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FREE ENERGY DENSITY FOR GAUGE BACKGROUND FIELDS
AT FINITE TEMPERATURE
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Abstract. The effective action and background field method have been applied to investigate free
energy density for non-Abelian gauge theory at finite temperature, in which quantum corrections
are included and certain symmetries of generating functional are restored. Renormalization is
also considered for the gauge field. We give result for the one loop free energy density of gauge
theory at high temperature and non-zero chemical potential, correcting a result previously at zero
temperature and density. Some results are extended up to two loops.

I. INTRODUCTION

The finite temperature effective action and its thermal potential is known as a
method which provides a general approximation beyond one loop and higher free energy
density, in the perturbative as well as non-perturbative sector [1]. In particular, it plays an
important role in the investigation of cosmological phase transition [2] and non-equilibrium
phenomena [3]. However, the effective potential of gauge theories may fail to be gauge
because it is against gauge transformation and generally does depend on the {-gauge [3,
4]. Therefore, it is worth to mention that the background field method allows one to fix a
gauge, thereby compute quantum effects without losing explicit gauge invariance [5, 6].

Our main aim is to present in detail the effective action at high temperature for
general non-Abelian theory by background gauge field method. In this connection, it is
possible to consider our work as being complementary to result previously at zero tem-
perature [6].

This paper is organized as follows. In Sec. II, the background field method is pre-
sented for general fermion-boson interacting system. Section III is devoted to effective
potential at finite temperature for background fields. In Sec. IV the dimensional regu-
larization at finite temperature is presented for some divergent integrals. We obtained
the result for one loop free energy density and renormalization of the gauge field. The
discussion and conclusion are given in Sec. V.

II. FORMALISM

I1.1. Background field method

Let I (\il, v, P, Au) be the action of fermion - boson interacting system, where ¥, ¥
are multiplet of fermion fields, ®;(i = 1,2...n) are components of the scalar fields, A, -
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gauge fields and w,w* - ghost fields.

I= /deo(x) (1)
where Lagrangian density reads

1 a auy NI
Lo=— XFMVF 4 ‘I’(Z’yuDu — GZ(I)Z)‘I’

+ (D — iu8,0) @3] " [(DH — i 0)®;] — m* @ &; — N ;) (2)
1
2¢
Here pu is chemical potential, GG; and A are coupling constants, A > 0
D, =0, —iT" A},
Ff, = 0,A% — 0,A% + fapcADAS

a 2 k * C
(aﬂAN) — #waﬁ"wa + fabc(auwa)AZw .

po
where T, are group generators, fu;. are structure constants which satisfy Lie algebra
fabcfdbc = QQCA(Sad (3)
TrT,T, = g°Cpla (4)

with C'4 is numerical constant of gauge group, C4 = N for SU(N), Cp is representation
of this group.

It is well known, the Lagrangian (1) is invariant under non-abelian gauge transfor-
mation.

() — U(a),

Au(z) = UAu(2)U + g(aMU)Ut (5)
Fu() — U Fy (2)U
where U is unita transformation of gauge parameters

U=e" 0(z) = 0°(2)T", Au(x) = AL (z)T°.

In the generalized ¢ - gauge, the Lagrangian (1) is also renormalizable (if the matter
Lagrangian part is).

In the non - abelian theory, explicit gauge invariance is normally lost when quantum
correction are included. The background field method allows us to fix gauge, hence inves-
tigate quantum effects, so that certain symmetries of generating functional are restored.

The fields are shifted by

Ay — A+ AL (0]A.|0) = const, (0|A],]0) =0, (6)
D; — B; + 3 (0]2;]0) = o, (0]25/0) = 0, (7)
U — ¥+ U, (0|®|0) = (0|¥’|0) =0, (8)
Wa — Wq + We; (0]wa|0) = (Olwy|0) = 0, (9)

where A, ®, ¥, w, are the background fields, and Aj,, ®', W', w; are the quantum fields,
which are variables of integration in the functional integral. The gauge is chosen (the
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background field) which breaks the gauge invariance in terms of the A, ®, ¥, w fields.
Background field gauge is assured by coupling external sources only to the A}, W', &' o'
fields. Thus, quantum calculations can be performed, yet explicit gauge invariance in the
background field variable is not lost.

