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Abstract. We revisit a model describing the Seebeck effect on a weak link between two charge
Kondo circuits, which has been proposed in the [Phys. Rev. B 97, 085403 (2018)]. We calcu-
late the thermoelectric coefficients in the perturbation theory assuming smallness of the reflection
amplitudes of the quantum point contacts. We focus on the linear response equations for the heat
conductance in three different scenarios as: Fermi liquid vs Fermi liquid, Fermi liquid vs non-
Fermi liquid, non-Fermi liquid vs non-Fermi liquid. The oscillations of the heat conductance as a
function of the gate voltage of each quantum dot are analyzed in both Fermi liquid and non-Fermi
liquid regimes. We discuss possible experimental realizations of the model to observe the signa-
tures of the non-Fermi liquid behavior in the heat conductance measurements.
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I. INTRODUCTION

Controlling the thermal properties of electronic devices can support technologies based
on heat management. A significant amount of work has already been performed to understand
heat conduction in nanodevices [1, 2]. It is known that the role of quantum electron transport in
many nanostructures affects not only the charge and spin transport phenomena but also the heat
transport mechanism. The study of quantum transport, especially the thermoelectric transport
in nano-structured devices at very low temperature, is thus an important and rapidly developing
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topic in recent years. Among a large variety of available nano-devices, quantum dots (QDs) play
an important and significant role [3]. On the one hand, QDs are highly controllable and finely
adjustable by external fields. On the other hand, QDs being part of the quantum circuits demon-
strate pronounced effects of the electron-electron interactions, resonance scattering and quantum
interference observable in the quantum transport experiments.

One of the remarkable many-body effects in QD devices is the Kondo effect [4]. A single
electron transistor QD device in the Kondo regime shows different universal behaviors at differ-
ent energies [5]. The conventional single impurity S = 1/2 single channel Kondo model (1CK)
is characterized by a unique energy scale known as the Kondo temperature TK determining the
universal behavior of the quantum thermodynamic and transport observables both at T > TK and
T < TK . The impurity spin of 1CK becomes completely screened by the mobile electrons at T → 0.
At energies greater compared to the Kondo temperature TK (TK plays the role of the Fermi energy
for 1CK), the system properties can be accessed through the perturbation theory approach. This
regime is known as a weak coupling Kondo regime [4,5]. The behavior of M-orbital spin-S Kondo
model at the energies lower compared to the Kondo temperature TK depends on the way the mo-
bile electrons screen the impurity spin. For instance, for the full screened case in which M = 2S
the system at T < TK is in the strong coupling regime, corresponding to the strong coupling fixed
point in the renormalization group (RG) flow diagram [5]. This regime is coherent and the sys-
tem is mentioned having Fermi-liquid (FL) properties. It happens the same when the system is
underscreened (M < 2S). However, for the overscreened case (M > 2S) which is characterized by
intermediate unstable coupling fixed point, the system is potentially having the non-Fermi liquid
(NFL) characteristics [5, 6]. Recent studies of the multi-channel Kondo physics in QD devices
have focused on the T < TK limit [7–16]. It is found that it is hard to achieve the strong NFL
regime at very low temperature, namely T � T ∗ < TK , where T ∗ is related to the parameter of
the perturbative expansion |r| as T ∗ = |r|2TK . The system has a tendency to fall into the FL
regime associated with stable FL fixed point [13]. Nevertheless, at higher temperature regimes,
T ∗ < T < TK , the fingerprints of the weak NFL behavior can be observed [13].

While the conventional Kondo phenomenon is attributed to a spin degree of freedom of
the quantum impurity, the unconventional charge Kondo effect deals with an iso-spin implemen-
tation of the charge quantization. Recently, the breakthrough experiments [17, 18] have been
successful in implementing a setup that consists of a large metallic QD electrically connected
to two-dimensional electron gas (2DEG) electrodes through quantum point contacts (QPCs). A
strong magnetic field is applied perpendicularly to the 2DEG plane. The 2DEG is in the Integer
Quantum Hall (IQH) regime. The QPCs are fine-tuned to satisfy the condition that only one chiral
edge current is partially transmitted across the QPCs. The logic behind the mapping of IQH setup
to a multi-channel Kondo (MCK) problem has been explained in Refs. [15, 16]. Namely, if we
assign the “iso-spin up” to the electrons inside the QD and the “iso-spin down” to the electrons
outside the QD, the charge iso-spins flip at QPCs as the backscattering transfers the “moving in-”
QD electrons to “moving out-” QD electrons and vice versa. The number of QPCs is equivalent
to the number of orbital channels in the conventional S = 1/2 Kondo problem. Therefore, these
experimental setups allow us to investigate the properties of one- or multi-channel Kondo systems
characterized by FL or NFL behaviors correspondingly. These experiments mark an important
step in the study of the MCK problems. Indeed, fairly recently, another experimental study [19]
has successfully implemented a tunable nanoelectronic circuit comprising two coupled hybrid
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metallic-semiconductor islands, combining the strengths of the two types of materials, which can
demonstrate a potential for scalability and a novel quantum critical point.

