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Abstract. In this paper, we would like to figure out whether a k-inflation model admits the Bianchi
type I metric as its inflationary solution under a constant-roll condition in the presence of the
supergravity motivated coupling between scalar and vector fields, f 2(φ)FµνFµν . As a result,
some novel anisotropic inflationary solutions are shown to appear along with a power-law one in
this scenario. Furthermore, these solutions are numerically confirmed to be attractive, in contrast
to the prediction of the Hawking’s cosmic no-hair conjecture.
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1. Introduction

Recently, non-trivial anomalies in the cosmic microwave background (CMB) such as the
hemispherical asymmetry and the cold spot, which was firstly detected by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) satellite [1] and then confirmed by the Planck one [2], have
emerged as one of the leading challenges to the validity of the cosmological principle, which states
that the universe should be homogeneous and isotropic on large scales [3]. It should be noted that
the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime has been well known as the sim-
plest metric obeying this principle [4]. Therefore, using the homogeneous but anisotropic metrics
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such as the Bianchi spaces [5] instead of the FLRW one for the early universe might be a reason-
able resolution to the CMB anomalies [6]. It is worth noting that a recent study has pointed out
that the Hubble tension might be a signal for a breakdown of the FLRW cosmology [7].

If the early universe was anisotropic, e.g., as described by the Bianchi spaces, non-trivial
effects of spatial anisotropies during an inflationary phase [8] might be imprinted in the CMB [9].
One then could ask a basic and important question that what would a late time state of the universe
be? It turns out that this question is not easy to answer. Observationally, it is worth noting that a
recent paper has provided a smoking-gun evidence that the current universe might be anisotropic
rather than isotropic [10]. Theoretically, this question could be answered according to the so-called
cosmic no-hair conjecture proposed by Hawking and his colleagues several decades ago [11]. In
particular, if this conjecture was valid, the late time universe would simply be homogeneous and
isotropic on large scales, i.e., would obey the cosmological principle. Unfortunately, a general
proof for this conjecture has remained unknown for several decades. It appears that many people
have made great efforts to archive partial proofs for this conjecture since the Wald’s seminal one
[12–15]. For a very recent extension of the Wald’s proof, see Ref. [16]. Some other important
discussions on this conjecture can be found in papers [17, 18]. In particular, these papers have
pointed out that the cosmic no-hair conjecture would only be valid locally, i.e., inside of the future
event horizon. Along with the partial proofs, some counterexamples to this conjecture have been
claimed to appear in several cosmological models. However, many of them have been shown to be
invalid due to instabilities. Recently, a very truly counterexample to this conjecture has been found
in a supergravity-motivated model by Kanno, Soda, and Watanabe (KSW) [19, 20]. As a result,
this model admits a stable and attractive Bianchi type I solution during an inflationary phase due
to the existence of unusual coupling between scalar and vector fields, i.e., f 2(φ)FµνFµν . It turns
out that the existence of non-trivial gauge kinetic function f (φ) prevents the vector field from a
rapid dilution during the inflationary phase and therefore leads to stable spatial anisotropies (a.k.a.
spatial hairs) of spacetime. Consequently, many extended counterexamples have been figured
out in a number of follow-up papers, e.g., see an incomplete list in Refs. [21–26]. Many other
cosmological aspects of the KSW model can be found in interesting review papers [27].