It is shown [6] that the original gauge transformation is equivalent to formal com-
bined transformations

SAS = 0,0" — fapc0’AS,  SAL = —fupct AL, (10)
o = 0TV, o0 = T, (11)
dwg = — fabcebwcu &"); = _fzzbcebwé (12)

so that
S(A% + A%) = 8,0° — furct® (AL + AL),
(P + V') =0T (¥ + V'), (13)
S(wa + W) = — fapet(we + W)

If we choose the gauge fixing function F'* which transforms as a background covari-
ant derivation

Fe — DMA;f“’ (14)
where D#gpa = 0ua + fabcAvppe for any field ¢4, then
OF® = — func’FC; S(FIF%) = 0. (15)

In the scalar sector of non-Abelian theory, the Lagrangian part
Lg = (D,®;)"(D"®;) +ip [®] (Do®;) — (Do®;) " ®;] + (u> —m?)@F ®; — \(D] ®;)* (16)
is invariant under the local transformation
®;(z) — e @, (2) (17)
It leads to a new ground state and the shift ®;(z) by real fields ®/(x), i.e

Do = (D) = W =75 ;5@ @ (). (18)

Hence symmetry is broken if y? > m?.

Since the potential only depends on [v+ ®%(z)]?, it is clearly that §(x) are massless
fields (Goldstone bosons), i.e (6(z)) = 0. In general, Goldstone bosons don’t appear in
spectrum of theory in which the symmetry is local.

The formal combined transformation (10) - (12) leave invariance of the modified
complete Lagrangian

Lmod = LAF + LB + Lgf + Lghost (19>

where
1 — ! — ’ ! I 2
Lap=-7 (ng — DAY — DA + fa,,cA;A;) o)
! [iv“ (D# - iT“A;f) n M] U g0,
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Here g; = V/2G;, M = g;v is the mass of fermion in the presence of a background field ®

1- _
Lp :§DM<1>;DN<1>’+ ME]@;@;

] , N (21)
- 5M%,A CAL + R ATAPTOTY — Av®P — Zq»;*.
with M2 = ¢*v?T,T), is the mass of vector boson, ij = 6;j(u? — m?) — 3@/®" is the
diagonal mass matrices of scalar bosons.
Lyj = — —FoF® — <D A ) , (22)
2€ 2%
Lohost = — (D) (D¥ey = faneich AL (23)
where
D,V = 9,0 —iT* AV, (24)
D, ®; = 0,9, — zT"AZCI);, (25)
DHAV = AL + farcALAS (26)
Dywq = Oywa + fabeAppwl,
D,wi = 0wk + fabcAwa;*
I1.2. Renormalization

The formal gauge invariance impose the constrains on divergence occurred in the
theory, but the background gauge transformations (10)

- (12) conserver gauge invariance
in path integration.

Adding to the Lagrangian (1) a counterterm

0L == JLaAFG P + Ly Wy D, ¥ — LG &, ¥

+ Lo [(DF — in8,0)®"] " [(DH — ipg0)dh] (27)
— Lym?®; ®; — L@ ®;)? — L, (Dyw?) (D w,)
so that renormalized Lagrangian takes the form
LR = Lo+ 6L =~ 4F5§FaWR TRyhD, R RERGRGFR
+ (DEOR) " (DFf) + iy (0F Royol — afopa ™) o)
28
2 1 )
2 2 RxR RxR R A0R
+ (4~ m}) o Rl — Ap (07 "0f) ~ 5 (DA
«R R R
— (Dyiws) (DMwgf)
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Hence, its easily to define the renormalized fields
AU =\/1+ LpAS Ot = /14 Lo®;
=v/1+ Ly ¥ vl = /14 Lev (29)
wf =+v/1+ L,w, ZR V1+ Lyw,

and the renormalized masses, the background field strength tensor

(1+ Ly,)
f :GZRUR§ m¥ = m2ﬁ7 (30)
Folt =0, A% — 0, AGR + f1 APRACE, (31)