In the recent years, the thermoelectric transport through QD systems has attracted attentions
of both theorists [9–11, 20, 21] and experimentalists [22–25]. QDs have advanced applications in
thermoelectricity and microelectronics [1, 26, 27] and can be used as the tools for a better under-
standing of closely correlated systems [28, 29]. Among all the thermoelectric coefficients, the
thermopower is the most interesting object due to its high sensitivity to the particle-hole asym-
metry of the system. The thermoelectric measurements allow to investigate the effects related
to the hole-particle asymmetry and provide information on low-energy excitations in the sys-
tem [10, 11, 30, 31]. These properties of thermopower open a possibility for capturing the FL
– NFL crossover by accessing the NFL mode [13, 15, 31]. Lately, the extended studies [32–34]
have investigated heat conductance in order to better demonstrate the FL and NFL pictures in QD
systems. Moreover, understanding thermoelectric properties of a system promotes the study of
entropy [35–38].

In this work, we revisited the setup which has been proposed in 2018 [15]. The general-
ization of the ideas of Flensberg-Matveev-Furusaki (FMF) theory [7–9] is adopted to describe the
IQH charge Kondo nanodevices [17, 18]. The design for the quantum-dot–quantum-point con-
tact (QD-QPC) devices for investigation of weakly coupled Fermi and non-Fermi liquid states is
shown in Fig. 1 which can be one of three cases: a) two Fermi liquids; b) a Fermi liquid and a
non-Fermi liquid; c) two non-Fermi liquids. We compute perturbatively the thermoelectric coeffi-
cients and concentrate on the heat conductance. Discussing the behavior of the heat conductance
as a function of temperature and gate voltages in all three cases we find that the FL behavior is
more prominent than the NFL one.

The paper is organized as follows. We describe the theoretical model for observing the FL
and NFL behavior in Sec. II. General equations for the thermoelectric coefficients are presented
in Sec. III. The main results are shown in Sec. IV. We conclude our work in Sec. V.

II. MODEL

We consider a setup (see Fig. 1) consisting of two QD-QPC structures weakly coupled
through the tunnel barrier between two QDs. Each large metallic QD with a continuous spectrum
is electrically connected to a two-dimensional electron gas (2DEG) denoted by pink and gray areas
inside circles and further connected to a large electrode through several QPCs. The 2DEG is in the
IQH regime at filling factor ν = 2 by applying a strong quantizing magnetic field perpendicularly
to it. The QPCs are fine-tuned to achieve a regime where the current flows along the outer spin-
polarized edge channel (shown by red color on Fig. 1) is partially transmitted across QPCs. The
inner channel (not shown on Fig. 1) is fully reflected and can be ignored. The logic behind the
mapping of IQH setup to a single/multichannel Kondo problem has been explained in Refs. [15,
16], so each QD-QPC structure is a single or multi-channel charge Kondo simulator. At the weak
link between two QDs, temperature drop happens, namely, the pink color stands for the higher
temperature T +∆T compared to the reference temperature T of the gray one.

The spinless Hamiltonian describing the two QD-QPC structure coupled weakly at the cen-
ter (Fig. 1) has the form H=H1 +HT +H2, where

HT = (td†
1d2 +h.c.), (1)
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Fig. 1. (Color online) Schematic of two charge Kondo site setup. Each site consists of a
large metallic quantum dot (QD) (the patch) connected to a two dimensional electron gas
(2DEG) (the region inside the circle) and electrode (the trapezoid) through quantum point
contacts (QPCs). Controlling the transparencies of the QPCs provides a weak coupling
between a) two Fermi liquids; b) a Fermi liquid and a non-Fermi liquid; c) two non-
Fermi liquids. Two QDs are connected through the tunnel barrier (red dashed lines)
which is controlled by a voltage (the green patches). The pink color stands for the higher
temperature T + ∆T compared to the reference temperature T of the gray color. The
currents flowing along the chiral spin edge channel are denoted by red lines with arrows.
They are partially transmitted through the almost transparent QPCs.