Currently, we are interested in investigating two non-trivial extensions of the KSW model.
The first one is non-canonical models, in which a canonical scalar field considered in the KSW
model is replaced by a non-canonical one such as the string-inspired Dirac-Born-Infeld field [22]
or the k-inflation field [23, 24]. As a result, these non-canonical models have been shown to ad-
mit stable and attractive anisotropic power-law inflationary solutions, which do violate the cosmic
no-hair conjecture. The latter one is novel types of anisotropic inflation [25, 26], which have been
investigated under the so-called constant-roll condition [28]. See also Refs. [29, 30] for various
interesting discussions on this constant-roll inflation. As mentioned in Ref. [28], the constant-roll
inflation has been proposed as an interpolation between the well-known slow-roll inflation and a
novel ultra slow-roll inflation proposed in Ref. [31]. It appears that the constant-roll condition,
in which one of the slow-roll parameters, η ≡ −φ̈/(Hφ̇), is required to be constant during the
inflationary phase, leads to not only the well-known solutions, especially the power-law one pre-
viously found in Refs. [32–34], but also novel ones [28], whose cosmological consequences might
be slightly different from usual ones.

In this paper, we would like to combine these two extensions in a single scenario, in which
the canonical scalar field is replaced by the non-canonical one firstly proposed in the so-called
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k-inflation model [35] and the constant-roll condition, η ≡ −φ̈/(Hφ̇) = constant, is applied. As
a result, we will figure out analytical inflationary solutions under the constant-roll condition for
the k-inflation. Furthermore, we will show that these solutions are indeed attractive and therefore
violate the cosmic no-hair conjecture. It should be noted that Ref. [30] also considers the k-
inflation under the constant-roll condition for the FLRW metric. However, it does not include the
effect of vector field. Consequently, its solutions are different from that derived in this paper.

As a result, this paper will be organized as follows: (i) An introduction has been written in
Sec. I. A basic setup of the proposed model will be shown in Sec. II. Then, analytical solutions
under the constant-roll condition will be solved and presented in Sec. III. The attractive behavior
during the inflationary phase of the obtained solutions will be numerically confirmed in Sec. IV.
Finally, concluding remarks will be written in Sec. V.

2. Basic setup

Let us start with a general action for the k-inflation extension of the KSW model given
by [23, 24]

S =
∫

d4x
√
−g
[

R
2
+P(X ,φ)− 1

4
f 2(φ)FµνFµν

]
, (1)

where the reduced Planck mass, Mp, is set to be one for convenience. Additionally, P(φ ,X) is an
arbitrary function of scalar field φ and its kinetic X ≡−∂ µφ∂µφ/2 [35], while Fµν ≡ ∂µAν−∂νAµ

is the field strength of vector field Aµ . It is noted again that the last term in the above action, which
is a supergravity-motivated coupling, is the key ingredient of the KSW model [19, 20]. More
specifically, this coupling can be seen in the bosonic part of the action of four-dimensional N = 1
supergravity as mentioned in Ref. [20]. The reason why the bosonic part of supergravity is more
relevant to the inflationary phase than the fermionic part is that the origin of inflaton, which is
a scalar field responsible for causing the inflationary phase, could be realized in this part. One
might, however, ask that if fermions are not important to the inflationary phase, why should we
consider the supergravity, which involves not only bosons but also fermions, for this phase? In
principle, one could propose inflationary models due to specific physical reasons, typically the
invariance of action under field transformations. Of course, their predictions should be consistent
with the observational data. If successful, realizing the proposed inflationary models in the context
of the underlying theories such as the supergravity, which have been assumed to take place in high
energy levels of the early universe, would be the next necessary step. Unfortunately, this task is not
straightforward at all. For example, many people have tried to realize the Starobinsky model [8],
which has been one of the most viable inflationary models, in the N = 1 supergravity [36, 37].
Therefore, figuring out inflationary models within the framework of supergravity seems to be
a natural approach [38]. Moreover, the supergravity could provide us extra unusual couplings
between boson fields, e.g., the coupling between scalar and vector fields shown above, which
might affect on the dynamics of the inflationary phase and therefore might lead to unexpected
consequences [20]. More interestingly, they might be reasonable resolutions to the remaining
problems in cosmology such as the CMB anomalies [6]. As a result, the existence of the gauge
kinetic function f (φ) breaks down the conformal invariance of vector field and therefore prevents
it from a rapid dilution during the inflationary phase. Consequently, it would lead to a stable
anisotropic inflation violating the prediction of the cosmic no-hair conjecture.
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In this paper, following both Refs. [24] and [30] we will choose the form of P(X ,φ) as
follows

