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Abstract. Recently, the influence of electron-electron interactions on the thermoelectric transport
in a two-channel charge Kondo circuit has been studied in [Phys. Rev. B 105 (2022) L121405].
In this paper, we revisit the Luttinger-liquid-based model and discuss in details the limit when
the spin mode is noninteracting (gσ = 1) while the interaction in the charge sector is repulsive
(gρ ≤ 1). The thermoelectric transport coefficients are computed nonperturbatively with respect
to the reflection amplitude at the quantum point contact. At low temperatures the thermopower
shows the non-Fermi liquid behavior in the vicinity of the Coulomb peaks. We also demonstrate
that repulsive interaction results in the enhancement of the thermoelectric power.
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1. Introduction

The study of quantum thermoelectric transport in nano-structured devices at low tempera-
ture has been an important and rapidly developing topic since the 1990s. Low-dimensional materi-
als have been recognised to significantly enhance thermoelectric efficiency much better than bulk
materials [1–5]. Thanks to the development of nanotechnology a large variety of quantum nanode-
vices has been created. Quantum dot (QD) is one of the most simple and significant nanostructures
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which exhibits most of the fundamental quantum properties [6]. Namely, a QD device can be con-
trolled and fine-tuned by external electric and magnetic fields both in and out of equilibrium. Study
of the thermoelectric transport through the QD devices provides important knowledge about the
influence of strong electron-electron interactions, interference effects and resonance scattering on
the quantum transport [7, 8]. Since the properties of the QD are fully determined by the Coulomb
Blockade (CB) phenomenon [9–11] and the charge states are well quantized, a QD-based setup
provides a perfect playground for studying the quantum impurity models. At sufficiently low tem-
perature, a QD with an odd number of electrons behaves as a spin-1/2 impurity. Many-particle
spin-flip scattering processes result in the effective ‘impurity screening’ at zero temperature. As
a consequence, the transport in QD systems is featured by the strong correlations, and the Kondo
effect [12] is observed [13].

Interestingly, phenomena similar to the conventional Kondo effect [14–18] may be observed
in a variety of systems without magnetic degree of freedom [19–21]. For instance, the unconven-
tional charge Kondo phenomenon concerns the degeneracy of the charge states. One of the most
prominent charge Kondo setup is implemented by a single-electron transistor in which a large
metallic QD is strongly coupled to one (or several) lead(s) through an (or several) almost trans-
parent single-mode quantum point contact(s) [QPC(s)] [22–24]. This setup is first proposed in the
pioneering theories of Flensberg, Matveev, and Furusaki (FMF). The recently raised interest in the
FMF model is due to the understanding that it can be adapted to study the multi-channel Kondo
(MCK ) effect. Indeed, the logic behind the mapping of FMF setup to a MCK problem is that the
two degenerate charge states of the QD are considered as “a quantum impurity”, while the electron
location (namely, in or out of QD) is treated as an iso-spin variable. The additional internal de-
grees of freedom, such as spin projection quantum number of electrons or number of single-mode
QPCs, determine the number of different channels in the Kondo problem [23–25]. The charge
Kondo setup has been recently implemented in a breakthrough series of experiments [26, 27],
which open an access to investigate MCK problem experimentally. The dominant characteristic
of the MCK setups is known as non-Fermi liquid (NFL) behavior [28, 29].

The FMF model is especially interesting since electrons are transmitted between the leads
and the QD through QPCs. The electrons at low energies are effectively described by a one-
dimensional (1D) Hamiltonian. Although the FMF model has been studied for several years [22–
25, 30], the effects of electron-electron interaction in the vicinity of QPC(s) have been studied
only very recently by applying the Luttinger liquid (LL) model [31, 32]. Unlike the Fermi liquid
(FL) description, where the charged excitations are represented by quasiparticles (electrons and
holes), electrons do not propagate in the LL. According to the Tomonaga-Luttinger theory at low
energies, the spectrum of the LL consists of gapless bosonic excitations (charge and spin density
waves) [33, 34]. The advantage of the LL model is that all interaction processes (namely, the
forward and the backward scatterings) [37] can be described by applying the Abelian bosonization
technique [35–37]. The LL Hamiltonian in the bosonic representation is thus modified from the
Hamiltonian of the FL through additional dimensionless interaction parameters gρ , gσ (so-called
Luttinger parameters) and the renormalization of the Fermi velocity vρ , vσ (the indices ρ,σ stand
for the charge and spin modes, respectively) [37].

