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Abstract. We apply the coherent potential approximation to study the three-component Falicov-
Kimball model, in which single-component and two-component fermionic particles are mixed in
an optical lattice. In the model, the heavy single-component fermionic particles are localized while
the light two-component fermionic particles can hop in the lattice. At half-filling, two transitions
from an insulator via a metallic state to a Mott insulator are found with increasing the particle
correlations. By contrast, at third-filling, only one transition from the metallic state to the Mott
insulating phase is observed for strong repulsive interactions. Our results are consistent with those
obtained by the dynamical mean field theory as well as by the slave boson mean field approach.
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1. Introduction

The metal-insulator transition (MIT) is one of the fundamental and fascinating problems
of condensed matter physics, which has recently attracted a lot of attention [1]. It is well known
established that the Mott-Hubbard MIT is caused by Coulomb correlations and the physics of
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a Mott insulator is well described by the single band Hubbard and/or Falicov-Kimball models
(FKM) [2].

The recently developed experiments with ultracold atoms in optical lattices have provided
a new period for the MIT research. Indeed, the optical lattices allow one to control the atomic in-
teractions and other relevant parameters as well as to introduce new parameters of the system. For
example, binary mixtures of fermionic atoms with different masses (e.g., 6Li,40 K) introduce the
difference between the hopping parameter of two kinds of fermions. Moreover, some multicom-
ponent correlation systems have been experimentally established [3], [4]. Theoretically, the MIT
in three-component Hubbard models [5, 6] as well as in three-component Falicov-Kimball model
were investigated [7], [8]. We note that the three-component Falicov-Kimball model in which one
spices is two-component atoms with non-zero hopping amplitude and the other is a single-spin
state atoms with zero hopping amplitude (i.e. completely localized) can be considered as a version
of the three-component Hubbard model with extreme mass imbalance.

The MIT in the three-component FKM has been studied using various methods such as dy-
namical mean-field theory (DMFT) [7] and slave boson approach (SB) [8]. Different correlation-
driven Mott transitions were found depending on the filling conditions and on-site Coulomb in-
teractions. In particular, for a half-filled system, the re-entrant effect of Mott insulator is found
with increasing the particle correlations. By contrast, at third-filling, only one transition from the
metallic state to the Mott insulator is observed for strong local interactions.

It is known that the coherent potential approximation (CPA) has been used effectively for
studying the Mott-Hubbard MIT in two-component strongly correlated electron systems such as
the usual FKM [9], the Hubbard model [10] and the ionic Hubbard model [11]. The advantage
of CPA compared with DMFT and SB is analytically simple. It can provide some analytic results
and does not require much computer work. It is natural to ask whether the CPA is well suited
for the study of three-component FKM. To answer this question, we revisit the MIT in the three-
component FKM by using this method.

In Sec. 2 we present the three-component FKM and our CPA method. Numerical results
are discussed in Sec. 3 and our conclusions are given in Sec. 4.

2. Model and formalism

We consider a three-component FKM, the Hamiltonian of which reads [7, 8]:

H =−t ∑
〈i, j〉,σ

[
c+iσ c jσ +h.c

]
−µ ∑

i,σ
c+iσ ciσ +E f ∑

i,σ
f+i fi

+Ucc ∑
i

c+i↑ci↑c+i↓ci↓+Uc f ∑
i

f+i fic+iσ ciσ , (1)

where c+iσ (ciσ ) creates (annihilates) a light fermion atom with spin σ (σ ≡↑,↓ ) at lattice site i, and
f+i ( fi) creates (annihilates) a localized fermion atom at lattice site i. t is the hopping amplitude
between the nearest-neighbor light fermion atoms. µ is the chemical potential of the system. The
energy level E f can be considered as the chemical potential of the localized fermion atoms, which
controls their filling in the system. Ucc is the on-site Coulomb interaction of the light fermion
atoms, and Uc f is the on-site Coulomb interaction between the light and localized fermion atoms.

