the study.
In particular, equilibrium phases of a double-well BEC systems diminish, leading towards com-
plex non-linear dynamics, for instance, see in [10–17]. In contrast, Witthaut et. al. [13, 15] have
shown that coherence could be sustained and enhanced under specific conditions. Their claim
were supported then by the experimental findings reported in the articles [18, 19].

In general, the Markovian operational dynamics of a dissipative thermodynamic system
is generated by δ− correlated memory kernel, whereas other type of memory kernels such as
the Ornstein-Uhlenbeck (OU) [20] induces non-Markovian dynamics, for instance in [21–23].
We have applied extensively the latter type of memory kernels to study the Markovian (non-
Markovian) dynamics of the double-well BEC reservoir systems [24–26].

In this work, we consider a system of double-well trap out-coupling to reservoirs in which
the damping term is time-dependent. We introduced a generic time-dependent dissipative param-
eter which can be controlled by its amplitude and driving frequency. Implementing into the real
experimental setup can be a challenging feat. We refer our model to the optical tweezer approach
in [27, 28] modifying it into a generic double-well reservoir coupled system. The latter authors’
models were inspired by the Wolfgang Ketterlee MIT groups’ atom-laser experiment (Chikkatur
et. al. [29]). In the latter experiment, each Bose-condensate is clamped by an optical tweezer and
then brought closer to establish Bose-Josephson Junction (atoms are coherently coupled and may
tunnel between the traps).

In the double-well BEC literature, the condition of small separation between the component
is assumed so that BECs are coherently coupled establishing tunelling (condition for double-well
BEC is satisfied). Modification on the optical tweezers employing pulsating lasers could provide
an oscillation response on atoms in the double-well trap. We conceive that this may generate
oscillating driving dissipation on the double well BEC-reservoir system. In parallel there are also
studies on the time-dependent inter-particle interaction responses to the double-well BEC system,
see for instance references in [30, 31]. Time-dependent inter-particle interaction is implemented
by small frequency and amplitude oscillation of external field applied on the double-well barrier
as reported in Saha et. al. [31]. A similar technique can also be employed to create an oscillating
dissipation that transports atoms to reservoirs in a controllable manner.

The paper is organized as follows. The Hamiltonian of our double-well BEC-reservoir
model is detailed in Sec. 2. The phase-space illustrating the system model is elaborated in Sec. 3.
For clarity purposes, Sec. 3 is divided into two subsections describing (i) phase-space dynamics of
constant dissipation and (ii) phase-space dynamics of the time-dependent dissipation. Lyapunov
exponents which are quantitative measures of stability were tested in the latter subsection. Results
are illustrated and discussed in brief. Finally, we conclude in Sec. 4.

2. Double-well BEC out-coupled to reservoirs

We consider a model of double-well atomic Bose-Einstein condensate (BEC) out-coupled
to a reservoir at each trap (A and B). The full Hamiltonian of the system can be concisely described
by

HTotal = Hsys +HA +HB +Hsys−A +Hsys−B. (1)
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Fig. 1. Model of double-well BEC out-coupled to reservoirs.

The first term on the above equation represents a double-well loaded with Bose-Einstein conden-
sate atoms which is then lucidly described by the following sub-Hamiltonian [2, 3, 14]:

Hsys = h̄ωaâ†â+ h̄ωbb̂†b̂+ h̄Ω(â†b̂+ b̂†â)+
h̄U
2
(â†â†ââ+ b̂†b̂†b̂b̂), (2)

where the first two terms describe free atoms (at each traps) with frequencies (ωa, ωb), h̄Ω is the
tunnelling splitting, U is the on-site inter-particle interaction strength. Sets (â†, â) and (b̂†, b̂) are
the creation and annihilation operators of the boson at traps A and B, respectively.