In this work, we reconsider the effects of the electron-electron interactions on the thermo-
electric properties in the FMF setup, which is mapped onto the two-channel charge Kondo (2CK)
problem, as discussed in Ref. [32]. The perturbative results obtained in [32] are applicable in
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the finite temperature interval |r∗|2T ∗K � T � T ∗K , where |r∗| is the parameter of the perturbative
expansion and T ∗K is the effective Kondo temperature. In the current manuscript, we investigate
a special limit where the spin modes are noninteracting (gσ = 1). It allows us to go beyond the
perturbation theory. The thermoelectric coefficients, namely, electric conductance G, thermoelec-
tric coefficient GT , and thermopower (TP) S are computed nonperturbatively with respect to the
reflection amplitude of the QPC without the condition that this reflection amplitude is small. The
behavior of the TP is investigated below the temperature |r∗|2T ∗K . The logarithmic temperature
scaling of the TP around the Coulomb peaks demonstrates the NFL picture of the 2CK, while
electron-electron interactions in the LL results in enhancement of the TP.

The paper is organized as follows. We describe the theoretical model in Sec. II. Equations
for the thermoelectric coefficients are presented and discussed in Sec. III. We conclude our work
in Sec. IV.

𝑔𝜎 = 1
𝑔𝜌

𝑇, Δ𝑉QD𝑇 + ∆𝑇
QPC

a)

b)

Fig. 1. a) Schematic of a single-electron transistor device in which a quantum dot (QD)
is weakly coupled to the left electrode and strongly coupled to the right one through a
quantum point contact (QPC) (see text for the details). The QD and the right electrode
(orange color) are at the reference temperature T while the left electrode (red color) is at
higher temperature T +∆T . The effects of electron-electron interaction in the QD-QPC
structure are discussed in this work. b) The charge Luttinger parameter gρ is assumed to
asymptotically equal to 1 at the position of the tunnel barrier (x = −∞) and away from
the QPC (x =+∞) while the spin Luttinger parameter is assumed to satisfy gσ = 1.

2. Model

We consider a single-electron transistor device as shown in Fig. 1. The central part is a
large metallic QD in the weak CB regime. It is strongly coupled to the right lead through an
almost transparent single-mode QPC. This QD-QPC structure is formed in a two-dimensional
electron gas (2DEG). We assume that QD-QPC part is in thermal equilibrium at temperature T
(orange part (right electrode) in Fig. 1). The electron-electron interaction in the vicinity of the
QPC are controlled by applying an external gate voltage [38–40]. The interacting electrons in
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quasi-one dimensional constriction (QPC) are thus described by the LL model [37]. We assume
that the interaction disappears in the vicinity of the tunnel junction at (x =−∞) and far away from
the QPC, in the right 2DEG electrode (x = ∞). The left lead, also formed in 2DEG, is coupled to
the QD through a tunnel barrier. It is considered at higher temperature T +∆T (red part in Fig. 1)
in order to investigate the Seebeck effect at this barrier. Without any loss of generality, the left lead
is described by conventional FL theory. In the linear response theory the TP is determined through
the ratio of the thermoelectric coefficient GT = Ie/∆T and electric conductance G = Ie/∆V as
S = GT/G|Ie=0 = −∆V/∆T where a thermovoltage ∆V is applied between the left lead and the
QD-QPC structure to implement a zero-current condition for the electric current. The temperature
difference across the tunnel barrier ∆T is controlled by using a current heating technique [13]. It
is assumed to be small in comparison with the reference temperature T to guarantee the linear
response regime.