We apply the alloy analogy approach to the model. By viewing the system in terms of
a disordered alloy where two-component fermion particles with spin σ can hop in the potential
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of two-component fermion particles with spin −σ and one-component localized particles. The
many-body Hamiltonian (1) may be approximated by the one-particle Hamiltonian of the form

H̃ =−t ∑
〈i, j〉,σ

[
c+iσ c jσ + c+jσ ciσ

]
+E f ∑

i,σ
f+i fi + ∑

i,σ ,λ

ε
λ
cσ c+iσ ciσ , (2)

where energy levels ελ
cσ and configuration probabilities are given in Table 1. Here n f is the filling

of localized particles, n(0)c−σ (n
(1)
c−σ ) is the filling of the light particles with spin−σ in the lattice site

that not occupied (occupied) by localized particles.
The Green function corresponding to the Hamiltonian (2) has to be averaged over all possible
disorder configurations. The averaging cannot be performed exactly. To solve this problem, we
use the CPA to replace the Hamiltonian (2) by an effective Hamiltonian with a self-energy Σσ (ω).
Hamiltonian in the CPA takes the form

HCPA =−t ∑
〈i, j〉,σ

[
c+iσ c jσ + c+jσ ciσ

]
+E f ∑

i,σ
f+i fi +Σσ (ω)∑

i,σ
c+iσ ciσ . (3)

The lattice Green function for light fermion particles reads:

Fcσ (ω) =
∫

ρ0(x)
ω− x−Σσ (ω)

dx. (4)

where ρ0 (x) is the bare density of states (DOS). Here for convenience we use a semicircular DOS
ρ0 (x), which corresponds to the Bethe lattice at infinite dimension [12]

ρ0 (x) =
2

πW 2

√
W 2− x2, (5)

where W is the half-width of the band and we will use it as the energy unit. The average Green
function for two-component particles is calculated via the configuration probabilities Pλ

cσ and the
partial Green functions Gλ

cσ (ω)

Gcσ (ω) =
4

∑
λ=1

Pλ
cσ Gλ

cσ (ω). (6)

Here Gλ
cσ (ω) is the Green’s function for the configuration λ and is given by [13]

Gλ
cσ (ω) =

Gcσ (ω)

1+
(
Σσ (ω)− ελ

cσ

)
Gcσ (ω)

. (7)

The CPA demands that the average Green function in equation (6) must coincide with the
lattice Green function in equation (4):

Gcσ (ω) = Fcσ (ω). (8)

We take the filling of localized particles n f as an input parameter, instead of the energy level E f ,
then for a given total particle filling n = Σσ ncσ +n f , the chemical potential µ is obtained from the
relation between the density of states (DOS) ρ(ω) and the light particle filling ncσ which read

ρ(ω) =− 1
π

ImGcσ (ω), (9)
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ncσ =− 1
π

0∫
−∞

Im(Gcσ (ω))dω. (10)

Table 1. Energy levels ελ
c↑ and configuration probabilities Pλ

c↑ for two-component fermion
particles with spin up for the three–component Falicov–Kimball model. We focus on the
paramagnetic case, for which ελ

cσ ,P
λ
cσ ,n

(0)
cσ ,n

(1)
cσ are spin-independent quantities.

Configurations λ c↑ c↓ f Energy levels ελ
c↑ Probabilities Pλ

c↑

1 1 0 0 −µ (1−n f )
(

1−n(0)c↓

)
2 1 1 0 −µ +Ucc (1−n f )n(0)c↓

3 1 0 1 −µ +Uc f n f

(
1−n(1)c↓

)
4 1 1 1 −µ +Ucc +Uc f n f n

(1)
c↓

3. Results and discussions

The self-consistent equation (8) does not have an exact solution but the self-energy and the
Green function can be found by numerically solving with iteration. Beginning with a predictive
self-energy Σσ (ω), the local Green function Fcσ (ω) and the average Green function Gcσ (ω) are
obtained from equation (4) and equation (6), respectively. A new value of self-energy Σσ (ω) is
determined as

Σσ (ω) =Σσ (ω)+
1

Fcσ (ω)
− 1

Gcσ (ω)
. (11)

We iterate this procedure until convergence occurs. Actually, we add an analytic continu-
ation ω → ω + iδ when performing numerical calculations. Theoretically, δ is a small positive
infinitesimal number. However, the value of δ should be in a range from 10−3 to 10−2 for iteration
convergence to happen. If δ is smaller than 10−3, the CPU has to undergo more computational
time and the iterative process does not even converge.