describes the tunneling between two dots, d j is the annihilation operator of an electron in the
dot j, ( j = 1,2) at the position of the weak link. Each QD j is coupled strongly to the leads
through QPCα j (α = 1,2) so that the whole part [(QD-QPC) j structure] is described by Hamilton-
ian H j=H0 j +HC j +Hs j. The Hamiltonian H0, j stands for the free part representing two copies of
free one-dimensional electrons in QPCα j (α j = 11,21,12,22, see Fig. 1) and corresponding patch
areas between QPCα j and QD j of the (QD-QPC) j:

H0, j = ∑
α=1,2

−ivF

∫
∞

−∞

dx
[
ψ

†
↑,α, j∂xψ↑,α, j−ψ

†
↓,α, j∂xψ↓,α, j

]
. (2)

Here we define ψ↑,α, j (ψ↓,α, j) the operator describing one-dimensional fermions which are inside
(outside) the QD j in the (QD-QPC) j, vF is a Fermi velocity. We adopt the units h̄ = c = kB = 1 in
this paper.

The QDs are assumed in the Coulomb blockade regime which is demonstrated by the
Hamiltonian HC:

HC, j = EC, j [n̂t, j + n̂QPCs, j−N j(Vg, j)]
2 , (3)

with EC, j is charging energy, n̂t, j and n̂QPCs, j =
∫

∞

0 ∑α ψ
†
α, j(x)ψα, j(x)dx [39] are the operator of the

number of electrons that entered the QDj through the weak tunnel and the QPCs correspondingly,
and N j is a dimensionless parameter which is proportional to the gate voltage Vg, j. The Hamil-
tonian Hs, j describes the backward scattering at the QPCα j on the side j, which is controlled by a
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short-range isospin-flip voltage Vα j (x):

Hs, j = ∑
α=1,2

∫
∞

−∞

dx
[
ψ

†
↑,α, j (x)Vα j (x)ψ↓,α, j (x)e−i2kF x +h.c.

]
. (4)

In the spirit of FMF theory [7–9], we replace d†
j d j = ∑α ψ

†
↑,α, j(−∞)ψ↑,α, j(−∞)F†F , where F

is the operator lowering n̂t, j by unity. The operator F†(t) increases nt, j from 0 to 1 at time t,
while F(t) decreases nt, j back to 0 from 1. In the bosonic represention, the fermionic operator is
related to the bosonic operator as: ψ(↑/↓),α, j(x)∼ eiφα, j(x) with φα, j is a bosonization displacement
operator describing transport through the QPCα j of the (QD-QPC) j, with a scatterer at x=0. We
can rewrite the HC, j , H0, j and Hs, j in the bosonic language as follows.

HC, j = EC, j

[
n̂ j +

1
π

∑
α

φα, j(0)−N j(Vg, j)

]2

, (5)

H0, j = ∑
α

vF

2π

∫
∞

−∞

{
[Πα, j(x)]2 +[∂xφα, j(x)]2

}
dx, (6)

Hs, j =−
D
π

∑
α

|rα j|cos[2φα, j(0)], (7)

where Πα, j is the conjugated momentum [φα, j(x),Πα ′, j(x′)] = iπ δ (x−x′)δαα ′ , D is a bandwidth,
rα j =−iVα j(2kF)/vF is the reflection amplitude of the QPCα j.

III. HEAT CURRENT AND HEAT CONDUCTANCE
We sketch the derivation of the electric and heat currents:

Ie =−2πe|t|2
∫

∞

−∞

dεν1(ε)ν2(ε) [ f1(ε)− f2(ε)] , (8)

Ih = 2π|t|2
∫

∞

−∞

dεεν1(ε)ν2(ε) [ f1(ε)− f2(ε)] , (9)

with |t| is a modulus of the tunnel matrix element as shown in Eq. (1) and the densities of states
are given by equations:

ν j(ε) =−
1
π

cosh
( ε

2T

)∫ ∞

−∞

G j

(
1

2T
+ it
)

eiεtdt, (10)

where G j(1/2T + it) are exact Green’s Functions (GF) in the terminals j = 1,2, f1(ε) = f (ε+
e∆V/2,T +∆T/2), f2(ε) = f (ε− e∆V/2,T −∆T/2) are corresponding Fermi distribution func-
tions, and d f (ε)/dε = −1/[4T cosh2(ε/2T )], d f (ε)/dT = ε/[4T 2 cosh2(ε/2T )]. The currents in
linear response regime are given by