Hamiltonian describing the QD coupled weakly to the left lead and strongly to the right
one, has form

H = H0 +HC +HL +HR, (1)

where H0 characterizes electrons in QD and in two (L/R) leads,

H0 = ∑
k,λ

εka†
k,λ ak,λ +∑

p,λ
εpd†

p,λ dp,λ +Hρ +Hσ . (2)

Here, ak,λ and dp,λ denote the electrons in the left lead and in the QD at the left tunnel barrier,
correspondingly. λ =↑,↓ stands for the spin projection quantum number. The third and fourth
terms in Eq.(2) describe the charge and spin modes of the 1D interacting electrons (Luttinger
liquid) in the right contact (QPC) (in h̄ = kB = 1 units):

Hρ =
vρ

2π

∫ +∞

−∞

{gρπ
2
Π

2
ρ(x)+g−1

ρ [∂xφρ(x)]2}dx, (3)

Hσ =
∫ +∞

−∞

vσ

2π

[
gσ π

2
Π

2
σ (x)+g−1

σ [∂xφσ (x)]2
]
, (4)

with the charge φρ = (φ↑+ φ↓)/
√

2 and spin φσ = (φ↑− φ↓)/
√

2 degrees of freedom are sep-
arated. Their conjugate momentums Πρ and Πσ satisfy the canonical commutation relation
[φα(x),Πα(x′)] = iδ (x− x′), with α = ρ,σ . The interactions in the charge and spin sectors are
characterized by the dimensionless Luttinger parameters, gρ and gσ [35–37]. In this work, we
assume that the interaction in the spin modes is absent gσ = 1 (it corresponds to a system with
spin rotational symmetry [37]), while the interaction in the charge modes is characterized by the
parameter gρ = 1/

√
1+U/πvF with U being a strength of electron-electron interaction in the

vicinity of QPC. Thus, gρ > 1 corresponds to the case of attractive interaction, and 0 < gρ < 1
corresponds to the repulsive interaction. vρ = vF/gρ is the interaction renormalized Fermi veloc-
ity, while vσ = vF at gσ = 1.

Second term in the Eq.(1) describes CB phenomenon in the QD,

HC = EC

[
n̂+

√
2

π
φρ(0)−N

]2

, (5)
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where EC = e2/2C is the charging energy (C is the QD capacitance), n̂ is the electron operator
of electrons entered through the left (tunnel) contact, while

√
2φρ(0)/π is number of electrons

entered through the QPC (from the right lead) [41], N is dimensionless parameter controlled by
the gate voltage Vg as N =CVg/e.

The tunnel Hamiltonian, which describes the weak coupling between the left lead and the
QD, reads

HL = ∑
k,p,λ

(ta†
k,λ dp,λ F̂ +h.c.), (6)

where t � 1 is hopping amplitude and F̂ is the charge-lowering operator introduced in explicit
form, which obeys the commutation relation

[
F̂ , n̂
]
= F̂ . We notice that the operator dp,λ can

be expressed through the fermionic operator in the 1D system as dp,λ → ψλ (−∞) with ψλ (x) ∼
eiφλ (x).

The Hamiltonian HR demonstrating the backward scattering in the QPC with the small
reflection amplitudes |r↑|= |r↓|= |r| � 1 is written as

HR =−2D
π
|r|cos

[√
2φρ(0)

]
cos
[√

2φσ (0)
]
, (7)

where D is the bandwidth.

3. Thermoelectric coefficients

In this Section, the electric conductance G and thermoelectric coefficient GT are computed
nonperturbatively with respect to the reflection amplitude and at low energy. The nonperturbative
treatment goes beyond the condition that |r| � 1. Moreover, this enables us to obtain a nonpertur-
bative expression for the TP at arbitrarily low temperatures.

3.1. General formulas

The electric current through the tunnel barrier reads as

Ie =−2πe|t|2
∫

∞

−∞

dενL(ε)νD(ε) [ fL(ε)− fD(ε)] , (8)

where the density of states (DoS) of the dot at the weak barrier is given by equation:

νD(ε) =−
1
π

cosh
( ε

2T

)∫ ∞

−∞

GD

(
1

2T
+ it
)

eiεtdt, (9)

and GD(1/2T + it) is the Green’s Function (GF) of electrons in the dot at the tunnel barrier.
DoS of electrons in the left electrode νL(ε) = νL is assumed to be energy independent, fL(ε) =
f (ε,T +∆T ), fD(ε) = f (ε+ e∆V,T ) are Fermi distribution functions of the left lead and the dot,
respectively. The current in linear response regime is given by

Ie = 2πe2
νL|t|2

∆V
4T

∫
∞

−∞

dε
νD(ε)

cosh2
( ε

2T

) −2πeνL|t|2
∆T
4T 2

∫
∞

−∞

dε
ενD(ε)

cosh2
( ε

2T

) . (10)