In the following, we discuss results for Uc f = 2.0 at half-filling nc↑ = nc↓ = n f = 1/2 in
detail. Figure 1 shows the DOS of the light fermion particles and Fig. 2 presents the filling of
light particle as a function of the chemical potential µ . In this paper, we choose the Fermi level as
the origin of the energy axis. It is clear that for small values of Ucc, the DOS shows a gap at the
Fermi level and thus the system is an insulator. This is shown in the example of the DOS in Fig.
1(a) and the plateau of the line in Fig. 2 at ncσ = 1/2 for Ucc = 0.5. In this insulating phase, the
on-site Coulomb interaction Uc f inhibits the double occupation of the heavy and light particles,
therefore each lattice site is occupied by one particle. As Ucc is increased, the gap gradually closes
and the DOS at the Fermi level becomes finite, indicating a transition to a metallic phase (Fig.
1(b) – 1(c)). Therefore, this is an inverse MIT. When Ucc increases, plateau ncσ = 1/2 in the Fig.
2 disappears and simultaneously forming two plateaus at ncσ = 1/4 and ncσ = 3/4 correspond to
the total filling n = 1 and n = 2. For larger Ucc, the light particle filling ncσ witnessed an additional
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Fig. 1. Density of states of the light particles for various values of Ucc and Uc f = 2.0 at
half-filling nc↑ = nc↓ = n f = 1/2. Here as usual the Fermi level is chosen as the origin of
the energy axis.

Fig. 2. (Color online) The filling of the light particle ncσ as a function of the chemical
potential µ for various values of Ucc and Uc f = 2.0 at n f = 1/2 . The horizontal dotted
lines indicate ncσ = 1/4, ncσ = 1/2 and ncσ = 3/4.

plateau at ncσ = 1/2 that indicates the system again in a insulator. This is shown in Fig. 1(d) for
Ucc = 4.0 that the DOS has a gap at the Fermi level. However, different from the insulating phase
at small values Ucc, in this case, each lattice site is occupied by one light two-component particle,
and large on-site Coulomb interaction Ucc inhibits their double occupation. This is illustrated in
Fig. 3 and Fig. 4, where the DOS of the light particles and their filling at Uc f = 0.5 are plotted,
respectively.
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Here, in contrast to Uc f = 2.0 case, for small values of Ucc, the system is in the metallic phase.
However, for large values of Ucc, the correlation of light fermion particles drives the system from
the metallic phase to the insulating one. The result shows that in this case MIT in the system does
not depend on Uc f and the number of heavy fermion particles.

Fig. 3. Density of states of the light particles for various values of Ucc and Uc f = 0.5 at
half-filling nc↑ = nc↓ = n f = 1/2.

Fig. 4. (Color online) The filling of the light particles ncσ as a function of the chemical
potential µ for various values of Ucc and Uc f = 0.5 at n f = 1/2. The horizontal dotted
line indicates ncσ = 1/2.
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Figure 5 shows the DOS of the light particles at the Fermi level as a function of Ucc for
Uc f = 2.0. Here by using a simple extrapolation from the data for 1.0 < Ucc < 2.75, we obtain
UC1

cc ≈ 0.92 and UC2
cc ≈ 2.85, respectively.

Fig. 5. (Color online) Density of states of the light particles at the Fermi level as a func-
tion of Ucc. The critical values obtained by extrapolating 1.0 < Ucc < 2.75 data is also
indicated (Uc f = 2.0, nc↑ = nc↓ = n f = 1/2).