Ie = 2πe2|t|2 ∆V
4T

∫
∞

−∞

dε
ν1(ε)ν2(ε)

cosh2
( ε

2T

) −2πe|t|2 ∆T
4T 2

∫
∞

−∞

dε
εν1(ε)ν2(ε)

cosh2
( ε

2T

) , (11)

Ih = −2πe|t|2 ∆V
4T

∫
∞

−∞

dε
εν1(ε)ν2(ε)

cosh2
( ε

2T

) +2π|t|2 ∆T
4T 2

∫
∞

−∞

dε
ε2ν1(ε)ν2(ε)

cosh2
( ε

2T

) . (12)
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Following Onsager’s theory [40, 41], we calculate the thermoelectric coefficients as follows:

Lee = T
∂ I

∂∆V

∣∣∣∣
∆T=0

=
πe2|t|2

2

∫
∞

−∞

dε
ν1(ε)ν2(ε)

cosh2
( ε

2T

) , (13)

Lhe = T
∂ Ih

∂∆V

∣∣∣∣
∆T=0

=−πe|t|2

2

∫
∞

−∞

dε
εν1(ε)ν2(ε)

cosh2
( ε

2T

) = Leh = T 2 ∂ Ie

∂∆T

∣∣∣∣
∆V=0

, (14)

Lhh = T 2 ∂ Ih

∂∆T

∣∣∣∣
∆V=0

=
π|t|2

2

∫
∞

−∞

dε
ε2ν1(ε)ν2(ε)

cosh2
( ε

2T

) . (15)

As a result, the heat conductance is defined as

GH =
∂ Ih

∂∆T

∣∣∣∣
Ie=0

=
1

T 2

[
Lhh−

L2
he

Lee

]
. (16)

Plugging in the densities of states in Eq. (10) we get formulas of the thermoelectric coefficients.
The last step is to parametrize the exact GF’s at imaginary times as

G j(τ j) =−ν0 jπT [sin(πT τ j)]
−1×K j(τ j)

with ν0 j is the density of states in the dot computed in the absence of renormalization effects as-
sociated with electron-electron interaction . All effects of interaction and scattering are accounted
for by the correlator K j(τ j) = 〈Tτ j F̂j(τ j)F̂

†
j (0)〉 [9–11]. It is convenient to introduce a notation

GC = 2πe2ν01ν02|t|2 for the conductance of the tunnel (central) area between two terminals. Sub-
stituting Eq. (10) into Eqs. (11), (12) and performing integration over frequency we obtain after
some simplification the general formulas for the thermoelectric coefficients of the two QD-QPC
structure nano-device as:

Lee =
π

2
GCT 2

∫
∞

−∞

dτ

cosh2(πT τ)
K1

(
1

2T
+ iτ

)
K2

(
1

2T
− iτ

)
, (17)

Lhe =−
iπGCT 2

4e

∫
∞

−∞

dτ

cosh2(πT τ)

[(
∂τK1

(
1

2T
+ iτ

))
K2

(
1

2T
− iτ

)
− K1

(
1

2T
+ iτ

)(
∂τK2

(
1

2T
− iτ

))]
, (18)

Lhh =
GC

2e2 πT 2
∫

∞

−∞

dτ

{
π2T 2

[
2− cosh2(πT τ)

]
cosh4(πT τ)

K1

(
1

2T
+ iτ

)
K2

(
1

2T
− iτ

)
+

1
cosh2(πT τ)

∂τK1

(
1

2T
+ iτ

)
∂τK2

(
1

2T
− iτ

)}
. (19)

The computation of thermoelectric coefficients in Eqs. (17)-(19) essentially needs the explicit
form of the electron correlators K j(1/2T ± iτ). It depends on the number of conduction channels
corresponding to the number of QPCs connecting the QD with the electrode of the site j. For our
purpose of investigating the physical pictures of the Fermi liquid and non-Fermi liquid states, it is
sufficient to consider the single channel and two-channel charge Kondo effects. In the next section
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we discuss a weak link between a) two Fermi liquids; b) a Fermi liquid and a non-Fermi liquid; c)
two non-Fermi liquids in Fig. 1.