P(X ,φ) = X +L(φ)X2−V (φ), (2)

where L(φ) is an undetermined function of the scalar field φ and V (φ) is its potential. It should
be noted that this form of P(X ,φ) is different from that given in Ref. [24] as well as that given
in Ref. [30]. In particular, P(X ,φ) in Ref. [24] does not include the potential V (φ), while L(φ)
in Ref. [30] has been set to be constant. Additionally, φ will only have a positive kinetic energy.
As a result, V (φ) should not be removed in the presence of the constant-roll condition, while the
existence of L(φ) is necessary for having power-law solutions of scale factors. It appears that this
proposed model will reduce to the KSW model of canonical scalar field [19, 20, 25] once L(φ)
vanishes.

We will consider, according to the previous works in Refs. [25, 26], the homogeneous but
anisotropic Bianchi type I metric as

ds2 =−dt2 +a2(t)
[
b−4(t)dx2 +b2(t)(dy2 +dz2)

]
, (3)

where a(t) plays as an isotropic scale factor, while b(t) acts as a deviation from isotropy. In
addition, the scalar field will be assumed to be homogeneous, i.e., φ = φ(t), while the vector field
will be taken as Aµ(t) = (0,Ax(t),0,0) in order to be compatible with the Bianchi type I metric.

As a result, a non-trivial solution of the vector field can be solved to be

Ȧx = pA f−2a−1b−4, (4)

with pA is an integration constant [25,26]. Note that Ȧx ≡ dAx/dt. Consequently, the correspond-
ing Einstein field equations turn out to be

H2
a −H2

b =
1
6

φ̇
2 +

L
4

φ̇
4 +

V
3
+

f−2

6
a−4b−4 p2

A, (5)

Ḣa +3H2
b =−1

2
φ̇

2− 1
2

Lφ̇
4− f−2

3
a−4b−4 p2

A, (6)

Ḣb +3HaHb =
f−2

3
a−4b−4 p2

A, (7)

along with the scalar field equation given by(
1+3Lφ̇

2)
φ̈ =−3

(
1+Lφ̇

2)Haφ̇ −V ′− 3
4

L′φ̇ 4 + f−3 f ′a−4b−4 p2
A. (8)

Here Ha ≡ ȧ/a and Hb ≡ ḃ/b acting as the Hubble parameters. Additionally, f ′ ≡ ∂ f/∂φ and
V ′ ≡ ∂V/∂φ . It is straightforward to see that if we set L = 0 then all these equations will reduce
to that derived in Ref. [25] for the canonical scalar field.

3. Solutions under a constant-roll condition

Given the field equations derived in the previous section, we would like to seek anisotropic
solutions under the constant-roll condition [25, 26, 28],

η(t)≡− φ̈

Haφ̇
= β̂ , (9)
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along with the constant anisotropy condition [25, 26],
Hb

Ha
= n, (10)

where β̂ and n are all constant. As a result, Eqs. (6), (7), and (10) lead to

(1+n)Ḣa +3n(1+n)H2
a +X +2LX2 = 0. (11)

Due to the non-canonical property of scalar field, we introduce its speed of sound parameter as
follows [35]

c2
s =

∂X p
∂X ρ

=
1+2LX
1+6LX

, (12)

where p and ρ are pressure and density parameters given by

p = P(φ ,X) = X +LX2−V, (13)

ρ = 2X∂X P(φ ,X)−P(φ ,X) = X +3LX2 +V, (14)

respectively. Here ∂X p ≡ ∂ p/∂X . It turns out that cs = 1 for the canonical scalar field, while
cs < 1 for the non-canonical one with a positive L. It should be noted that our previous paper
is also on a non-canonical scalar field model, which is nothing but the Dirac-Born-Infeld (DBI)
model with cs = γ−1 and γ > 1 being the Lorentz factor [26]. More importantly, the speed of
sound, or equivalently the Lorentz factor, has been assumed to be constant in order to have an
anisotropic constant-roll inflation in this DBI model. In this paper, therefore, we will also assume
that

cs = ĉs, (15)

where 0 < ĉs ≤ 1 is a constant. The constancy of the speed of sound cs seems to be an additional
important condition for having a constant-roll inflation in non-canonical scalar field models.