The covariant derivation are taken in renormalized sense
DI = 9, 0" —iTF ARG R
DRl = 9,08 —iTfAMRDf
DRAaR _ a AaR + fﬁcAbRACR (32)
DRR 6Mw +fabc ng
DR *R a‘uw*R 4 Ab,u

The renormalized structure constants and group generators are determined by

abc

Be=0+ L) fae, (33)
TR = (14 Ly)~ V%1, (34)
and the coupling constants are renormalized by
AR =\ (1+Ly) (14 La)72, (35)
Gl = gi(1+ Lo)(1+ Lo) ' (1 + La) /2, (36)
gt =g 1+ La) 2 (37)

I1II. THE EFFECTIVE ACTION FOR BACKGROUND FIELDS AT
FINITE TEMPERATURE

The generating functional for the background fields is defined by
ZB [777 n, Jiv J,uy Jav Jl;k] = exp iWﬂ [T], 7, Jia J/u Jaa Jl;k]

= /[d\Il] [dP][d®][dA][dw][dw*] exp i {/dmLmod(m) + M\Iffyo\I'} (38)

+ /d:n (7T + ¥y + J;®; + JFA, + Jiw, + Jywi] -
The integration has to be performed over antiperiodic Grassman fields
¥(0,x) = —¥(f,x%)

and periodic bosonic fields
B(O,X) = B(ﬁ7x) with B = ((I)a AH)a
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where 3 = ﬁ, we set Boltzman constant k£ = 1.
If we complete the background gauge transformation with transformation for the
external sources

on = 0T 5J5 = fanct®JS,
o = 76T 6Ja = fancd"JC, (39)
8J; = 02T J; 6JF = fupet® I,
then the thermal mean values of corresponding fields are given by
oWpg oWpg - _
= = = \I’ =
Sy = (@ =) ek = (B(@), =9,
W3 W3
— (P, — . . — (AY — Aa
(5J1($) < Z(x)>ﬁ ¢Z(x)7 5J‘W(x) < ,u(x)>5 Au($)7 (40)
oWpg oWpg . .
STy = el = wnla)s G = i), = wila).

The thermal propagators of matter (spinor and scalar) gauge and ghost fields are
determined by

W e
d7j(x)on(y) =5@v); 8Ji(2)6 i (y) Ain(@:y), )
(52W5 o ' (SQWg B

m _Gplz)/($7y)a m = Dyp(z,y).

The effective action at finite temperature is defined normally as a Legendre trans-
formation of Wpy
L [0, 6, Ay w,w"] =W [0, 77, Jis Jus T4 Jas T
_ (42)
- /dﬂ? (710 + ¥n + Jidi + Al + Jiwa + Jywy] -

The stationary condition for physical processes which correspond to vanishing ex-
ternal sources requires

5w n=0 5w n=0 ’ (Swa Jx=0 (5&); Jou=0
oT ) ‘ |
5o |yzg =i~ V9 = (D = indu0) (D" = i85 = mdi = 220:(dnn) =0 (43)
b ) b 1 b2
—Ja0 _ Ta VF(I _ fa CA Fl/p, 7TaA T 2 _
0A% L7k=0 Sy =T+ 0F,, — f wlc” + 5 bl @7 =0

It is shown [7] that the effective action in which the replacement (10)-(12) have been
manifested just is original effective action I'g [w, U, ¢, Ay, w, w*] evaluated at mean values
Ay, ¢ and w,w*. It is very important to realize that under the formal combined gauge

transformation (10)-(12) the effective action is a gauge invariant functional if no external
lines A, ¥, @,
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Fig. 1. One loop graphs for background fields which are represented by bold
external lines.

a) The internal lines correspond to quantum fields.

b) Three last diagrams are quadratic contribution in background field A,

Now we consider the effective action in background field for which A} and ®; are
constant, and ¥ = ¥ = w = w* = 0. For such a background the modified Lagrangian is
given by (19) - (24). The effective action is calculated from the part of the action that is
quadratic in quantum fields A, ®', ¥’ and w’,w"™ over which one integrated

