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Abstract. We study the effect of quantum and thermal fluctuations on the excitation energy spec-
trum and sublattice magnetization of the 1200 ordered phase of the spin-1 antiferromagnetic
Heisenberg model on a triangular lattice with nearest- J1 and next-nearest-neighbor J2 exchange
interactions. The auxiliary fermionic representation of the spin operators within a functional in-
tegral formalism with an imaginary Lagrange multiplier is employed to retain an exact constraint
of single particle occupancy. Representing the classical ground state by Luttinger-Tisza order-
ing vector Q one may consider the fluctuation contributions to the free energy of the system in
the entire range of the coupling parameters. We derived the magnon spectrum in one-loop ap-
proximation and the magnetization taking into account thermal fluctuations. The obtained results
are compared with the result of the linear spin-wave approximation and experimental findings on
compound NiGa2S4.
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1. Introduction

The antiferromagnetic Heisenberg model on a triangular lattice with nearest- J1 and next-
nearest-neighbor J2 exchange interactions has been extensively studied from both the theoretical
and experimental viewpoints in recent years because it is a typically example for a geometrically
frustrated spin system. In general, quantum fluctuations will be largest for the case spin s = 1/2,
and that they will reduce to zero as s→ ∞. For this reason spin-1/2 magnets attract the greatest
attention. For the spin-1/2 antiferromagnetic Heisenberg model, at the classical level, the ground
state of the system has three different types of structures depending on the value of the ratio
α = J2/J1 of couplings. For values−∞<α ≤ 1/8, this system is known to take a well-known 1200

structure in which the lattice is divided into three sublattices that neighboring spin are oriented
1200 relative to each other; while for 1/8 < α < 1 the ground states become degenerate into any
four-sublattice states that satisfy S1+S2+S3+S4 = 0, where Si denotes the spin at sublattice site
i; and when α > 1, the system has an incommensurate spin structure [1]. When one investigates
the properties of ground states and phase transitions, a open question arises as to whether or not
the combined effect of quantum fluctuations and geometrical frustration that present in the lattice
destroy long-range Néel type order. The spin-wave theory [1-5] predicts that quantum fluctuations
on the spin-1/2 triangular-lattice are insufficient to suppress the classical Néel order, but lead to a
reduction in the sublattice magnetization of around 50% from its classical value. While many of
the numerical studies [6-9] based on the exact diagonalization of small lattice clusters predicted
that the ground state has very small or zero magnetic long-range order (LRO). Some calculations
[10-13] conjecture the absence of a sublattice LRO, instead a disordered state like the spin-liquid
state, others [14, 15] suggest a quasiclassical ordered state. The controversial results gives an
indication that the problem has not been theoretically resolved yet.

In contrast to the s = 1/2, the conclusive results for the s = 1 antiferromagnetic Heisenberg
model in this geometrical frustration are scarce. On the one hand due to the lack of experimental
data, on the other hand powerful numerical techniques (e.g. density-matrix renormalization group)
cannot be easily applied for this model. The active interest in the model was revived recently by
the unconventional magnetic properties observed in the Ni-based compound NiGa2S4 [16]. In this
material, spin−1 carrying Ni2+ ions reside on weakly coupled triangular lattice layers. NiGa2S4
demonstrates a spin disorder down to the temperature T ≈ 0.35K, incommensurate short-range
spin correlations and a quadratic low-temperature dependence of the specific heat.

In this work we study the spin-1 antiferromagnetic Heisenberg model on a triangular lattice
with nearest- J1 and next-nearest-neighbor J2 exchange interactions. Similarly the linear spin wave
approximation, it starts from the assumption that Néel order exists, and then the physical quantities
found must be self-consistent with assumption. Here, we also assume that the 1200 Néel ordered
phase of Heisenberg antiferromagnet triangular lattice with long range couplings exists. We use
Popov-Fedotov (PF) functional integral formalism and Luttinger-Tisza procedure representing the
classical ground state to consider the fluctuation contributions to the free energy of the system
[17]. We derived the magnon spectrum, sublattice magnetization, and study their temperature
dependence in a mean field approach within the one-loop approximation. The obtained results is
compared with the result of the linear spin-wave (LSW) approximation and experimental findings
on compound NiGa2S4.
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The remainder of this article is organized as follows: In Section 2 we present the derivation
of the partition function under the single particle site occupation constraint. The mean-field and
first order loop expansion term contributions are derived in Section 3. In Section 4 we determine
sublattice magnetization and one-magnon excitation spectrum, and discuss the results obtained
at the different levels of approximation. Comments are presented and conclusions are drawn in
Section 5. Some of the analytical results reported in this work have been partially reported in the
proceedings of the Vietnam conference on theoretical physics [18].