We calculate the thermoelectric coefficients as follows:

G =
∂ Ie

∂∆V

∣∣∣∣
∆T=0

=
πe2νL|t|2

2T

∫
∞

−∞

dε
νD(ε)

cosh2
( ε

2T

) , (11)
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GT =
∂ Ie

∂∆T

∣∣∣∣
∆V=0

=−πeνL|t|2

2T 2

∫
∞

−∞

dε
ενD(ε)

cosh2
( ε

2T

) . (12)

The GF’s in imaginary time representation is parametrized as GD(τ)=−νDπT [sin(πT τ)]−1×
K(τ), where νD is the DoS in the dot. We assume that all effects of CB in the QD, electron-
electron interactions in the vicinity of the QPC and scattering at the QPC are accounted by the
correlator K(τ) = 〈Tτ F̂(τ)F̂†(0)〉 (Tτ is the time-ordering operator, the imaginary time τ runs
from 0 to β = 1/T ) [24,25]. It is convenient to introduce a notation GL = 2πe2νLνD|t|2 for a tun-
nel conductance. Performing integration over the energy in Eqs. (11) and (12) with the notice of
Eq. (9), we obtain the general formulas for the electric conductance and thermoelectric coefficient
as:

G = GL
πT
2

∫ 1
cosh2(πTt)

K
(

1
2T

+ it
)

dt, (13)

GT = − iπ2

2
GLT

e

∫ sinh(πTt)
cosh3(πTt)

K
(

1
2T

+ it
)

dt. (14)

In order to compute the thermoelectric coefficients in Eqs.(13)-(14) one essentially needs to cal-
culate the electron correlator K(1/2T + it) explicitly.

3.2. Correlation function K(τ)

We compute the time-ordered correlation function K(τ) through the functional integration
over the bosonic fields φρ(σ)(x, t) similarly to the method of Matveev-Andreev theory [25]:

K(τ) = Z(τ)/Z(0), (15)

Z(τ) = ∏
α=ρ,σ

∫
Dφα exp

[
−S0−SC(τ)−S ′] , (16)

where S0, SC, and S ′ are Euclidean actions describing the free Luttinger liquid, CB in the
QD and the backscattering at the QPC, respectively. The action S0 includes two independent
actions [35–37] S0 = S

(ρ)
0 +S

(σ)
0 , where

S
(ρ)

0 =
vρ

2πgρ

∫
dx
∫

β

0
dt

[
(∂tφρ)

2

v2
ρ

+(∂xφρ)
2

]
, (17)

S
(σ)

0 =
vF

2π

∫
dx
∫

β

0
dt
[
(∂tφσ )

2

v2
F

+(∂xφσ )
2
]
. (18)

Since F†(0) increases number of electrons from 0 to 1 at time t = 0, whereas F(τ) changes it
back at t = τ , one can replace n̂ by nτ(t) = θ(t)θ(τ− t). Therefore, the CB action SC in bosonic
representation reads [22–25, 30, 41]

SC = EC

∫
β

0
dt[nτ(t)+

√
2

π
φρ(0, t)−N]2. (19)
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Lastly, the weak backscattering at the QPC is described by the action contribution S ′ as

S ′ = −2D
π
|r|
∫

β

0
dt cos[

√
2φρ(0, t)]cos[

√
2φσ (0, t)]. (20)

In the limit r = 0 (no backscattering at the QPC), the functional integral Eq. (16) is Gauss-
ian. The correlator K0(τ) ≡ K(τ)|r=0 = Kρ(τ) is calculated at low temperature T � EC and at
τ � E−1

C :

Kρ(τ) =

(
π2T

2γgρEC

1
sin(πT τ)

)1/gρ

, (21)

where γ = eC, C ≈ 0.577 is Euler’s constant. Plugging Eq. (21) into Eq. (14), we find that the
thermoelectric coefficient GT vanishes at |r| = 0. It is explained as follows. The Hamiltonian
(or action) of the system in the absence of backscattering possesses electron-hole symmetry. It
is invariant when the sign of the gate voltage is changed: N → −N. Both the current Ie and
bias voltage ∆V are changed to opposite but the temperature difference ∆T does not depend on
the charge of the current carriers. Therefore, G(N) = G(−N) and GT (N) = −GT (−N). A finite
contribution to GT has been obtained in the perturbation theory over the small reflection amplitude
r� 1 in Ref. [32].