Tyuad = / 2 Lguad = / dx [—i (Du Al DVA;f> i @ faeADAS
- /d:c\l!' (VD + " + M + g;4}) ¥’
+ [ s [1 (DusiDr 6} — MEo?) Zeb’;*]
/ d [2 é (Duae)” + (D) (D#wg)}
= 5 [ eyt @D )AL ~ [ dedy¥ @)D )V )

/ ddyd)(z)Dix(z, y) S () — / Ay, (YD op (1, 1) (y)
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By using the Fourier transformation D (k) = [ dre*(*=¥)®(z — y) the matrices in
(44) are given by

CDZII)/(]{:) =9uv [ <_ikp5ca + fcdaAg) (—ikpécb + fcebAZ)

- <_ikv(50a + fcdaAzd/> (_ikuécb + fcebAZ) + Fﬁyfcab] (45)
+ guydijq)i(k:)@j(k)T“Tb =+ € terms,
with F%, = fape AL AS.

D(k) =(—if — T A}, + M + pyo) + € terms, (46)
gab(k) = (_ikp(sca + fcdaAdp) (ikp(scb + fcebAg) + € terms, (47)

A
Dij(k) = (—iky —ip — iTA,), (i + i+ z'TaAZ)j —mg; — 5 @i + € terms, (48)

In momentum representation, the effective action takes the general form

7 * s * i a
Ts [0, 0,0, Apyw,w*] =T [0,4, ¢, Ap,w,w*] — 5TrznG;,;(k)
Z, 5 (49)
+iTrinS(k) — iTrlnAij(k:) +iTrinD g (k) + Z n loops 1PI

n=2

where the action I [1/), 0, @, Ay, w,w*] is given in (44) - (48). The Trace, the logarithm are
taken in functional sense, and the free propagators are given by

S7HE) = — M — ie; M = gv, (50)
AG(K) = 6i5k° — M7 —ie; MY = (4* — m?)5;; — %@-qﬁj, (51)
Gt = (003, ~ ) [ 252 — g, ]+ [oulS i Bk (52)
DL (k) = bap(k? — ic), May = Soungv (53)

The higher loop graphs for background fields are represented in Fig. 2.

IV. ONE LOOP FREE ENERGY DENSITY AT T # 0

The symmetry is broken if Egs. (40) - (41) has non-vanishing solutions A, # 0, ¢ #
0. For (A,)g = 5OMA2, (®) = ¢o the effective potential is defined by
s
B [ dx

It is just thermal free energy density, which concerns with the restoration of sym-
metry at T # 0.

Vg =

(54)
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Fig. 2. Higher loop graphs for background field gauge: a) Two loop graphs; b)
Three loop graphs

Starting from (49) and (54) the one loop thermal effective potential for the back-
ground fields in momentum space reads

y 1 loop _ _ / d'k [itrlnS(k)—ltrmA-(k)—}trlnG (k) + itrinD (k)] (55)
8 (2m)? 2 4 2 w ab

here ”tr” denotes usual traces of finite matrices.
The proper way to regularize the theory at finite temperature in d = 4 — 2¢ dimen-
sions is apply the "imagine time” formalism, where all four momenta are Euclidean with
discrete Matsubara frequencies ks = iwy,
) 2n7T for bosons
"l @n+1)xT for fermions

/(;z:;_ /d‘*kE i Z_ / gj (57)

In d = 4 — 2¢ dimensions it is replaced by
n=+00 d3 2¢

2e
YT Y s (59

and then perform ¢ — 0 limit. Here 7 is renormalization scale.
From (44) - (49) we arrive at the expression for the effective potential

(56)

j_‘ [In(k* + M?) — In(k* + M%) — In(k* + M3,)]
: (59)

1 7 7
. 2 a papy 2
—N——N —N deF% F** + —g°K + —g; P
+ g J(12 5 F+12 B>/ zF,, +8g +2g



286 PHAN HONG LIEN

where Nr and Np are fermionic and bosonic number in defining representation. The third
term calculated from (45) -(48) is one loop contribution in the background gauge field.
Two last terms are bosonic contribution to V3 and the fermionic self energy. Here J, K, P
are divergent integrals.