Two separate reservoirs (or multi-mode fields) attached at each trap (A and B) are rep-
resented by HA = ∑k ωkÂ†

kÂk and HB = ∑k ωkB̂†
kB̂k. In this model, we assume reservoirs are

composed of closely spaced oscillators with frequencies ωk. Their corresponding creation and
annihilation operators are (Â†

k , Âk) and (B̂†
k , B̂k), respectively. We suppose the reservoirs are in

thermal equilibrium satisfying the following conditions:

〈Â†(0)〉= 〈Â(0)〉= 0 (3)

〈B̂†(0)〉= 〈B̂(0)〉= 0 (4)

〈Â†
k(0)Âk′(0)〉= δkk′nA(ωk′), 〈B̂†

k(0)B̂k′(0)〉= δkk′nB(ωk′) (5)

〈Âk(0)Âk′(0)〉= 0, 〈B̂k(0)B̂k′(0)〉= 0 (6)
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where n j(ωk) = 1/[exp(ωk/kBTj)− 1] for j = A,B are the average boson numbers at reservoirs
A and B whereas (TA,TB) are their corresponding temperatures. kB denotes Boltzmann constant.
We set TA = TB = T to avoid the production of heat current between the traps. Lastly, the system-
reservoir interactions are denoted by the following sub-Hamiltonians:

Hsys−A = ∑
k

gk(âÂ†
k + â†Âk)

Hsys−B = ∑
k

fk(b̂B̂†
k + b̂†B̂k) , (7)

where gk or fk are the bi-linear out-coupling function of traps A or B respectively. The dy-
namical property of this system can be studied by solving the Heisenberg equation of motion
dÔ
dt =− i

h̄ [Ô, ĤTotal] as shown in the text-books [21, 22]:

dâ
d t

=−iωaâ− iΩb̂− iU(t)â†ââ+Fa(t)−
∫ t

0
dt ′K(t− t ′)a(t ′) (8)

db̂
d t

=−iωbb̂− iΩâ− iU(t)b̂†b̂b̂+Fb(t)−
∫ t

0
dt ′M(t− t ′)b(t ′) , (9)

where
• FA(t) = −i∑k gkÂk(0)exp(−iωkt) and FB(t) = −i∑k fkB̂k(0)exp(−iωkt) are to the

internal noise induced by the reservoir fluctuations.
• Last terms of the above equations correspond to dissipation with memory kernels

K(t) = ∑k g2
k exp(−iωkt) and M(t) = ∑k f 2

k exp(−iωkt).

The choice of spectral function S(ω) = D(ω)[g(ω)]2 determines the type of memory ker-
nel K(t) = ∑k g2

k exp(−iωk(t))→
∫

∞

0 dωS(ω)exp(−iω t). For example, flat spectrum (constant)
results in a memory-less dissipation kernel K(t) = constant × δ (t). Systems with flat spec-
tral function S(ω) = constant characterize white noise and they exhibit Markovian operational
dynamics. Lorentzian spectral function in the form S(ω) = 2c/[c2 +ω2] with constant c pro-
duces the Ornstein-Uhlenbeck (OU) memory kernel K(t) = constant × γ exp(−γ t). Parameter
γ is the correlation memory time [21–23]. For γ → ∞ one recovers memory-less delta corre-
lated kernel. A system where S(ω) ≈ 1/ω2 induces coloured noise and exhibits non-Markovian
operational dynamics. In this work, we have introduced time-dependent dissipative parameters
K(t− t ′) = Q1(1+F cos(ΩDt ′))δ (t− t ′) and M(t − t ′) = Q2(1+F cos(ΩDt ′))δ (t− t ′), into the
memory kernels of the Eqs. (8)-(9),where F and ΩD denote the driving amplitude and frequency re-
spectively. The standard time-independent memory-less kernels are simply K(t− t ′) = Q1δ (t− t ′)
and M(t− t ′) = Q2δ (t− t ′) with (Q1,Q2) corresponding to constant dissipation strengths at traps
A and B respectively. Applying the above-mentioned information and criteria into Eqs. (8)-(9),
we simplify it to the following form (variables are still in operator form):

dâ
d t

= (−iωa−ΓA(t))â− iΩb̂− iUâ†ââ+FA(t) (10)

db̂
d t

= (−iωb−ΓB(t))b̂− iΩâ− iUb̂†b̂b̂+FB(t) , (11)

where ΓA(t) = Q1(1+F cos(ΩDt)) and ΓB(t) = Q2(1+F cos(ΩDt)).
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3. Phase-space in the Mean-field limit