It was shown that the thermoelectric properties of the system (for instance, the logarithmic
enhancement of TP, see Eq. (13) in Ref. [32]) are controlled by the charge and spin fluctuations
at low temperatures T < gρEC. However, due to the CB in the QD, the effect of small but finite
|r| on the charge modes is negligible. It allows one to integrate out the charge degree of freedom.
Meanwhile, a small backscattering |r| at the QPC pins the fluctuations of the spin modes, thus
changing their low frequency dynamics dramatically. Therefore, the correlation function can be
split into charge and spin components as K(τ) = Kρ(τ)Kσ (τ), where Kσ (τ) = Zσ (τ)/Zσ (0) is the
functional integral of the spin degrees of freedom averaged over the fast charge modes. In this
paper we compute Kσ (τ) nonperturbatively, which allows us to go beyond the perturbation theory
as represented in Ref. [32], and obtain the expression for the TP at arbitrarily low temperatures.

We simply replace the cos[
√

2φρ(0, t)] in action Eq. (20) by its value averaged over the

charge field 〈cos[
√

2φρ(0, t)]〉τ =
(

2γgρ EC
πD

) gρ

2
cos [πN−χ(t)], with χ(t) = πnτ(t) + δ χ(t), and

obtain the effective action for the spin degrees of freedom in the form [25, 30]

Sτ =
∫

dx
∫

β

0
dt

vF

2π

[
(∂tφσ )

2

v2
F

+(∂xφσ )
2
]
− 2D

π

∫
β

0
dtλ̃ (t)cos[

√
2φσ (0, t)], (22)

where

λ̃ (t) = |r|
(

2γgρEC

πD

) gρ

2

(−1)nτ (t) cos[πN−δ χτ(t)], (23)

δ χτ(t)≈
π2T

2gρEC
[cot(πT (t− τ)− cot(πTt)]) . (24)
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One should notice that the model described by the action Eq.(22) is a boundary sine-Gordon
model, similar to an impurity in a 1D electron liquid [42] with the Luttinger parameter 1/2. Al-
though the coefficient in front of cosine term in Eq.(22) is time-dependent, the model is expected
to be solved nonperturbatively.

After performing a simple transformation
√

2φσ → φ and refermionization procedure [42],
our model [as shown in Eq. (22)] is mapped onto resonant scattering model, which is described
by Hamiltonian

Hτ(t) =
∫ [

vFkc†
kck−

√
2vF

πD
λ̃ (t)(c+ c†)

(
ck− c†

k

)]
dk, (25)

in which the operators c†
k and ck satisfying the anticommutation relations

{
ck,c

†
k′

}
= δ

(
k− k

′
)

create and destroy chiral fermions; c is a fermion annihilation operator anticommuting with c†
k and

ck. Our solution, being nonperturbative in |r| accounts for low energy dynamics of the spin modes.
We calculate the correlation function Kσ (τ) performing the perturbation theory over the

δ χτ . Spin contribution to the correlation function in 0th order over δ χτ may be straightforwardly
obtained from Eq. (25) [25]

K(0)
σ (τ) =

2ΓR

π

∫
∞

−∞

eετdε
(ε2 +Γ2

R)(eβε+1)
, (26)

where

ΓR (N) =
4gρEC

π

(
2γ

π

)gρ

|r∗|2 cos2(πN) (27)

is a new energy scale originated in the problem. Here, |r∗| = |r|(gρEC/D)(gρ−1)/2 is an renor-
malized reflection amplitude taking into account the electron-electron interactions [42]. It is
easy to check that in the limit ΓR(N) → 0, we reproduce perturbative result Kσ (τ) = 1 from
[32]. In the opposite limit T � ΓR, the spin contribution to the correlation function K(τ) reads
Kσ (τ) = (2T/ΓR)sin−1(πT τ). However, the result is an even function of the gate voltage N, and
therefore GT = 0.

