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Abstract. Hydrogen bonding on two-dimensional silicon carbide (2D SiC) was studied using
molecular dynamics and ab initio calculations. By investigating a converged density functional
theory (DFT) calculation, the stable bonding sites of a hydrogen atom on the 2D SiC were found
at the top sites (TSi and TC, of which TSi is a more stable adsorption site). The adsorption investi-
gation of the H/SiC system showed the local change in the SiC lattice. The calculated band gap is
about 2.2 eV, which was compared with previous studies.

Keywords: density functional theory calculation; two-dimensional; silicon carbide; hydrogen ad-
sorption.
Classification numbers: 71.15.Mb; 88.85.mh; 77.84.Bw.

1. Introduction

After the success of creating graphene in 2004, two dimensional materials have attracted
the attention of many research groups worldwide [1–5]. Many elements can form thin films, such
as C, Ge, Si... It has been shown that the mixture of silicon (silicene) on a silver base has been
synthesized in 2010 and 2012 [6,7]. Besides, by experimental methods such as the thermochemical
reaction of Si powder at high temperatures, SiC cotton is almost 2D [8]. In theoretical studies, 2D
SiC materials have been shown to have bond lengths from 1.77 Å to 1.89 Å with a large bandgap
of about 2.5 eV [3, 9, 10]. Because of a large bandgap, the 2D SiC is expected to be of great
significance in the application of nano-devices for use under both high conditions of temperature
and frequency.

By using different simulation methods in theoretical studies, like molecular dynamics (MD)
and density functional theory (DFT) methods, it has been shown that different bond length values
lead to a change in the properties of 2D silicon carbide models [11–13]. However, many properties
of 2D SiC, such as hydrogen adsorption capacity, 2D SiC surface deformation, etc., have not been
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studied yet. Therefore, in this study, by combining the two methods of MD and DFT studies, the
2D SiC model is revisited. Using the MD simulation, the pristine 2D SiC model is studied. Then,
by using the DFT calculation with the convergence controlled, the H – SiC interaction of the 2D
H/SiC is investigated. The structural deformations of SiC when interacting with hydrogen are also
investigated and studied in this paper.

2. Methodology

The 2D SiC model of 6000 atoms is constructed by using the MD simulation via the
LAMMPS package (Large-scale Atomic/Molecular Massively Parallel Simulator). The LAMMPS
simulation software is a MD program that focuses on materials modeling [14]. We use the condi-
tions of periodic boundary and Vashishta potential [15]. To investigate whether when crystallizing
from this interaction potential, the obtained model has better hydrogen adsorption than the theo-
retical models generated directly from the DFT of other studies, the DFT calculation is conducted.

To obtain the optimized structures and the ground-state energies of all MD-obtained simu-
lation models, the DFT method is used via the SIESTA software [16]. The GGA, PBE functional,
the 200 Ry energy cutoff, the periodic boundary condition, and the basis sets of DZP are used
for all simulation models. The periodic distance in the z-axis is 40 Å, which is used for the pur-
pose of ignoring most periodic side-layer interactions. When the maximum stress component is
small enough (usually it is accepted to be less than 0.02 eV.Å-1), the geometry optimization loop
is stopped. To decide to choose the above parameters, several previous studies have verified the
reasonableness and accuracy of the obtained results [17, 18]. From the obtained MD simulated
structure, a SiC supercell of 98 atoms is cut out. Then, a hydrogen atom is put on the 2D non-fixed
SiC surface to determine the stable site of the H/SiC adsorption system. To check the k-point
convergence, the k-point grid from 0 to (13×13×1) MP scheme is taken into account.

3. Results and discussion

 Looking from the top  Looking from the side 

Fig. 1. The obtained 2D silicon carbide model.

The MD results show that the relaxed bond length between silicon and carbon atoms of the
optimized solid silicon carbide model at 300K is 1.85 Å. This bond length is close to 1.89 Å found
in the study of [19]. No buckling is found in the SiC model (see Fig. 1), as expected from the
previous research [20].

https://en.wikipedia.org/wiki/Molecular_dynamics
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From the obtained structure of 6000 atoms, a smaller model of 49 silicon and 49 carbon
atoms is analyzed. The DOS of this system is shown in Fig. 2. This DOS result shows that the SiC
model has semiconductor properties, similar to the results of some previous studies [9, 10].

Fig. 2. The density of state of the 2D silicon carbide model.

To further verify the electrical properties of this model system, the bandgap has been cal-
culated through Fig. 3. The obtained bandgap of ~ 2.2 eV is smaller than the previous studies’
result (2.5 eV) [3, 9, 10]. This can be explained by the difference in bond lengths between the Si
and C atoms. The bond length obtained from the MD calculation for more than 6000 SiC atoms
is 1.85 Å, while the commonly seen bond length of the 2D SiC is 1.79 Å [3, 10]. In addition, the
bandgap energy of the 2D SiC model is smaller than that by other calculations which may be due
to the fact that the PBE pseudopotential often calculates a smaller band gap energy than it is in
experiment [21].

