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Abstract. In this paper, we investigate the asymmetry of hole tunneling through a magnetic semi-
conductor tunnel junction (GaMnAs/GaAs/GaMnAs) in general cases, where the magnetizations
of the two electrodes are noncollinear and their magnitudes are not equal. The six-band k.p Hamil-
tonian is employed to describe the holes in the GaAs and GaMnAs layers, taking into account both
spin-orbit and exchange interactions. Multi-band transfer-matrix formalism is applied to solve the
Schrödinger equations for hole wave functions and derive the transmission coefficients. We inves-
tigate the transmission asymmetry as a function of both the magnetization magnitude at the right
electrode and the angles between two magnetization vectors. The results provide better under-
standing about the dynamics of the anomalous tunneling Hall current during the magnetization
switching process, which is important for designing and measuring spintronic devices.

Keywords: spin-orbit interaction, III-V semiconductor, magnetic tunnel junction, multi-band trans-
port, transfer matrix, k.p method.
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1. Introduction

Spintronics is an exciting scientific field that investigates the use of the carriers’ spin degrees
of freedom to enhance the efficiency of electronic devices. Remarkable advances include magnetic
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random-access memory (MRAM) and spin-transfer torque magnetic random-access memory (STT-
MRAM) [1,2]. These devices were developed based on the discoveries of Giant Magnetoresistance
(GMR), Tunnel Magnetoresistance (TMR), and Spin Transfer Torque (STT) [3–6], which rely on
the mechanism of exchange interactions in magnetic materials.

In the last few decades, research in a new subfield of spintronics, called spinorbitronics,
has gained considerable attention. This research branch focuses on exploiting quantum effects re-
sulting from the interaction between the spin and its orbital trajectory (SOI) in spintronic systems.
SOI-driven effects, such as the well-known Spin Hall effect and its inverse [7], promise the po-
tential to develop a new generation of spintronic components and spin sensors that do not require
magnetic fields.

Semiconductor systems are particularly intriguing among all spinorbitronic materials due
to their potential for integrating into the existing electronics industry, as well as the numerous
spin-orbit interaction mechanisms they exhibit. Among the semiconductor systems, extensive re-
search has been conducted on GaAs semiconductors and their heterostructures. The combination
of spin-orbit interaction with the crystal and structural asymmetry in these systems leads to sev-
eral important effects, including spin galvanic [8], spin filtering [9], and spin rotation [10]. In
compounds such as GaMnAs, the presence of both exchange and spin-orbit interactions is crucial
for the discovery of a new category of effects known as the Tunneling Anomalous Hall Effect
(TAHE) [11] or Anomalous Tunnel Hall Effect (ATHE) [12]. The latter was discovered by our
group while studying the skew scattering of electrons and holes at an exchange-split interface or a
spin-orbit tunneling barrier separating the two GaMnAs layers. Accordingly, carriers with oppo-
site in-plane wave vector directions undergo asymmetric transmission while passing through such
structures, resulting in the appearance of a net charge current along the structure surface. ATHE
has been shown to be an extraordinary phenomenon by its large magnitude, chirality, and univer-
sal nature. Various calculation methods, including perturbation and non-perturbation Green func-
tion methods as well as advanced numerical computations based on k.p formalism [13–15], have
highlighted this fact. TAHE/ATHE has recently been discovered in new material groups [16, 17],
showing its important implications for future research in the field of spinorbitronics.

In previous studies, ATHE was examined under the assumption that the systems are in
anti-parallel (AP) configuration, with the magnetization of two GaMnAs layers having equal mag-
nitudes but opposite directions. In this work, we investigate the effect in general cases where the
magnetization vectors of the two electrodes are noncollinear and their magnitudes are different.
We consider the off-normal tunneling of valence band holes through a semiconductor magnetic
tunnel junction (MTJ) made of GaMnAs/GaAs/GaMnAs. The magnetization vector of the left
electrode is fixed, whereas that of the right electrode can be changed. We investigate the transmis-
sion asymmetry as a function of both the magnetization magnitude at the right electrode and the
angles between two magnetization vectors.

2. Problem description and the Hamiltonian

Here, we consider a magnetic tunnel junction (MTJ) composed of GaAs and GaMnAs
grown along the z = [001] crystalline axis, as shown in Fig. 1. This structure consists of an
intrinsic GaAs semiconductor layer with thickness d acting as a tunneling barrier, sandwiched
between two GaMnAs layers, one on the left (fixed) and the other on the right (free), acting
as electrodes. ~M(L) and ~M(R) represent magnetization vectors at the left and right electrodes,
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respectively. ~M(L,R) = M(L,R)~m(L,R) where M(L,R) is the magnetization magnitudes and ~m(L,R) is the
unit vectors determining the direction of magnetizations. The system is not under the influence of
any external electric or magnetic fields.

Fig. 1. Semiconductor MTJ in arbitrary configuration with unequal and noncollinear
magnetization vectors at the two electrodes.