2. Model and formalism

We start with the Hamiltonian

H = J1 ∑
<i j>

SiS j + J2 ∑
<<kl>>

SkSl, (1)

where Si represents a spin located at site i, and < i j >, << kl >> denote the sum extends over all
nearest-neighbor (NN) sites, and next-nearest-neighbor (NNN) sites, respectively.

We shall be interested here only in the case of competing or frustrating antiferromagnetic
bonds J1 > 0, J2 > 0 and J2 = αJ1 where 0≤ α ≤ 0.125. All energies will be given in the unit of
J1.

Firstly, we brief some analytically results found out in the early publication [18]. In that
work we considered a general antiferromagnetic Heisenberg Hamiltonian on a Bravais lattice given
by

H = ∑
i j

Ji jSiS j, (2)

where Si denotes the S = 1 spin vector operator and Ji j > 0 which is antiferromagnetic interaction
between the sites.

Applying PF method to spin systems with S= 1 we have obtained the analytical expressions
for the mean - field magnetization under the constraint of strict single site occupancy, magnetiza-
tion taking into account thermal and quantum fluctuations, and magnon spectrum as follows

m0 =−
2sinh(−βλm0)

1+2cosh(−βλm0)
, (3)

m = m0 +δmzz +δm+−, (4){
E(k) = λm0ω(k)
ω2(k) =

(
1− X(k)

λ

)(
1− Y (k)

λ

)
.

(5)

Here β = 1/(kBT ) is the inverse temperature, ω(k) is the frequency of the spin excitations, δmzz
and δm+− which are the fluctuating contributions to the longitudinal and transerve parts of the
magnetization respectively given by

δmzz =−
1

2N ∑
k

1
A0(k)


(

W 2(k)
X(k)−λ

+X(k)
)

m0∆mβ

2− 1√
4−3m2

0

+
W 2(k)Kzz

2

m0 (X(k)−λ )2

 ,

(6)
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δm+− =− 1
2N ∑

k∈BZ
coth

(
βE(k)

2

)[
∆m.λ .ω(k)+

1− (X(k)+Y (k))
2λ

ω (k)

]
+

1
2
(1+λ .∆m)coth

βλm0

2
,

(7)
with N is number of lattice sites,

A0(k) =
(

W 2(k)
X(k)−λ

+X(k)
)

Kzz
2 +1,

Kzz
2 =−β

(1−m2
0
)√

4−3m2
0

1+
√

4−3m2
0


∆m =

−Kzz
2

1+λKzz
2
,

λ =−∑
δδδ i

Jδδδ i
cos(Q.δδδ i) ,

, (8)

and X(k),Y (k),W (k) are the components of the exchange interaction after Fourier transformation
X(k) =−∑δδδ i

Jδδδ i
cos(k.δδδ i)cos(Q.δδδ i)

Y (k) =−∑δδδ i
Jδδδ i

cos(k.δδδ i)

W (k) = i∑δδδ i
Jδδδ i

sin(k.δδδ i)sin(Q.δδδ i)

(9)

∑δδδ i
denote the sum extends over all nearest-neighbor and next nearest-neighbor sites,

Jδδδ i
= J1 ∑

δδδ
(1) δi, j+δδδ

(1) + J2 ∑
δδδ
(2) δi, j+δδδ

(2) with the vectors δδδ
(1) and δδδ

(2) connecting the NN and
NNN sites.

We now focus on Hamiltonian (1). In the general frustrated lattice described by Hamil-
tonian (1) the classical ground states have long range order, which may be parametrized by some
magnetic ordering vector Q. We assume that the spins are planar in the plane Oxz and are de-
scribed as follows:

Si = S (u.sinQ.ri +v.cosQ.ri) , (10)

where u,v are unit vectors along Ox and Oz axes respectively, ri is the position vector of site i.
Then the vector Q defines the relative orientation of the spins on the lattice. Namely, an angle
between the vectors Si and S j is given by:

θi j = θi−θ j = Q.(ri− r j) . (11)

The classical energy which is represented in terms of the ordering vector Q read

Ecl =
1
2

NS2J(Q), (12)

where J(k) is the Fourier transform of Ji j and has form
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J(k) = J1 ∑
δδδ
(1)
i

eikδδδ
(1)
i +αJ1 ∑

δδδ
(2)
i

eikδδδ
(2)
i

= 2J1

{
coskx +2cos

kx

2
cos

√
3ky

2
+α

[
cos
(√

3ky

)
+2cos

(
3
2

kx

)
cos

(√
3

2
ky

)]}
.