In general, there are no exact remedies for such non-linear operator equations Eqs. (10)-
(11), but an approximate solution can always be obtained by averaging them and decorrelating
higher-order correlation operator function into products of lower ones. In the present work, we
decorrelate the third-order moment appearing on the right-hand side of Eqs. (10)-(11) by the
relation 〈Ĉ†ĈĈ〉 ≈ 〈Ĉ†〉〈Ĉ〉〈Ĉ〉 where C = {a,b}. This approximation is valid in the macroscopic
limit since the covariance vanishes as O( 1/N ) (where N is the total number of atoms of the
system) if the many-part quantum state is close to pure BEC [32]. In other words, the macroscopic
dynamics (system with a large number of atoms, N → ∞) of the BECs is still valid and well
described by the mean-field approximation [2–4, 14].

Defining α = 〈 â〉, α∗ = 〈 â† 〉, β = 〈 b̂〉 and β ∗ = 〈 b̂† 〉 with n(t) = |α|2 + |β |2 = nA(t)+
nB(t) denoting the total particle number at certain time t in the double-well. For large reservoir sys-
tem, averages 〈FA(t)〉 and 〈FB(t)〉 vanishes but their two-point (time) correlations 〈F†

A (t)FA(t ′)〉
and 〈F†

B (t)FB(t ′)〉 are non-zero. However here we consider only the single moment average for
noise, hence ruling out the two-point noise correlations that satisfy the fluctuation dissipation theo-
rem for the existence of internal noise (discussed elsewhere, see for instance our earlier work [25]).
In case there exist higher order moments, they can be decorrelated to a single moment again. With
the said information, Eqs. (10)-(11), can be remodelled into the following mean-field equations:

dα

d t
= (−iωa−ΓA(t))α− iΩβ − iU |α|2α , (12)

dβ

d t
= (−iωb−ΓB(t))β − iΩα− iU |β |2β . (13)

3.1. Dynamics of system subjected to constant dissipation

The dynamics of our system can be captured by the phase-space portrait (z(t),θ(t)) where
z(t) is the population imbalance between the traps and θ(t) is their phase-difference. For the
phase-space representation we re-defined the complex variables (α , β ) more precisely by α =
|α|exp(iθa) and β = |β |exp(iθb). Population imbalance is defined by z(t) = (|α|2− |β |2)/n(t)
where n(t) = (|α|2+ |β |2) is the total number of atoms in the double-well, while the relative phase
at any instance is θ(t) = θa(t)−θb(t). We set ω = ωa = ωb assuming a symmetric double-well
trap.

Using the definition of z(t) and θ(t) and performing some algebra on Eqs. (12)-(13), we
obtain the following set of coupled dynamical equations [26, 33]:

dz
dt

=−2
√

1− z2 sinθ +η(1− z2) , (14)

dθ

dt
=

2z cosθ√
1− z2

−Uz . (15)

The equations above are controlled by the dissipation bias parameter η = Q1 −Q2 and inter-
particle interaction U (time-independent). Time has been scaled in unit Ω. Fixed-points of the
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system can be obtained by setting ż = 0, θ̇ = 0 which then yields the following result:

sinθ =
η

2

√
1− z2 ,

cosθ =
U
2

√
1− z2 . (16)

Solving the above set of equations we obtain fixed points (z∗,θ∗)= { (0,θ1), (0,π−θ1), (±mo ,π−
θ2) } where mo =

