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Abstract. The coherent potential approximation and mean field approximation are used to cal-

culate the free energy of the coupled carrier localized spin system in III-V diluted magnetic semi-

conductors. Thus the magnetic transition temperature Tc can be determined and its dependence

on important model parameters. We show that the strong antiferromagnetic superexchange inter-

action between nearest neighbour sites considerably reduces the Curie temperature.

I. INTRODUCTION

Diluted magnetic semiconductors (DMS) are semiconducting alloys where lattice is
partly made up of substitutional magnetic atoms. The most extensively studied DMS in
recent years are (III,Mn)V-type DMS, in which a fraction of the group III sublattice is
replaced at random by magnetic Mn atom [1]. It is highly noteworthy that the doping of
Mn into GaAs and InAs lead to ferromagnetism and magnetooptical and magnetotrans-
port phenomena. So far, over the last ten years (Ga,Mn)As and related compounds have
considerably strengthen their position as an outstanding playground to develop and test
novel functionalities unique to a combination of ferromagnetic and semiconductor system.
Many concepts, like spin-injection, electric-field control of the Tc magnitude and magneti-
zation direction, are being now developed in devices involving ferromagnetic metals, which
may function at ambient temperatures. Therefore, a further increase of Tc, over current
record value of 190 K, continues to be a major goal in the field of DMS [2-3].

From theoretical point of view there are mainly two types of disorder in DMS:
substitutional disorder and the thermal fluctuation of localized spins. Neglecting disorder
effect the mean field Zener model predicts the possibility of high Curie temperature for
some materials [4-5]. However, properly taking the disorder effect into consideration, as
shown in some latter studies, is indispensable in calculation of the Tc in DMS [6-8]. In
almost theoretical works above, as far as we know, the influence of the direct exchange
interaction between magnetic impurities has been neglected. The purpose of this paper
is to calculate the magnetic transition temperature in III-V-type DMS where both of
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the exchange interaction between carrier and impurity spins, and the direct exchange
interaction between magnetic impurities are taken into account. We show that the strong
antiferromagnetic superexchange interaction between nearest neighbour sites considerably
reduces the Curie temperature.

II. THE MODEL AND FORMALISM

In order to study the influence of the antiferromagnetic exchange interaction between
magnetic impurities on the Curie temperature in DMS of the type A1−xMnxB, where the
parent material AB is assumed to be a nonmagnetic III-V compound, we consider the
following Hamiltonian

H =
∑

ijσ

tija
+
iσajσ +

∑

i

ui − J
∑

<ij>

~Si
~Sj, (1)

where ui is either u
A
i or uMi depending on the ion species occupying the i site:

ui =







EA
∑

σ
a+iσaiσ, i ∈ A

EM
∑

σ
a+iσaiσ −∆

∑

σ
a+iσaiσ(σSi), i ∈ Mn.

(2)

Here a+iσ(aiσ) is the creation (annihilation) operator for a carrier with spin σ at i site;
~Si denotes the spin of localized impurity at i site ; ∆ is the effective coupling constant
between the localized spin and itinerant spin; J is the coupling constant between the
neighbouring localized impurity spins, which depends on their distance and for the AF
exchange interaction case J < 0.

By using coherent potential approximation and mean field approximation the free
energy per site of the system (1) at temperature T is given as [9]

F (m) = Ecarr(m) + hmx+ xJγm2/2− xkBT ln(
∑

Sz=±S

eβ(h+Jγm)Sz

), (3)

where m is the average magnetization per lattice site, Ecarr(m) is the carrier energy, h
is the field induced by the polarization of the carrier spins, γ is the effective number of
surrounding impurities a given impurity interacts with and β = 1/kBT .

By minimizing F with respect to m we obtain the equation for h, and within the
Weiss molecular field theory, each impurity spin feels an effective field h̄ = h+ Jγm, then
the local magnetization is calculated by

m = SBS

(

h̄S

kBT

)

, (4)

where BS(x) =
2S+1
2S coth 2S+1

2S x− 1
2S coth 1

2Sx is the conventional Brillouin function and
for Ising spin S = 1/2 and B1/2(x) = tanh(x).