(13)

Classical ground state can be found by minimizing (12) with the relaxed constraint on the
spin value

N

∑
i=1

S2
i = NS2. (14)

Differentiating (13) with respect to kx,ky we have obtained the various minima of the func-
tion J(k) inside the first Brillouin zone of the triangular lattice as α is varied. When 0≤ α < 1/8,
the J(k) has minimum at six points which are at the corners of the hexagonal Brillouin zone,
such as the point with coordinate Q1 = (4π/3,0). The system has three-sublattice 1200 coplanar
order. For 1/8 < α < 1, the minima of J(k) occur at the centers of the faces such as the point
Q2 = (0,2π/

√
3). The system is in a collinear state with four-sublattice periodicity, in which the

only constraint is to have the four spins sum to zero. When α > 1, the minima are located at points
which have coordinate (0, 2√

3
arccos(−1/2−1/2α)). It has now generic incommensurate spiral

structures.

Fig. 1. The Brillouin zone of the triangular lattice. The arrows indicate the path which the Bragg
vector Q of the ground state configuration takes when α increases: Q = Q1 =

( 4π

3 ,0
)

for −∞ <

α < 1/8; Q = Q2 =
(

0, 2π√
3

)
for 1/8 < α < 1; for α > 1 Q moves continuously from Q2 towards

Q3 =
(

0, 4π

3
√

3

)
at the corner of the

√
3×
√

3 Brillouin zone.

In the next section we will treat the ground state of the system as a Néel state to perform
numerical calculations for the sublattice magnetization m and the excitation energy spectrum E
in the entire range of the coupling parameters 0 ≤ α ≤ 0.125. This result describes the effect of
quantum and thermal fluctuations on the excitation energy spectrum and sublattice magnetization
of the 1200 ordered phase of the spin-1 antiferromagnetic Heisenberg model on a triangular lattice.
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3. Results and discussion

Firstly, we consider the zero temperature limit (T → 0). From Eq.(3) we find out the mean
- field magnetization under the strict constraint of single site occupancy as m0 = 1. Then the
magnetization (4) is reduced to

m =
3
2
− 1

2N ∑
k∈BZ

1
ω (k)

[
1− (X(k)+Y (k))

2λ

]
. (15)

The numerical result of Eq. (15) shows that the magnetization taking into account quantum fluc-
tuations is reduced in comparison with the classical value. We have obtained m = 0.738703 for
α = 0 (this result is a good agreement with the spin-wave result of Miyake [2] and Chernyshev [3],
and the large-S expansion result of Chubukov [4]), and m decreases to nearly m = 0.207699 for
α = 0.12499. The m−α phase diagram of the model (1) is outlined on the basis of numerically
calculations and shown in Fig. 2.

Fig. 2. The sublattice magnetisation m as a function α at t = 0.

Figure 2 depicting the dependence of m on α shows that, the system has two phase transi-
tions observed at nearly point α1 ≈ 0.12499 and α2 ≈ 0.135. This is different from the classical
case, in which the system transitions from the 1200 Néel state into the collinear state at αc = 0.125.
Our result shows that in the interval 0.12499 < α < 0.135 the system is in a new ground state with
no magnetic order. The appearance of this new phase was confirmed in Refs. [10-13], and we will
not mention it here.

Let us now discuss about the scaled temperature dependence t (t = kBT/J1) of the sublattice
magnetization and the one-magnon excitation spectrum. The energy spectrum of the magnon at
temperature t = 0 and t > 0 is plotted in Fig. 3.

Fig. 3a shows the spectrum of spin excitations in case of J2 = 0. The frequencies of spin
excitations vanish at k = 0 and k = ±Q1, where Q1 = (4π

3 ,0) and (±2π

3 , 2π√
3
) are the ordering

wavevectors. Therefore, at t = 0 the system has LRO, which manifests itself in vanishing frequen-
cies of spin excitations at nonzero ordering vectors (two of these vectors are indicated in Fig. 1;
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Fig. 3. The spin excitation spectrum E(k) for different values of the frustration parameter
α at t = 0 and t 6= 0.

other four vectors place at the corners of the first Brillouin zone). These vectors correspond to the
mentioned 1200 spin structure. Thus the ground state of the S = 1 model with NN interactions is
characterized by the LRO.

The evolution of the zero-temperature spin-excitation spectrum with α is shown in Fig. 3b.
In the range of 0 ≤ α ≤ 0.125 the frequency of spin excitations vanishes at wave vectors Q1 and
the dispersion is close to that shown in Fig. 3a. Thus the system retains the 1200 Néel LRO in this
range. A typical dispersion in this range is shown in Fig. 3b.