Fig. 3. The band structure of the 2D silicon carbide model.
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Then, the H atom is randomly dropped on different positions on the silicon carbide surface:
02 top, 01 bridge, and 01 center sites. After optimizing the system, only the top sites (TC, TSi)
exists (see Fig. 4). Ivanovskaya et al. also show similar results in the graphene model [22]. To
check the convergence of the k-point value, the energies of adsorption TC and TSi systems are
found when the k-point value changes (see Table 1 and Fig. 5). It shows that from the k-point
value of the (3×3×1), the magnitude of the changes in the adsorption energy is less than 0.005.
This means that the convergence is obtained for the k-point. Therefore, to study the H/SiC system,
the k-point of (3×3×1) is chosen.

Fig. 4. The red hydrogen atoms are on a) the top TSi and b) the top TC positions.

The formula used to calculate the adsorption energy Eads is:

Eads = E(H/SiC)−E (SiC)− 1
2

EH2 ,

where Eads is the hydrogen adsorption energy on 2D SiC, E (H/SiC) is the energy of the model
of one H on the 2D SiC, E (SiC) is the SiC energy, and EH2 is the hydrogen molecule’s energy. It
is found that Eads( TSi) = −0.71 (eV) , and Eads( TC) = −0.37 (eV). This result indicates that the
more stable adsorption site is the Si site.

Figure 6 displays the SiC lattice distortion around the hydrogen adsorption position. Be-
cause we cannot observe the distortion from the z-axis view, it proves that the displacements in the
x- and y-axis are small. Table 2 shows the displacement of Si and C atoms when a hydrogen atom
is adsorbed on the SiC surface. The numbering in Table 2 is corresponding to Fig. 6. The results
show that the hydrogen atom attracts the carbon atom higher than the Si atom along the z-axis does
at the absorption point (zC=0.460 Å, zSi=0.369 Å). In addition, the hydrogen atom also attracts the
first neighboring silicon atoms upwards, causing the 2D SiC film to form local deformation at the
adsorption site on the C atom (Table 2). Previous theoretical work on graphene also noted this
property [22]. In contrast to the obvious observation of local deformation at the adsorbent C atom,
the adsorbent silicon local deformation is almost not found (Table 2). This once again confirms
that the silicon atoms bonded to the SiC lattice are more stable. And the results in Table 1 are also
consistent with this conclusion.
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Table 1. The Eads (eV) of the H/SiC monolayer model on the different TC, and TSi sites.

k-point top C top Si

(1 × 1 × 1) MP -0.34643 -0.71564

(2 × 2 × 1) MP -0.37178 -0.71165

(3 × 3 × 1) MP -0.37375 -0.71170

(4 × 4 × 1) MP -0.37410 -0.71138

(5 × 5 × 1) MP -0.37373 -0.71111

(6 × 6 × 1) MP -0.37302 -0.71199

(7 × 7 × 1) MP -0.37272 -0.71151

(8 × 8 × 1) MP -0.37274 -0.71197

(9 × 9 × 1) MP -0.37391 -0.71103

(10 × 10 × 1) MP -0.37377 -0.71156

(11 × 11 × 1) MP -0.37377 -0.71156

(12 × 12 × 1) MP -0.37377 -0.71156

(13 × 13 × 1) MP -0.37407 -0.71187

Fig. 5. The convergence of the k-point (the energy difference is Eads (TC) – Eads (TSi)).



326 Ability of a hydrogen atom to be adsorbed on the 2D silicon carbide

Fig. 6. There are no distortions observable in the 2D SiC supercell when viewing from the top.
The H atom was marked with red color in both adsorption configurations TC (a) and TSi (b). The
neighborhoods of the absorbent atom are numbered to correspond with Table 2.

Table 2. The displacement of non-fixed 2D SiC atoms with a hydrogen atom adsorbed
on the top sites compared with the optimized model (Å). First-order neighborhoods of the
adsorbent atom have been in boldface.

TC TSi

Atom x y z Atom x y z
1 Si 0.016 0.017 0.011 Si 0.014 0.011 0.014
2 Si 0.087 0.021 0.066 Si 0.006 0.018 0.014
3 Si 0.025 0.014 0.013 Si 0.011 0.001 0.015
4 Si 0.004 0.072 0.058 Si 0.017 0.006 0.014
5 Si 0.001 0.008 0.014 Si 0.013 0.016 0.014
6 Si 0.037 0.050 0.061 Si 0.006 0.004 0.014
7 C 0.012 0.014 0.003 C 0.002 0.029 0.004
8 C 0.020 0.012 0.006 C 0.008 0.003 0.011
9 C 0.027 0.005 0.010 C 0.017 0.020 0.006
10 C 0.020 0.014 0.004 C 0.003 0.002 0.011
11 C 0.008 0.009 0.007 C 0.034 0.009 0.005
12 C 0.004 0.001 0.009 C 0.004 0.004 0.011
13 C 0.017 0.000 0.460 Si 0.005 0.001 0.369
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4. Conclusions

The possibility of hydrogen bonding with 2D silicon carbide films has been investigated
through the theoretical simulation method. The results show that there exist the bonding sites
of hydrogen atoms on 2D SiC which are the on-top sites TSi and TC, of which the more stable
adsorption position is TSi. The binding of a hydrogen atom to a 2D silicon carbide surface distorts
the silicon carbide film structure. The C atom is pulled up along the z-axis at the hydrogen-carbon
interaction site. This displacement of the C atom is larger than that of the Si atom, which indicates
that the silicon atoms are more tightly bound to the 2D SiC lattice.
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