√
1− 4

U2+η2 , θ1 = arcsin(U/2) and θ2 = arccos( U√
η2+U2

). For the non-dissipative

case (η = 0), we change mo to so =
√

1− 4
U2 . Notice that the fixed-points are a function of inter-

particle interaction and damping constant. Based upon the above Eqs. (14)–(15), Jacobian matrix
can be derived in the following way:

M =

(
∂ ż
∂ z

∂ ż
∂θ

∂ θ̇

∂ z
∂ θ̇

∂θ

)

=

(
2zsinθ/

√
1− z2−2η z −2

√
1− z2 cosθ

−U +2cosθ/[1− z2]3/2 −2zsinθ/
√

1− z2

)
. (17)

The Jacobian matrix above is evaluated at fixed-points (z∗,θ∗), and the eigenvalues describe its
stability characteristics. The latter is based upon the following criteria which reads [34, 35]:

• two imaginary eigenvalues correspond to the formation of elliptic fixed-point,
• two real eigenvalues indicate the formation of hyperbolic fixed-point,
• two real eigenvalues with opposite sign indicate a saddle point,
• complex eigenvalue with negative real part represents an attractor,
• complex eigenvalue with positive real part represents a repeller.

Table 1 details the eigenvalues, trace and determinant for the non-dissipative and dissipative cases.

3.2. Dynamics of system subjected to time-dependent dissipation

For the driven time-dependent dissipation, the phase-space portrait is expanded to three
dimensions defined by the vector Z = (z(t), θ(t), φ (t)). Again, the equilibrium or fixed-points
are determined by setting Ż = 0. Periodically varying the dissipation might drive the system to
an equilibrium (fixed-points) or non-periodic (chaotic) state. That needs to be determined now.
We reformulate Eqs. (14) and (15) incorporating the time-dependent dissipation term. The new
dynamical equations are:

dz
dt

=−2
√

1− z2 sinθ +ζ (t)(1− z2) , (18)

dθ

dt
=

2z cosθ√
1− z2

−U z , (19)

dφ

dt
= ΩD . (20)

Here ζ (t) = ΓA(t)− ΓB(t) = η(1 + F cosφ) is the time-dependant dissipation parameter with
bias η already defined earlier. We have introduced parameter φ = ΩD t to transform the non-
autonomous ordinary differential equation (ODE) in the form Ẋ = (ż(t), θ̇(t))′ = F(z(t),θ(t), t)
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Table 1. Eigenvalues, trace and determinant of the Jacobian matrix (17) for the system
with and without dissipation. On each cell, the first line corresponds to Jacobian eigenval-
ues, the second line is represented by the symbol (p,sign), where p is trace of the Jacobian
matrix or addition of eigenvalues which is a real or complex number whereas the sign in-
dicates whether its determinant is > 0, < 0 or simply zero. The third line denotes the
characteristic of fixed-points.

Non-dissipative η=0 U=0.1 U=1.0 U=2.0 U=2.5

M(0,0) ±1.95i ±1.41 0,0 ±1
(0,+) (0, +) (0, 0) (0, -)
elliptic elliptic saddle

M(0,π) ±2.05i ±2.45i ±2.83i ±3i
(0,+) (0,+) (0,+) (0,+)
elliptic elliptic elliptic elliptic

M(so,π) ±2.83i ±1.5i
(0,+) (0,+)
elliptic elliptic

M(−so,π) ±2.83i ±3.2i
(0,+) (0,+)
elliptic elliptic

Dissipative η = 0.1

M(0,θ1) ±1.95i ±1.41i 0,0 ±1

(0,+) (0,+) (0,0) (0,-)
elliptic elliptic saddle

M(0,π−θ1) ±2.05i ±2.45i ±2.81i ±3i
(0,+) (0,+) (0,+) (0,+)
elliptic elliptic elliptic elliptic