The leading contribution to the thermoelectric coefficient can be obtained in the first order
of perturbation theory over δ χτ . The correction to K(0)

σ with logarithmic accuracy reads

K(1)
σ (τ) =

4sin(2πN)

π
|r∗|2

(
2γ

π

)gρ

log
(

gρEC

T +ΓR

)∫
∞

−∞

ε

ε2 +Γ2
R

eετ

(eβε+1)
dε. (28)

3.3. Main results

The thermoelectric coefficients are computed nonperturbatively over the reflection ampli-
tude |r|. Substituting Eqs. (21), (26) into Eq.(13) and Eqs. (21), (28) into Eq.(14), one can obtain
the general expressions for the electric conductance G and thermoelectric coefficient GT , respec-
tively. Performing integration over the time, we obtain

G =
4gρGL

π

ΓR

T

(
π2T

γgρEC

) 1
gρ
∫

∞

−∞

dε̃

ε̃2 +
(

ΓR
T

)2
1

cosh
(
ε̃
2

)Re

2F1

[
2+ 1

gρ
,w(1), 1

2 w(2),−1
]

1+gρ

(
2+ i ε̃

π

)
 , (29)
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𝑇/𝐸𝐶

Fig. 2. (Color online) Plots of thermopower eS as a function of dimensionless gate
voltage N for different values of the charge Luttinger parameter gρ = 0.6 (blue line),
gρ = 0.8 (red line), and gρ = 1 (black line) with temperature T/EC = 0.01. Top-right
insert: ΓR/EC as a function of N. Bottom-left insert: eSmax as a function of T/EC. Lines
correspond to the same set of gρ as on the main frame. Here the reflection amplitude
satisfies |r|2 = 0.1. We choose EC = 1 and EC/D = 0.1.

GT =
8gρGL

e

(
π2T

γgρEC

) 1
gρ
(

2γ

π

)gρ

log
(

gρEC

T +ΓR

)
|r∗|2 sin(2πN)

∫
∞

−∞

dε̃
ε̃

ε̃2 +
(

ΓR
T

)2
1

cosh
(
ε̃
2

)
×Im

2F1

(
3+ 1

gρ
,w(1),w(2),−1

)
1+gρ

(
2+ i ε̃

π

) +
2F1

(
3+ 1

gρ
,w(2),w(3),−1

)
1+gρ

(
4+ i ε̃

π

)
 , (30)

where ε̃= ε/T , 2F1(a,b,c,d) is a hypergeometrical function, and w(x) = x+(2gρ)
−1+ iε̃/2π . By

plugging Eqs. (29) and (30) into the formula of the TP S = GT/G and performing the numerical
calculations we plot the TP and maximum of TP as shown in Fig. 2. However, it is rather useful to
write down analytical expressions for G, GT , and S in two separated temperature regimes T � ΓR
and T � ΓR.

For T � ΓR, we re-obtain the perturbative results shown in Ref. [32]:

G =
GL

2

(
π2

2γ

) 1
gρ

√
πΓ

(
1
2 +

1
2gρ

)
Γ

(
3
2 +

1
2gρ

) (
T

gρEC

) 1
gρ

, (31)

GT ∼−
GL

e
|r∗|2 sin(2πN) log

(
gρEC

T

)(
T

gρEC

) 1
gρ

, (32)

and

S∼−|r
∗|2

e
sin(2πN) log

(
gρEC

T

)
, (33)
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where Γ(x) is the gamma function. One should notice that the prefactors in Eqs. (32) and (33),
which are complex function of gρ , are not shown [see Ref. [32] for their expressions]. Besides,
there is a misprint in Eq. (10) of Ref. [32], we correct the expression for the conductance at T �ΓR
in Eq. (31). Interestingly, when N is half integer, ΓR (N) approaches zero, see the inset in Fig. 2.
It means the perturbative results from Ref. [32] can be applied in the vicinity of Coulomb peaks
even at T � |r∗|gρEC.