IV. MAIN RESULTS

Using the above general formulas (17), (18), and (19) to compute the heat conductance as
defined in formula (16), we proceed straightforwardly to calculation of the thermoelectric coeffi-
cients of the model introduced in Sec. II (see Fig. 1). We label and discuss three important limiting
cases one by one in this section. We assume in all calculations that T �min [EC,1,EC,2] [10, 11].

IV.1. Fermi liquid – Fermi liquid
This situation happens when each QD is connected to the electrode through a QPC. We

assume for illustration purposes that either the QPC21 and QPC22 in Fig. 1 are turned off or the
differences between the reflection amplitudes of the QPCs in a QD-QPC structure, namely ||r11|−
|r21|| and ||r12| − |r22||, are big enough [13, 15]. The channel asymmetry plays very important
role: the RG controls the flow to the stable FL strong coupling fixed point. We thus have single
channel Kondo (1CK) on each side. The correlator K j (τ) for spinless case at the first order of the
reflection amplitude |r j| of the QPCj in the perturbative expansion is [10, 11]

K j (τ) =

(
π2T
γEC, j

)2 1
sin2 (πT τ)

[
1−2γξ |r j|cos(2πN j)+4π

2
ξ γ|r j|

T
EC, j

sin(2πN j)cot(πT τ)

]
,

(20)
with ξ = 1.59 is a numerical constant, γ = eCCC,CCC ≈ 0.5772 is the Euler’s constant [10, 11]. We
embed this correlator into Eqs. (17,18,19), we obtain formulas for the thermoelectric coefficients
as

Lee = A0
1GC

T 5

E2
C,1E2

C,2
[1−2γξ |r1|cos(2πN1)−2γξ |r2|cos(2πN2)] , (21)

with A0
1 = 8π8/15γ4,

Lhe =−
A0

2GC

e
T 7

E2
C,1E2

C,2

[
|r2|
EC,2

sin(2πN2)+
|r1|
EC,1

sin(2πN1)

]
, (22)

with A0
2 = 32ξ π11/35γ3, and

Lhh =
A0

3GC

e2
T 7

E2
C,1E2

C,2
[1−2γξ |r1|cos(2πN1)−2γξ |r2|cos(2πN2)] , (23)

with A0
3 = 24π10/35γ4. So, the heat conductance GH at the lowest order of temperature and

reflection amplitudes is

GH =
A0

3GC

e2
T 5

E2
C,1E2

C,2
[1−2γξ |r1|cos(2πN1)−2γξ |r2|cos(2πN2)] . (24)

The heat conductance as a function of both dimensionless gate voltages N1, N2 for the weak link
between two Fermi liquid states is plotted on Fig. 2 (left panel). We find that the heat conductance
in this case oscillates on both gate voltages N1 and N2 symmetrically. In order to have the heat
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Fig. 2. (Color online) Contour plots of the heat conductance (e2/Gc)GH×106 as a func-
tion of both dimensionless gate voltages N1, N2 for the weak link between two Fermi liq-
uid states (left panel), Fermi liquid state – non-Fermi liquid state (central panel), and two
non-Fermi liquid states (right panel). Here the reflection amplitudes |r1| = |r2| = 0.088
and temperature T = 0.01. We choose EC,1 = EC,2 = 1.

conductance being positive, the values of the reflection amplitudes and temperature must be much
smaller than EC,1, EC,2.

IV.2. Fermi liquid – Non-Fermi liquid
This situation happens when the QD in the left side is connected to the electrode through

a QPC (either one QPC is off or ||r11| − |r21|| is big enough, see explanation in the previous
subsection) while the QD in the right side is connected to the electrode through two QPCs with
the same reflection amplitude |r12|= |r22| ≡ |r2| in Fig. 1. We thus have 1CK on the left side and
two-channel Kondo (2CK) on the right side. The correlator K1 (τ1) for spinless case at the first
order of |r1| in the perturbative expansion is shown in Eq. (20), while the correlator K2 (τ2) for
spinful case at the second order of |r2| in the perturbative expansion is [10, 11]

K2 (τ2) =
π2T

2γEC,2

1
|sin(πT τ2) |

[
1+

2γEC2

π4T
|r2|2 [cos(2πN2)+1]F (τ2)

−8γ

π2 |r2|2 sin(2πN2) ln
[

EC,2

T

]
ln tan

(
πT τ2

2

)]
, (25)

with F (τ) expressed in terms of dilogarithm function Li2(x) =−
∫ x

0 t−1 ln(1− t)dt [42]

F (τ) = i
{

3
[
−iπT τ ln tan

(
πT τ

2

)
−Li2

[
−i tan

(
πT τ

2

)]
+Li2

[
i tan

(
πT τ

2

)]]
+iπ (1+T τ) lncot

(
πT τ

2

)
−Li2

[
−icot

(
πT τ

2

)]
+Li2

[
icot

(
πT τ

2

)]}
.