Fig. 6. (Color online) Phase diagram at half filling nc↑ = nc↓ = n f = 1/2.

By carrying out a similar procedure for many different values of Uc f , we obtain the phase
diagram of the system at half-filling plotted in Fig. 6. It is obvious that in the region Uc f < 1.0,
there is one MIT in which the particle correlations drive the system from the metallic phase to
the insulating phase. By contrast, in the region Uc f ≥ 1.0, there are two MITs. While at the first
transition

(
UC1

cc
)
, particle correlations drive the system from the insulating phase to the metallic

phase, at the second transition
(
UC2

cc
)
, particle correlations drive the system from the metallic

phase to the Mott insulating phase.
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[h]

Fig. 7. (Color online) Top panel: the filling of the light particles ncσ as a function of the
chemical potential µ for various values of Ucc and Uc f = 2.0 at n f = 1/3. The horizontal
dotted lines indicate ncσ = 1/3, ncσ = 1/2, ncσ = 2/3 and ncσ = 5/6 . Bottom panel: the
filling of the light particle ncσ as a function of the chemical potential µ for various values
of Ucc and Uc f = 2.0 focus the MIT at ncσ = 1/3. The horizontal dotted lines indicate
ncσ = 1/3.

Next, we consider the MIT at third filling ncσ = n f = 1/3. Note that the two-third filling
case ncσ = n f = 1/3 can be considered as a particle-hole symmetry of the third filling one [7]. We
have checked the result of [7] that for Uc f <UC

c f ≈ 1 the MIT does not occur in the system at the
third filling. Figure 7 presents the filling of the light particles ncσ as a function of the chemical
potential µ at n f = 1/3 for various values of Ucc and Uc f = 2.0. One can see that the plateaus
appear at different values of ncσ : ncσ = 1/3;1/2;2/3 and 5/6. It means that the MIT can occur
at different values of ncσ , where ncσ + n f = 1 and n f = a/b with a,b being integer (a < b). In
contrast to the half-filling case, in the third filling the system is in metallic phase for small values of
Ucc. When Ucc increases, the correlation of the light particles drives the system from the metallic
phase to the insulating one as shown in Fig. 8 for various values of Ucc and fixed Uc f = 2.0 at
nc↑ = nc↓ = n f = 1/3. In numerical calculations, the chemical potential µ and the energy level of
localized particles E f are adjusted to maintain n f = 1/3.
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Fig. 8. Density of states of the light particles for various values of Ucc and Uc f = 2.0 at
third filling nc↑ = nc↓ = n f = 1/3.

Fig. 9. Phase diagram for third filling nc↑ = nc↓ = n f = 1/3.

Figure 9 depicts the phase diagram for the third-filling case. As it can be seen, in the region
Uc f < 1.0, the system is in a metallic phase with any values of Ucc. When Uc f > 1.0, there is a
transition from a metal to an insulator driven by the local repulsion Ucc between the light particles.
In addition, the critical values UC at the MIT point rapidly increase as Uc f approaches the value
1.0, while it slowly decreases as Uc f increases.

4. Conclusions

We have revisited the MIT in the three-component FKM by using the CPA. Within this
method the MIT at half-filling and third-filling have been studied in detail. At half-filling, with
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increasing Ucc there is a transition from the metallic phase to the insulator one when the values
of Uc f are small. By contrast, when Uc f are large, the on-site Coulomb interaction of the light
particles drives system from the insulating phase via the metallic to the insulating phase. It is
interesting to note that this re-entrant effect of insulating phase was also observed in the MIT of
the ionic Hubbard model at half-filling [11,14]. At third-filling, the system is in the metallic phase
for weak repulsive interaction Uc f and the MIT from the metallic phase to the Mott insulating one
occurs when both Ucc and Uc f are large enough. Our CPA results are in good agreement with those
obtained by the more sophisticated DMFT [7] and SB approach [8].
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