For convenience, we rewrite Eq. (11) as

(1+n)Ḣa +3n(1+n)H2
a + ĉ2

s X +6ĉ2
s LX2 = 0, (16)

which will become as

ĉ2
s φ̇

2 +(3ĉ2
s −1)(1+n)H ′aφ̇ +(9ĉ2

s −3)n(1+n)H2
a = 0, (17)

if Ha is regarded as a function of φ . As a result, solving this equation gives non-trivial solutions,

φ̇ =
(1−3ĉ2

s )H
′
a(1+n)±

√
(1+n)2(3ĉ2

s −1)2H ′2a −12ĉ2
s (3ĉ2

s −1)n(1+n)H2
a

2ĉ2
s

. (18)

Furthermore, differentiating these solutions with respect to t implies that

−β̂Ha =
(1−3ĉ2

s )(1+n)H ′′a
2ĉ2

s
±
√

1+n
[
(1+n)(3ĉ2

s −1)2H ′aH ′′a −12ĉ2
s (3ĉ2

s −1)nHaH ′a
]

2ĉ2
s

√
(1+n)(3ĉ2

s −1)2H ′2a −12ĉ2
s (3ĉ2

s −1)nH2
a

, (19)

here H ′′a ≡ d2Ha/dφ 2. Now, we consider the isotropic case with n= 0. It appears that the vanishing
of n leads Eq. (19) to

(3ĉ2
s −1)H ′′a

ĉ2
s

= β̂Ha, (20)
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which admits a general solution,

Ha(φ) =C1 exp

√ β̂

3ĉ2
s −1

ĉsφ

+C2 exp

−
√

β̂

3ĉ2
s −1

ĉsφ

 , (21)

where C1 and C2 are nothing but arbitrary integration constants. Hinted by this solution and that
in Refs. [25, 26], we assume that a general solution of Eq. (19) with the non-vanishing n will take
the following ansatz,

Ha(φ) =C1 exp

λ (n)

√
β̂

3ĉ2
s −1

ĉsφ

+C2 exp

−λ (n)

√
β̂

3ĉ2
s −1

ĉsφ

 , (22)

here λ (n) is a non-trivial function of n. As a result, we are able to figure out the desired general
solution of Ha as

Ha(φ) =C1 exp

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
+C2 exp

(
−

√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (23)

provided a relation

n =
β̂

6
, (24)

which was firstly used in Ref. [25] and then re-used in Ref. [26] in order to have the corresponding
anisotropic constant-roll solutions. This is indeed a necessary condition for having the anisotropic
constant-roll inflation. Consequently, the corresponding general solution for Hb is given by

Ha(φ) =C1
β̂

6
exp

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
+C2

β̂

6
exp

(
−

√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
. (25)

In the next subsections, we will discuss, following the analysis in Refs. [25, 26, 28], whether the
anisotropic constant-roll inflation exists in three different specific cases of C1 and C2.