Considering off-normal tunneling of holes with kinetic energy E through the structure, the
Schrodinger equation for the wave function is:[

H( j)
0 +H( j)

exc +V ( j)
]

Ψ
( j) = EΨ

( j), (1)

where j = {L,B,R} stands for left electrode, barrier and right electrode correspondingly. H( j)
0

is the Hamiltonian of the holes in intrinsic GaAs, H( j)
exc stands for the exchange Hamiltonian in

GaMnAs, and V (L) = V (R) = 0 and V (B) = Vb are the potentials. Using six-band k.p formalism,
the Luttinger-Kohn Hamiltonian describing valence band holes is given by [18]:
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We have chosen the energy origin at the top of the valence band and used the notations
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where k̆ = h̄k( j)/
√

2m0, m0 is the mass of free electrons, and k( j) = [k( j)
x ,k( j)

y ,k( j)
z ] is the wave

vector. The term H( j)
exc represents the p−d exchange interaction between Mn magnetic impurities

and GaAs. For the intrinsic GaAs in the barrier, we have H(B)
exc = 0. For GaMnAs in the left and

right electrodes, using the Zener mean-field model [19], H(L,R)
exc can be written as

Ĥ(L,R)
exc = ω

(L,R)~s.~m(L,R). (3)



266 Asymmetric tunneling of holes through a semiconductor junction in an arbitrary magnetization configuration

In this formula, ~s is the spin operator written in Hamiltonian basis and ω(L,R) is the exchange in-
teraction strength that is proportinonal to the magnetization magnitude M(L,R) by ω(L,R) = βM(L,R)

gµB
,

where β is the exchange integral, g is the Landé coefficient, and µB is the Bohr magneton. The
expressions for~s and Ĥexc have been represented in the Refs. [20, 21].

3. Calculation Method

Choosing z = 0 at the interface between the barrier and the left electrode, we find the wave
function in the jth region as

Ψ
( j) = eik‖ρ

N=6

∑
m=1

a( j)
m Φm(k

( j)
m )exp(ik( j)
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0 )). (4)

Here z(L,B)0 = 0 and z(R)0 = a; k‖ is the in-plane wave vector component which is conserved during

the tunneling process, and k( j)
m is the value of the component k( j)

z , being the mth eigenvalue of the
following eigenvalue equation

det‖H( j)
0 +H( j)

exc +V ( j)−E)‖= 0, (5)

and Φ
( j)
m are the corresponding eigenvector. Note that normally Eq. (5) has 2N solutions. Due

to time inversion symmetry, both k( j)
m and −k( j)

m are solutions. Therefore, in Eq. (4), we have
arranged the waves propagating in the negative and positive directions separately, and used the
notation −k( j)

m ≡ k( j)
m+N . Defining the current density operator in each region Ĵ( j)
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Note that the Hamiltonian in Eq. (1) includes terms up to the second order of k( j)

z . Expanding the
Hamiltonian as Taylor series on k( j)

z yields
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is the current density calculated at k( j)
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eigenvector Φm(k
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convenient form:
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are the so-called interface matrices, and

Q =



ek(B)1 a ... 0
. . .
. . .
. . .
. . .
. . .
. . .

0 ... ek(B)2N a


(13)

is the matrix representing the phase propagation in the barrier. T is the so-called transmission
matrix relating the left electrode’s wave amplitude to the right electrode’s wave amplitude. Note
that here T is a 2N×2N matrix. T in terms of two N×N matrices t and r is rewritten as follows:

T =

[
t−1 −t−1r′

rt−1 t ′− rt−1r′

]
. (14)

The total transmission coefficient is calculated by T = Tr t†t. After obtaining the transmission
coefficients, we can calculate the transmission asymmetry characterized for the ATHE as:

A =
Tk‖−T−k‖

Tk‖+T−k‖
. (15)

4. Result and Diccussion

The Luttinger parameters of the Hamiltonian in Eq. (3) are chosen as γ1 = 6.85, γ2 = 2.1,
γ3 = 2.9. These parameters provide hole masses from the 6× 6 k.p matrix consistent with the
experimental data [22]. The spin split-off energy value ∆ = 0.31 eV from Schottky barrier elec-
troreflectance measurements is taken into account. In GaAs, ∆ is much smaller than the bandgap
energy; therefore, the approximation γ∆1 ≈ γ1, γ∆2 ≈ γ2, and γ∆3 ≈ γ3 can be applied [18]. The
barrier thickness is d = 3 nm and the potential height is Vb = −0.6 eV. The magnetization of the
left electrode is along the x direction, i.e., ~m(L) = [1, 0, 0], and its magnitude is constant with
respect to ω(L) = 0.15 eV. The valence band holes are injected into the structure with an in-plane
wave vector component k‖ = [0.02, 0.02] Å−1. The band structure of the left GaMnAs layer is
shown in Fig. 2, where the top of the spin subbands HH↑, HL↑, HL↓, HH↓, SO↑, and SO↓ are
located in descending order of energy levels.