At T � ΓR, the electric conductance is written as

G = GL

(
π2

2γ

) 1
gρ

√
πΓ

(
3
2 +

1
2gρ

)
Γ

(
2+ 1

2gρ

) T
ΓR

(
T

gρEC

) 1
gρ

. (34)

It reproduces Eq. (69) in Ref. [24] when gρ = 1. The expression of the thermoelectric coefficient
reads

GT = −GLπ4

e

(
T

gρEC

)2+ 1
gρ sin(πN)

2|r∗|2 cos3(πN)
log
(

π

4|r∗|2(2γ/π)gρ cos2(πN)

)
C1(gρ),(35)

where

C1(gρ) = π
g−1

ρ

(
π

2γ

)gρ+g−1
ρ

C (gρ), (36)

C (gρ) = −

√
πΓ

(
5
2 +

1
2gρ

)
2Γ

(
3+ 1

2gρ

) +
gρ

1+7gρ

2F1

[
1,−

1+gρ

2gρ

,
1
2

(
9+

1
gρ

)
,−1

]

+
gρ

1+3gρ

2F1

[
1,−

1+5gρ

2gρ

,
1
2

(
5+

1
gρ

)
,−1

]
. (37)

Finally, we obtain the TP formula at low temperature limit T � ΓR as

S = −2π2

e
tan(πN)

T
gρEC

1
|r∗|2

log
(

π

4|r∗|2(2γ/π)gρ cos2(πN)

)
C2(gρ), (38)

where

C2(gρ) =

(
π

2γ

)gρ Γ(2+1/gρ)√
πΓ(3/2+1/2gρ)

C (gρ). (39)

Interestingly, the logarithmic temperature scaling of TP S ∼ logT in Eq. (33) is attributed
to the NFL behavior of the 2CK effect. The linear temperature dependence of TP as shown in
Eq. (38) is for the limit T � ΓR(N): it occurs at very low temperatures and/or in the vicinity
of Coulomb valleys. It is out of our consideration since the 2CK regime in the FMF model only
occurs in the vicinity of the charge degeneracy point (N is half integer). The crossover between
two regimes occurs at the values of Nmax where T ∼ ΓR. The distance of Nmax from the centers of
the Coulomb peaks is δN ∼ 1

|r∗|

√
T

gρ EC
. At these Nmax points the TP reaches its maximum absolute

value Smax, which can be estimated as

Smax ∼ e−1|r∗|

√
T

gρEC
log
(

gρEC

T

)
. (40)
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We demonstrate our results in Figure 2. The energy scale ΓR (top-right insert) and TP eS
(main panel) are plotted as functions of dimensionless gate voltage N, while eSmax is plotted as a
function of T (bottom-left insert) for different values of the charge Luttinger parameter gρ = 0.6
(blue line), gρ = 0.8 (red line), and gρ = 1 (black line). Here, we restrict ourselves to consid-
ering the minimal value of the Luttinger parameter gmin

ρ = 0.6. In principle, the nonperturbative
treatment allows us to consider the case of stronger repulsive interaction. However, additional con-
straint associated with the condition |r∗max|2 < 1 should be accounted for. The main NFL behaviors
of TP in the 2CK model remain unchanged for different values of the charge Luttinger parame-
ter [25, 30]. We find that the maximal value of TP increases when electron-electron interaction
becomes stronger, while its position in the S(N) plot becomes closer to the Coulomb peak. The
electron interaction in the LL manifests itself in the renormalization of both charging energy of
the QD and backscattering amplitude at the QPC. The latter additionally contributes to the break
of the particle-hole symmetry. We thus predict that the TP is enhanced by the electron-electron
interaction, which is qualitatively consistent with the results obtained in Refs. [32, 43–45].

4. Conclusion

In this paper, we have re-investigated theoretically the thermoelectric transport through
a single electron transistor device in which a QD is weakly coupled to one lead and strongly
coupled to the other one through an almost transparent single-mode QPC. The QD-QPC structure
of the system is mapped onto a two-channel charge Kondo model. The interacting electrons in the
vicinity of the QPC are described by LL model and we only investigate a case of weakly repulsive
interaction in the charge modes and absence of interaction in the spin modes. Applying the Abelian
bosonization and refermionization techniques, we calculate the thermoelectric coefficients non-
perturbatively with respect to the reflection amplitude of the QPC. We obtain the NFL behavior of
the TP around the Coulomb peaks at very low temperature. Namely, the nonperturbative result not
only covers the perturbative one, which is befitting in the temperature interval |r∗|2gρEC� kBT �
gρEC, but also is applicable in the lower temperature regime kBT � |r∗|2gρEC. We predict that
the TP is enhanced due to the repulsive electron-electron interaction, which opens an experimental
access for investigation of Luttinger liquid properties in the two-channel Kondo regime.
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