3.1. First solution

In this subsection, we would like to consider the case with C1 = M and C2 = 0, where
M is an integration constant determining the amplitude of the power spectrum of the curvature
perturbation [28]. As a result, the corresponding Ha and Hb become as

Ha(φ) = M exp

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (26)

Hb(φ) =
Mβ̂

6
exp

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
. (27)
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It appears that Ha and Hb will be real definite if c2
s > 1/3, provided that β̂ > 0, i.e, n > 0. Hence,

the corresponding φ̇ can be solved to be

φ̇ =− Mβ̂√
12β̂

(3ĉ2
s−1)(6+β̂ )

ĉs

exp

(√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)
, (28)

with the help of (18). Thanks to these results, we are able to derive the following equation for a as

a′

a
=− ĉs

β̂

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

, (29)

along with that for b given by

b′

b
=− ĉs

6

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

, (30)

here a′ ≡ da/dφ and b′ ≡ db/dφ . Consequently, the scale factors a and b can be expressed as a
function, up to a constant, of the scalar field as

a ∝ exp

(
− ĉs

β̂

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

φ

)
, (31)

b ∝ exp

(
− ĉs

6

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

φ

)
, (32)

respectively. Using Eqs. (5), (6), and (7), we are able to determine the corresponding form of
f (φ), L(φ), and V (φ) as

f (φ) ∝ exp

(√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉs(6−2β̂ )

3β̂
φ

)
, (33)

L(φ) =
−12ĉ2

s (ĉ
2
s −1)

(1−3ĉ2
s )

2M2β̂ (6+ β̂ )
exp

(
−2

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)
, (34)

V (φ) =
M2
[
ĉ2

s (β̂ −6)(5β̂ −24)− β̂ (β̂ +6)
]

48ĉ2
s

exp

(
2

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)
, (35)

respectively. It should be noted that if we solve Eq. (28), the explicit form of φ will be shown to
be

φ =− 1
ĉs

√
(3ĉ2

s −1)(6+ β̂ )

12β̂
log
(

Mβ̂ t
)
. (36)

More interestingly, inserting this solution into Eqs. (31) and (32) leads to the corresponding power-
law solution, up to a constant,

a(t) ∝ t1/β̂ , (37)

b(t) ∝ t1/6. (38)
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It turns out that 0 < β̂ � 1 is a sufficient condition for having an anisotropic power-law inflation
with small anisotropies.

3.2. Second solution

In this subsection, we would like to deal with the case, in which C1 = C2 = M/2. As a
result, the corresponding Hubble parameters, Ha and Hb, become as

Ha(φ) = M cosh

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (39)

Hb(φ) =
Mβ̂

6
cosh

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (40)

respectively. It is important to note that this solution has been shown to be not attractive for
the canonical scalar field with ĉs = 1 [25]. This is also the case for this k-inflation model with
1/3 < ĉs < 1, so we will ignore this solution from now on.

3.3. Third solution

In this subsection, we would like to consider the case, in which C1 = M/2 and C2 =−M/2.
As a result, the corresponding Hubble parameters, Ha and Hb, read

Ha(φ) = M sinh

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (41)

Hb(φ) =
Mβ̂

6
sinh

(√
12β̂

(3ĉ2
s −1)(β̂ +6)

ĉsφ

)
, (42)

respectively. Similar to the first solution, we will only consider β̂ > 0, i.e., n > 0 as well as
ĉ2

s > 1/3, in order to have real definite Ha and Hb. Furthermore, the corresponding solution for φ̇

is solved to be

φ̇ =
M
ĉs

√
(3ĉ2

s −1)β̂ (6+ β̂ )

12

[
±1− cosh

(√
12β̂

(6+ β̂ )(3ĉ2
s −1)

ĉsφ

)]
, (43)

the help of (18). Plugging this solution into Eqs. (41) and (42) leads to the corresponding solution
for a and b, up to a constant, as

a ∝

[
∓1+ cosh

(√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)]− 1
β̂

, (44)

b ∝

[
∓1+ cosh

(√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)]− 1
6

, (45)



Duy H. Nguyen, Tuyen M. Pham, Thien D. Le and Tuan Q. Do 23

respectively. Consequently, the corresponding forms of f (φ), L(φ), and V (φ) turn out to be

f (φ) ∝

[
∓1+ cosh

(√
12β̂

(3ĉ2
s−1)(6+β̂ )