In Fig. 4 we plot the mean field magnetization mo. From the curves of magnetization one
can see that in the low temperature region (t < 0.5) two curves coincide and are almost invariant
(m0 = 1). They are only significantly different in the higher temperature region. At mean-field
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level the critical temperature for the exact constraint case (PF theory) is higher than that for average
constraint one (LSW theory). This is due to thermal fluctuations into unphysical spinless state in
the case of global constraint, which reduce the magnetic moment.

a = 0

a = 0.05

a = 0.075

0.0 0.5 1.0 1.5 2.0
t = kB TêJ

0.2

0.4

0.6

0.8

1.0

m0

Fig. 4. Temperature dependence of mean field magnetization mo for Néel state with
α = 0; α = 0.05 and α = 0.075. Dashed line: average-constraint, full line: exact-
constraint.

The temperature dependence of one-magnon excitation spectrum is shown in Fig. 3(c,d,e,f).
In the low temperature region t < 0.5, the energy spectrum is almost unchanged. In the temperature
region near the critical temperature, the one-magnon excitation spectrum changes significantly but
remains the same form. This is due to the fact that the magnon spectrum given by expression (5)
at zero temperature and temperature t differs only by the multiplier m0(t).

Figure 5 shows the dependence on temperature t and the coupling parameter α of the sub-
lattice magnetization m taking into account effects of fluctuations. At a fixed temperature below
the critical temperature, the magnetization is greatest for α = 0, and it will decrease as α in-
creases. For t = 0 the curve m(α, t = 0) is farthest from the bottom surface, when t is larger, the
curve m(α, t) is closer to the bottom surface. This means 1200 Néel ordered phase domain shrinks
closer to the origin on the parameter axis α (also see Fig. 2). At a fixed frustrated parameter α ,
the sublattice magnetization m decreases rapidly with increasing temperature. For α = 0 the curve
m(α = 0, t) is farthest from the horizontal axis, and critical temperature is the biggest. For α is
larger, the curve m(α, t) is closer to the bottom surface, which means the lower the critical tem-
perature. In particular, the critical temperature of the lattice magnetization taking into account the
influence of fluctuations tc( f l) is very small compared to the one of mean field magnetization tc(m f ),
for example for α = 0.05 then tc( f l) ≈ 0.225, tc(m f ) ≈ 1.799; for α = 0.075 then tc( f l) ≈ 0.177,
tc(m f ) ≈ 1.696. Figure 5 also indicates that temperature t increases over critical temperature, sub-
lattice magnetization m = 0. So the maximum critical temperature of the Néel order phase 1200 is
tN = 0.345 corresponding to α = 0.

The above results demonstrate that the considered Heisenberg model has an LRO phase
with 1200 Néel ordered structure. The quantum fluctuations associated with geometric frustration
have a great effect on the Néel ordered phase. Although it does not break this structure, it reduces
the energy of the excited states and the sublattice magnetization. Taking into account the influence
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of thermal fluctuations, the sublattice magnetization m declines very rapidly with temperature,
simultaneously, the value domain of the frustrated parameter shrinks, i.e. the system transforms
1200 Néel phase into new phase at a value of the frustration parameter α0 < αc = 0.125, where α0
depends on temperature. This is very different from the classical case where the system transitions
at the value αc = 0.125.

Fig. 5. Temperature and frustrated coupling parameter dependence of one-loop cor-
rected magnetization m.

4. Conclusions

In this work, we have derived the magnon spectrum in the one-loop approximation and the
magnetization taking into account the thermal fluctuations. At zero temperature the competition
of interactions leads to the appearance a new phase which has no magnetic order between two
classical phases. The quantum fluctuations are insufficient to suppress the classical Néel order, but
lead to a reduction in the sublattice magnetization of around 26.13%−79.23% from its classical
value. At low temperature the magnon spectrum is almost unchanged, and the magnetization is
close to the spin wave value as expected, also in agreement with the previous works [2-4]. As
the temperature increases, the thermal fluctuations together with the quantum fluctuations cause
the sublattice magnetization m to decrease rapidly. When the temperature approaches the critical
temperature TN , the the sublattice magnetization m approaches 0. We find critical temperature
TN ≈ 0.345J1/kBK for α = 0. When temperature t increases over critical temperature, sublattice
magnetization m = 0, it means that no magnetic long-range order is observed above this tempera-
ture. This result is consistent with specific heat data indicating a disordered low-temperature state
without conventional antiferromagnetic order on the compound NiGa2S4 [16].

In the present work we aim to work out the expression of the magnon spectrum and the
magnetization starting from a specific mean field ansatz and include contribution up to first order
in a loop expansion in order to investigate the effect of fluctuation corrections to mean field effects
at Gaussian approximation. To complete the magnetic property picture of the new synthesised
layered materials containing Ni2+ ions, one need to include the third order interaction J3. It will
be our future study.
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