d*k 1 1
J = 60
[ e %E(k?)? (60
d*k 1 1
K= —_— 1
/ 2m) 3 (k2 — m2 —ic)? - ¥<k2 +m2)? (61)
1
P- izﬁ . (62)
7 (P + M) (k2 + M3) [(k +p)? +m3]
For massless bosons and ghosts, we have
d4k 1 1
7= / 4 (k2 — ie)? - ikQ
d32%k 1 32k 1
2 2
= 2 2T 63
i / (27 )3—2¢ k2 - Z/ 9m)3—2¢ [(2mnT)? + K22 (63)
1 1 n
:W +2lnﬁ+2’7E —|—0( )

where n? = % (P.Arnold and C.Zhai, 1994 [8]).
In the case m # 0, the integral contributed to one loop potential takes the form

d'k 1 1
I = —_. 64
(m) / (2m)* k2 — m? — ie - %l{@ +m? (64)

Using the well - known result [9]

1Trln(k2 —m?) E} Xln [—(wnT)2 — k% - m?]

2 2
b (65)
2T m2T?2 msT m?

— C
90 24 12 6472
where C = % + 2ln47riT + 2vg, we can evaluate the integrand at high temperature.
1 0 |1 T2 mT m2C
1 = —— | =Trin(k? Hl="-—+4+ —.
(m) [ rin(k” —m )] 2 ar | ()

m om
It is straightforward to extend this result to (61), K(m) = I*(m), where m? is
replaced by thermal mass 92

(66)

K (M) = const — —Z)J?T?’ gM>T?

247 (47)2

(67)

M7 ( +om- L 4 2ny)

 (4m)2 4nT
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Thus, there is 1/e term, i.e UV divergence in both J, K. The P integral in (62)
corresponds to the sun diagram [10]
T2 J1 7

1
pb _ _ I ‘
(7’”17 mo, ’”lg) (4 )2 *46 + n—ml Mo ms + *2 + O(m, 6) (68&)

When fermions are included, it is vanished
PI(My, My, m) = =0(e). (68b)

The total temperature dependent part of the loop effective potential is the sum of
terms (63)-(68). The one loop thermal free energy density takes the form

1 A 1 w274 7
7 2 2 Ao g 1
+ 51 (u* —m* — 3¢ ) +3Tr Mg, + S [Yo(M + pyo)yo(M + pyo)]

T 273
T 12n (M2 + GapM3,) — 2

2 11 1 1 1 i
- (ngT)Q <I2N — =Np + 12NB> <€ — 2+ 27E> /dwFﬁyF““”.

Hence, it is easily to derive the thermal masses, e.g in the first approximation the scalar
thermal mass is

— (M o+ Gap My +2M) (69)

A

M2 = (u? —m?) + Age_ - (70)

24 2

i
30 1m0
B 20

110l |

sw10l3

Fig. 3. Plot for the effective potential described in Eq.(69) with ¢ = 10 GeV,
A=0.1,T=0-+200MeV.a) u/m=0.5;b) u/m=12
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Finally, the infinite factor L4 is determined from (27), (59) and (63)

11 1 1
Ly =4ig?J | =N — =Np + —N
A 29J<12 VP + 15 B)

g (11 1 1 1 n (71)

=— 2 _(=N—--Np+-—N — 4+ 2n——+2 0(g™h).

(27)2 <12 T B) (e et 7E> +0g")

The renormalized coupling gg in (37) is given by
2 —

g 11 1 1 1 7 4
—g|l+ (=N—-=-Np+ —Ng | (= +2n——+2 . 2
=g |1+ (V- gNe+ 5N (Fram o) vt

Note that in non-Abelian theory, the physical coupling gr increases due to quantum
corrections at high temperature, as well as at zero temperature and chemical potential. It
is just the difference with the Abelian theories.

V. DISCUSSION AND CONCLUSION

In the above sections we have presented in detail the background field method and
its effective action for the non-Abelian theory at finite temperature. The renormalization
for the background field gauge is manifested at T # 0. Much interest is focused only
on the leading correction to the one loop free energy density. Hence the numerical com-
putation and the cosmological phase transition would be investigated in our next work.
Furthermore, the non-Abelian Higgs mechanism in non-perturbative sector [11] or the
Kaon condensate at high temperature in the early Universe [12] could be likely considered
by this way.
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