ĉsφ

)] β̂+6
3β̂

√
−(β̂ +3)− (β̂ −3)cosh

(
2
√

12β̂

(3ĉ2
s−1)(6+β̂ )

ĉsφ

)
±2β̂ cosh

(√
12β̂

(3ĉ2
s−1)(6+β̂ )

ĉsφ

) ,

(46)

L(φ) =
−12ĉ2

s (ĉ
2
s −1)

M2(1−3ĉ2
s )

2β̂ (6+ β̂ )

[
cosh

(√
12β̂

(3ĉ2
s−1)(6+β̂ )

ĉsφ

)
∓1
]2 , (47)

V (φ) =
M2

24ĉ2
s

{
1
4

[
ĉ2

s (β̂ −6)(7β̂ +24)−3β̂ (β̂ +6)
]

+
1
4

[
ĉ2

s (β̂ −6)(5β̂ −24)− β̂ (β̂ +6)
]

cosh

(
2

√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)

∓β̂

[
3ĉ2

s (β̂ −6)− β̂ −6
]

cosh

(√
12β̂

(3ĉ2
s −1)(6+ β̂ )

ĉsφ

)}
, (48)

respectively. As a result, the solution for Eq. (43) with the upper sign “+” is given by

φ(t) = φ+(t) =

√
(6+ β̂ )(3ĉ2

s −1)

3β̂ ĉ2
s

arccoth
(

Mβ̂ t
)
, (49)

which leads to the corresponding scale factors defined, up to a constant, as

a(t) ∝ (M2
β̂

2t2−1)1/β̂ , (50)

b(t) ∝ (M2
β̂

2t2−1)1/6. (51)

On the other hand, Eq. (43) with the lower sign “-” admits the corresponding solution,

φ(t) = φ−(t) =−

√
(6+ β̂ )(3ĉ2

s −1)

3β̂ ĉ2
s

arctanh
(

Mβ̂ t
)
, (52)

which implies the corresponding scale factors defined, up to a constant, as

a(t) ∝ (1−M2
β̂

2t2)1/β̂ , (53)

b(t) ∝ (1−M2
β̂

2t2)1/6. (54)

Interestingly, the obtained solutions in this model turn out to be similar, up to a constant, to that
found in Ref. [26]. Hence, the discussions in Ref. [26] on whether the corresponding inflation
exists are still valid for the solutions derived in this paper. In particular, for the solution shown in
Eqs. (50) and (51), the following constraints, Mβ̂ t > 1, M > 0, and 0 < β̂ � 1 need to be fulfilled
for the existence of inflationary phase. On the other hand, the following constraints, −1 < Mβ̂ t <
0, M < 0, and 0 < β̂ � 1 are necessary for ensuring that the solution shown in Eqs. (53) and
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(54) will act as an inflationary one. It is important to note that these two inflationary solutions all
need to finish before φ becomes zero due to either the strong coupling problem (associated with
φ+) or the negativity of V (φ) (associated with φ−). For detailed explanations, see Ref. [26]. An
additional important point should be mentioned is that the L(φ) obtained in the above cases all
turn out to be positive definite, leading to the subluminality of speed of sound, i.e., cs(t)< 1.

4. Attractor property

So far, we have derived three different analytical solutions: solution I described by a set of
Eqs. (26)-(38); solution II described by a set of Eqs. (46), (47), (48), (50), and (51) associated
with the φ+ solution shown in Eq. (49); and solution III described by a set of Eqs. (46), (47), (48),
(53), and (54) associated with the φ− solution shown in Eq. (52).