The Curie temperature is determined by differentiating both sides of Eq. (4) with
respect to m at m = 0. This leads to the formula

kBTc =
S(S + 1)

3

(

−1

x

d2Ecarr(m)

d2m
|m=0 +Jγ

)

. (5)
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So, we have
Tc = Tc0 − TAF , (6)

where Tc0 = −S(S+1)
3xkB

d2Ecarr(m)
d2m

|m=0 is the Curie temperature of the system in the absence

of antiferromagnetic interaction between magnetic impurities; and TAF = −S(S+1)
3kB

Jγ

describes the contribution of the antiferromagnetic interaction to the Curie temperature.
We mention that Eq. (6), which has been derived in some early studies [10,11] within the
Weiss mean field theory, implies that the Curie temperature is determined by competition
between the ferromagnetic and antiferromagnetic interactions. Here, the main difference
between our result and that of Refs. [10,11] is that we perform our calculation of Tc0

by applying the coherent potential approximation to the coupled carrier localized spin
system.

III. NUMERICAL RESULTS AND DISCUSSION

Our main interest is focused on the dependence of the Curie temperature on the
significant model parameters, particularly, on the antiferromagnetic coupling constant J .
Through this work we take EA as the origin (= 0) and W as the unit of energy, γ = 6 for
simple cubic lattice. We have shown our results in figures 1-4. In Fig. 1 we have plotted
Curie temperature vs. carrier density n for different values of J = −4,−8 and −12.10−4,
for x = 0.05, EM = −0.2 and ∆ = −0.3. Since TAF ∼ |J | it follows that for all nTc is
reduced for increasing |J |. This constant depends on the distance between two neighbour
impurities, so it depends on the impurity concentration x. Unfortunately, as noted in [11],
non of J neither x, n, EM of our model is directly experimentally measurable. That is
why a detailed comparison between our result and experiment cannot be done. Here we
choose the magnitude of J in the same order as in Ref.[11]. It is seen that our Tc(n) first
increases with increasing n, reaches a peak and then decreases. Therefore, our CPA Tc(n)
is very different from that of the mean field approximation (MFA), where Tc saturates for
large n [12]. A similar result is also obtained in other studies [6,13]. This difference is due
to the difference in the treatment of the disorder between CPA and the MFA.

In Fig. 2, we have shown Tc(n) for various values of ∆ = −0.3,−0.4 and −0.6,
for x = 0.05, EM = −0.2 and J = −4.10−4. One can see that for almost n, Tc increase
with the magnitude of the effective coupling ∆. When |∆| is small (|∆| ≤ 0.4) the Curie
temperature vanishes at a critical value nc larger than x. On the other hand, when |∆| is
large, the ferromagnetism occurs in a narrow range of n (≤ x). The Tc rises steeply and
reaches a maximum at n ≈ x/2 and then it decreases rapidly.

Next, in Fig. 3 we have shown Tc(n) for different impurity concentrations x =
0.025, 0.05 and 0.1, for ∆ = −0.3, EM = −0.3 and J = −4.10−4. The maximum Tc is
reduced for decreasing x. As noted in Ref.[8] it results from to the reduction of the effective
bandwidth of the impurity band in the strong coupling regime, W eff ≈ √

xW , and the
maximum Tc0 is estimated to be ∼ √

x at n ≈ x/2. Fig. 4 displays the change of Tc with
the change of nonmagnetic potential EM for x = 0.05, ∆ = −0.3 and J = −4.10−4. In
contrast to the MFA where the finite nonmagnetic potential does not affect the calculation
of the Curie temperature, in CPA the negative EM markedly changes TC . Comparing with
the curves in Fig. 2 it is clear that EM simply renormalizes the effective value of ∆.
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Fig. 1. Curie temperature dependent as a function of carrier density n for various
antiferromagnetic couplings for x = 0.05, EM = −0.2, ∆ = −0.3.
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Fig. 2. Curie temperature as a function of n for various effective coupling con-
stants for x = 0.05, EM = −0.2, J = −4.10−4.

To summarize, we have perform a model calculation of the Curie temperature in
DMS (III,Mn)V-type, where both of the exchange interaction between carrier and impu-
rity spins, and the direct exchange interaction between magnetic impurities are taken into
account, by applying the CPA and the Weiss mean-field approximation. With these meth-
ods we investigated the influence of several model parameters on Tc. We found that the
Curie temperature is determined by competition between the ferromagnetic and antifer-
romagnetic interactions, therefore the strong antiferromagnetic superexchange interaction
between nearest neighbour sites considerably reduces the Curie temperature. We showed
also increasing the impurity concentration x and/or the negative EM markedly enhances
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Fig. 3. Curie temperature as a function of n for different values of magnetic
impurity concentration for EM = −0.3, ∆ = −0.3, J = −4.10−4.
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Fig. 4. Curie temperature as a function of n for various nonmagnetic potential
for x = 0, 05, ∆ = −0.3, J = −4.10−4.

Tc. Our calculated results are in reasonable agreement with the ones obtained by a com-
bined equation of motion/ CPA method [12].
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