M(mo,π−θ2) -0.01±2.83i -0.06±3.20i

(-0.01,+) (-0.12,+)
attractor attractor

M(−mo,π−θ2) 0.01±2.83i 0.06±3.20i
(0.01,+) (-0.12,+)
repeller repeller

to an autonomous ODE Ẋ = (ż(t), θ̇(t), φ̇(t))′ = G(z,θ ,φ). Evolution of phase diagrams (z,θ ,φ )
governed by the main control parameters (U, η , F, ΩD) are plotted in Figs. 3 and 4. The focus of
this work is to study the dynamics closer to the onset of chaos, or when equilibrium states such
as the macroscopic quantum coherence (occur at weak interaction) or localized MQST perturbed
[24, 26, 33].
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Fig. 2. Phase space (z,θ ) evolution of the BEC system as a function of inter-
particle interaction strength U and dissipation strength η . Initial conditions are (z(0),
θ(0))=(±0.64,0) while the trajectories run for t=300. Phases are evolving from Quan-
tum Tunelling state (QTS) (elliptic trajectories) at U = 1.0 to Macroscopic Quantum
Self-trapping (hyperbolic trajectories) U = {2.5,2.75}. Phase difference θ is plotted in
unit radian.

We have seen in the previous sub-section that the phase-space diagram illustrates quali-
tatively the complex non-linear dynamics of the system at critical points featuring fixed-points
and attractors. However, Lyapunov characteristics exponents (LCE) provide a precise quantitative
convergence or divergence measure of the generated close-by trajectories [35]. We numerically
compute the LCEs employing the Benettin algorithm, details of which can be found in the refer-
ence [36].
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Fig. 3. Phase space evolution on the plane (z,θ ) for the system driven by dissipa-
tion as a function of driving amplitude F . Driving frequency is fixed at ΩD = π/6
at weak inter-particle interaction with strength U = 0.75. Initial conditions are (z(0),
θ(0),φ(0))=(±0.64,0,0) while the trajectories runs for t=300. Phase difference θ , is
plotted in unit radian.

Usually, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical sys-
tem is a quantity that characterizes the rate of infinitesimal separation of close trajectories Z(t) and
Z0(t) in phase space. Let δZ(t) = Z(t)−Zo(t) and δZo = Z(0)−Zo(0), if |δZ(t)| ≈ exp(λ t)|δZo|
then λ is treated as the Lyapunov exponent. If the trajectory Z(t) is given by an n-dimensional lin-
ear ordinary differential equation system with constant coefficients Ż = AZ+F(t). For a dynami-
cal system with evolution equation F(t) in n-dimensional phase space, the spectrum of Lyapunov
exponents λ1 ,λ2 , ... ,λn, in general, depends on the initial point xo. The Lyapunov exponents
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Fig. 4. Same as in Fig. 3 but for U = 2.75.

describe the behaviour of vectors in the tangent space of the phase space and defined from the Ja-
cobian matrix Ji j(t) =

fi(t)
dxi
|xo ( matrix J whose elements evaluated at initial value xo) while fi is the

element of vector F. Then the evolution of small increment δZ = (δ z(t),δθ(t),δφ)′ culminated
from linearized solution of the equation ˙δZ(t) = J(xo)·δZ(t). The real parts of the n-different
eigenvalue of the Jacobian matrix J is naturally the Lyapunov exponents, where the largest value
of them is defined by [36, 37]:

λmax(t) = lim
t→∞

lim
|δZo(t)|→0

1
t

ln
|δZ(t)|
|δZo(t)|

. (21)
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We follow criterion in reference [37] (see also text-books on dynamical systems and chaos
such as [35, 38–40]) which states that the system attractors reduce to (i) stable fixed points, if all
the Lyapunov exponents are negative, (ii) a limit cycle if one Lyapunov exponent is zero and the
remaining exponents are all negative, (iii) k-dimensional torus if the first k Lyapunov exponents
vanish while the remaining ones are negative and (iv) a strange attractor which is chaotic if at least
one Lyapunov exponent is positive. Table 2 below summarizes the criterion stated above.