As mentioned above, we will examine in this section the attractive property of these so-
lutions, following the previous works [25, 26]. In particular, we will numerically solve Eqs. (5),
(6), (7), and (8) with the functions f (φ), L(φ), and V (φ) derived under the constant-roll condition
along with the other ones to see the time evolution of the ratio Hb(t)/Ha(t), the speed of sound
cs(t), and the slow-roll parameter η(t). It turns out that the obtained solutions will be confirmed to
be attractive if Hb(t)/Ha(t)→ n, cs(t)→ ĉs, and η(t)→ β̂ when an e-fold number goes to N ' 60.
It should be noted that the field parameters will be chosen as β = 0.1 and |M| = 10−5 with three
different values of ĉs = 1, 0.95, and 0.9. We will also choose initial conditions as φ(0) = 15 and
φ̇(0) = 0. As a result, numerical results presented in Figs. 1, 2, and 3 clearly indicate that the
obtained anisotropic constant-roll inflationary solutions of this k-inflation model all turn out to be
attractive as expected. An interesting point should be noted is that the decrease of ĉs tends to delay
the convergence of Hb(t)/Ha(t) as well as cs(t), similar to that obtained in the DBI model [26].
This might be a general feature of non-canonical anisotropic constant-roll inflation models.
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Fig. 1. (Color online) Time evolution of the ratio Hb(t)/Ha(t) for three different values
of ĉs. It is clear that all trajectories converge to the same constant n = β̂/6 ' 0.0167,
confirming the attractive property Hb(t)/Ha(t) → n = β̂/6 ' 0.0167 when the e-fold
number increases. The left, middle, and right plots correspond to the solutions I, II, and
III, respectively. The red, green, and blue curves correspond to ĉs = 1, 0.95, and 0.9,
respectively.
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Fig. 2. (Color online) Time evolution of cs(t) for three different values of ĉs. It is clear
that cs(t)→ ĉs when the e-fold number increases. The left, middle, and right plots corre-
spond to the solutions I, II, and III, respectively. The red, green, and blue curves corre-
spond to ĉs = 1, 0.95, and 0.9, respectively.

Fig. 3. (Color online) Phase space of Hb(t)/Ha(t) and η(t) for three different values of
ĉs. The left, middle, and right plots correspond to the solutions I, II, and III, respectively.
The red, green, and blue curves correspond to ĉs = 1, 0.95, and 0.9, respectively.

Fig. 4. (Color online) Behavior of the potential V (φ) in Eq. (48) for the solutions II (left)
and III (right) with different values of ĉs. The red, green, and blue curves correspond to
ĉs = 1, 0.95, and 0.9, respectively.
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Before ending this section, we would like to discuss a bit of the difference between the
solution III and the solutions I and II, which can be seen in Figs. 1 and 2. In particular, we
observe, according to the number of e-folds, that the inflationary phase of the solution III tends to
stop before the e-fold number reaches to 50−60, in contrast to the solutions I and II. This is due
to the fact that the negativity of the potential V (φ) happens sooner than expected when φ goes to
zero (see Fig. 4 for details). Similar properties can be found in the non-canonical DBI one [26].

5. Conclusions

We have investigated whether the k-inflation model admits anisotropic inflationary solu-
tions under the constant-roll condition in the presence of supergravity-motivated coupling between
the scalar and vector fields, i.e., f 2(φ)FµνFµν , along with the potential V (φ). As a result, the
constant-roll condition (9) together with additional constancy conditions (10) and (15) imply not
only the typical power-law type of inflation shown in Eqs. (37) and (38) but also the novel types
of inflation shown in Eqs. (50), (51), (53), and (54), whose cosmological consequences would
be investigated elsewhere. Furthermore, numerical calculations have been performed to confirm
that these solutions are indeed attractive during the inflationary phase. This result indicates that
the cosmic no-hair conjecture is invalid in this anisotropic constant-roll k-inflation model. The
present work together with the previous ones in Refs. [25, 26] point out that the cosmic no-hair
conjecture seems to be extensively violated in the context of anisotropic constant-roll inflation.
Therefore, it is important to investigate whether extensions of this model, e.g., the Gauss-Bonnet
extension [39], favor the cosmic no-hair conjecture. We will leave this issue for our further studies.
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