We will first examine the effect of the magnitude of the right electrode’s magnetization
on the transmission asymmetry. To do this, we consider the system in an anti-parallel (AP)-
like configuration, where the magnetization directions of the two electrodes remain opposite (i.e.,
m(R) = [−1,0,0]), but their magnitudes are not equal ( i.e., ω(R) 6= ω(L)). To obtain the complete
picture of the system’s properties, for a specified value of ω(R), we calculate the asymmetry within
a tunneling energy range that covers all valence spin subbands.

The transmission asymmetry as a function of tunneling energy for ω(R) = 0.05 eV (dashed
line), ω(R) = 0.1 eV (dotted line), ω(R) = 0.15 eV (solid line), and ω(R) = 0.2 eV (dotted dashed
line) are shown in Fig.3. The solid line corresponding to the antiparallel case (ω(R) = ω(L) = 0.15
eV) [12] is considered as a reference line. Interestingly, all the curves exhibit the same behavior.
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Fig. 2. Band structure of the holes in GaMnAs electrode. From top to bottom are the spin
subbands HH(L)
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Fig. 3. Transmission asymmetry vs tunneling energy for different values of right elec-
trode exchange energy: ω(R) = 0.05 eV (dashed line), ω(R) = 0.1 eV (dotted line),
ω(R) = 0.15 eV (solid line) [12], and ω(R) = 0.2 eV (dash-dotted line).

The transmission asymmetry A crosses the zero value twice and changes its sign from negative to
positive and vice versa. In increasing ω(R), the curves are shifted towards the lower-energy regime
and then asymptote to the reference line when ω(R) reaches ω(L). This saturation characteristics
persists even for ω(R) > ωL. We also observe that changes in the magnitudes of ω(R) have little
influence on the asymmetry in the E > 0 region, where only HH↑ and LH↑ subbands contribute to
the tunneling process. Similarly, in the E <−0.45 eV region, where all spin subbands participate
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in tunneling, the effect of ω(R) on asymmetry is also negligible. The effect of ω(R) becomes
apparent when the tunneling energy is between −0.4 and 0 eV. In particular, in the vicinity of
E =−0.1 eV both the magnitude and sign of A strongly depend on the value of ω(R). Therefore,
we predict that the magnetization magnitude determines the tunneling properties of the down-spin
light hole. Additionally, the dependence of the transmission asymmetry on the exchange energy
for specific injection energies is shown in Fig. 4.
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Fig. 4. The transmission asymmetry vs the right electrode exchange energy at specific
injection energy values: E = −0.035 eV (solid line), E = −0.1 eV (dotted line), E =
−0.165 eV (dash-dotted line), and E =−0.3 eV (dashed line).
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Finally, we examine the transmission asymmetry when the system is in arbitrary magneti-
zation configurations, where the magnetization vectors at the two electrodes are noncollinear. Be-
cause ~m(L) is aligned with the x-axis, the position of ~m(R) relative to ~m(L) can be described through
three components: m(R)

x = cosθ , m(R)
y = sinθ cosφ , and m(R)

z = sinθ sinφ , where θ ∈ [0,π] rep-
resents the polar angle, and φ ∈ [0,2π] represents the azimuthal angle with respect to the x-axis.
Taking ω(R) = ω(L) = 0.15 eV and the tunneling energy E =−0.1 eV, we calculate the transmis-
sion asymmetry coefficient on varying (θ ,φ).

Figure 5 shows the transmission asymmetry in (φ ,θ) panel, where the asymmetry val-
ues are depicted by the corresponding colors as displayed in the color bar and each contour line
presents a constant asymmetry level. As the system approaches the parallel configuration (PA)
(i.e., when θ ≈ 0), the asymmetry parameter A becomes zero, which is consistent with intuition.
Conversely, when the system approaches the anti-parallel configuration (AP), A exhibits signifi-
cant negative values (up to 70%) and shows little variation with respect to φ . In the intermediate
states, A reaches its maximum positive value of 30% when the system is close to the spin transfer
state (ST) (yellow regions). Generally, the transmission asymmetry exhibits a strong dependence
on θ , whereas its dependence on φ is relatively weak.

The relative positions of the two magnetization vectors in the electrodes can be varied in
magnetization switching process. The spin current flowing in the structure induces spin torques
that affect the magnetization vectors. Its dynamics is governed by the Landau– Liftshit–Gilbert–
Slonczewski equation [6]. The polar angle θ and the azimuthal angle φ determing the precession
of the magnetization vector on the right electrode around that on the left electrode are functions of
time. From our calculation, A = A (θ ,φ) = A (t), the time-dependent information of the ATHE
current can be obtained, which complete picture of the dynamics of the magnetization switching
process.

5. Conclusion

In this work, we have investigated the asymmetry of the hole tunneling in a semiconductor
-based MTJ in an arbitrary configuration. Namely, the two magnetization vectors are different in
either magnitude or direction. The results show that the transmission asymmetry depends strongly
on the magnitude of the right magnetization, particularly in the tunneling energy region where the
down-spin light hole involves. Moreover, the asymmetry coefficient depends on the polar angle
θ more than on the azimuthal angle φ between the two magnetization vectors. The result of this
work motivates us to study the dynamics of anomalous tunneling hall current during magnetization
switching process in the future.
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