Table 2. Types of attractors based on the set of Lyapunov exponents for three-
dimensional phase space.

Types of attractors Signs of LCEs (λ1,λ2,λ3)

Fixed-point (-, -, -)

Limit cycle (-, -, 0)

Torus T 2 (-, 0, 0)

Strange attractor (-, 0, +)

Table 3 below depicts the steady-state Lyapunov exponents yielded by our simulation:

Table 3. Lyapunov exponents and Kaplan-Yorke dimension for given parameters.

Inter-particle
interaction strength

Driving parameters LCE λ1 LCE λ2 LCE λ3 DKY

U=0.75 F=1.8, ΩD = π/6 -0.015 -0.003 0 1

U=0.75 F=1.9, ΩD = π/6 0.0164 -0.031 0 2.529

U=2.75 F=4.25, ΩD = π/6 -0.007 -0.141 0 1

U=2.75 F=4.5, ΩD = π/6 0.047 -0.198 0 2.237

Ordering the LCEs in such a way that λ1 > λ2... > λ j where j is the largest integer such that
λ1 +λ2 + ...+λ j ≥ 0 accordingly, one can find the Kaplan-Yorke dimension (DKY) as following
[36]:

DKY = j+
∑

j
i=1 λ j

|λ j+1|
(22)

Fractional Kaplan-Yorke dimensions on Table 3 recognize non-periodic (or chaotic) solu-
tion for the larger driving amplitudes F in both weakly and strongly interacting system. Please
note that we have depicted only parameters around the onset of chaos and their Lyapunov charac-
teristics exponents (LCE) are computed numerically and depicted in Fig. 5.
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Fig. 5. Lyapunov exponent evolution of our system as a function of dissipation with
amplitude F and driving frequency fixed at ΩD = π/6. The dissipation strength bias
between the two wells is set at η = 0.1. The top panel is for weak on-site inter-particle
interaction with strength U = 0.75, while the bottom panels are for U = 2.75. Dynamics
of the system is generated by an initial condition (z(0),θ(0),φ(0)) = (0.64,0,0).

4. Conclusions

We have analysed the complex non-linear dynamics of the double-well BEC system sub-
jected to time-dependent dissipation. The operational dynamics is Markovian and the macroscopic
system is valid within the Mean-field approximation. We extensively use the Matlab 0DE-45
solver in solving the system of first order non-linear ODE equation that arises from our model.
Converging results can only be obtained using small parameter values. ODE-45 solver is a MAT-
LAB numerical tool that employs an build-in Runge-Kutta fourth-order (RK4) algorithm. The
mentioned solver is reliable in solving non-stiff ordinary or non-linear differential equations such
as Van der Pol or Duffing equations.

In the double-well BEC literature, one sees elliptic trajectories around its fixed points which
appear at weak inter-particle interaction indicating the Quantum coherence phase. On the other
hand, MQST is depicted by hyperbolic trajectories around its fixed points present at stronger
inter-particle interaction. In this work, we have chosen the mentioned two distinctive inter-particle
interaction regimes to study the effect when the system is driven by time-dependent dissipation.
The system’s dynamics are controlled by the competition between inter-particle interaction and
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dissipation which itself is a function of amplitude and frequency. We have found that increas-
ing driving amplitudes enhances systems’ route to chaos. A large amplitude is needed for this
transition at a stronger interacting regime.

The limitation of this work is that it uses only simple dissipation, culminating from the
delta-correlated memory kernel. The internal noise has been averaged out (by the single mo-
ment average) though the noise-noise correlation is not negligible for which the system obeys the
Fluctuation-dissipation theorem. However, dissipation still prevails in the system. Mean-field ap-
proximation requires only single moment averages, hence complicated two-point correlations of
particles or noises have been neglected for simplicity. Including them results in a beyond mean-
field approach which was reported by one of us in our earlier study of the system subjected to
constant dissipation. We may consider it in future work.
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