Embedding these correlation functions into Eqs. (17)-(19), we obtain

Lee =C0
1GC

T 4

E2
C,1EC,2

[
1−2γξ |r1|cos(2πN1)−C1

1 |r2|2
EC,2

T
cos2 (πN2)

]
, (26)
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with C0
1 = 3π7/32γ3 and C1

1 = (189ζ (3)−62)16γ/27π5, ζ (s) = ∑
∞
n=1 n−s is the Riemann ζ -

function, ζ (3)≈ 1.2 is Apery’s constant.

Lhe =−
C0

2GC

e
T 5

E2
C,1EC,2

[
|r1|

T
EC,1

sin(2πN1)+C1
2 |r2|2 ln

[
EC,2

T

]
sin(2πN2)

]
, (27)

with C0
2 = π10ξ/8γ2 and C1

2 = 256/25π5ξ ,

Lhh =
C0

3GC

e2
T 6

E2
C,1EC,2

[
1−2γξ |r1|cos(2πN1)−C1

3 |r2|2
EC,2

T
cos2 (πN2)

]
with C0

3 = 3π9/32γ3 and C1
3 = (189ζ (3)−62)16γ/27π5. So, the heat conductance is

GH =
C0

3GC

e2
T 4

E2
C,1EC,2

[
1−2γξ |r1|cos(2πN1)

−C1
3 |r2|2

EC,2

T
cos2 (πN2)−

(
C0

2

)2

C0
3C0

1
|r1|2

T 2

E2
C,1

sin2 (2πN1)

]
. (28)

The heat conductance oscillates on the gate voltages N1, N2 asymmetrically when the Fermi liquid
state and non-Fermi liquid state are weakly coupled as shown in Fig. 2 (central panel). The heat
conductance depends on N2 [as |r2|2T 3 cos2 (πN2)] less strong than on N1 [as |r1|T 4 cos(2πN1) and
|r1|2T 6 sin2 (2πN1)]. Thus, it is easy to find that the FL-1CK dominates in the heat conductance.
One may think that the reason is the flow of the heat energy from the FL-1CK side to the NFL-2CK
one but it is not the case. Even though the NFL-2CK site is at higher temperature, the FL-1CK
still contributes from the first order term. In order to have effects of NFL-2CK considerable in
Eq. (28), the reflection amplitude |r2| and temperature must satisfy T−3/2|r2|/|r1| ≥ 49.3718 and(
|r2|2/|r1|

)
/T ≥ 9.94. In fact, these conditions can be satisfied in experiments, we predict that

there exists a temperature T ∗ at which the crossover FL – NFL happens in the heat conductance
[15, 31].

IV.3. Non-Fermi liquid – Non-Fermi liquid
This regime is realized when both QD in both sides are connected to the electrode through

two QPCs with the same reflection amplitude |r j|, see Fig. 1. We thus have 2CK on each side.
We embed the correlator K j (τ j) for spinful case at the second order of |r j| in the perturbative
expansion as in Eq. (25) [10, 11] into Eqs. (17,18,19), we obtain

Lee = P0
1 GC

T 3

EC,1EC,2

[
1−P1

1 ∑
j=1,2
|r j|2

EC, j

T
cos2 (πN j)

]
, (29)

with P0
1 = π4/6γ2, P1

1 = (16ln2−1)γ/π3,

Lhe =−
P0

2 GC

e
T 4

EC,1EC,2
∑

j=1,2
|r j|2 ln

[
EC, j

T

]
sin(2πN j) , (30)

with P0
2 = 3π4/16γ ,

Lhh =
P0

3 GC

e2
T 5

EC,1EC,2

[
1−P1

3 ∑
j=1,2
|r j|2

EC, j

T
cos2 (πN j)

]
, (31)
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with P0
3 = 2π6/15γ2, P1

3 = (16ln2−49/64)γ/π3. So, the heat conductance at the lowest order
which depends on the gate voltage N j is:

GH =
P0

3 GC

e2
T 3

EC,1EC,2

[
1−P1

3 ∑
j=1,2
|r j|2

EC, j

T
cos2 (πN j)

]
. (32)

We find that in Eq. (32), following the zero order in the perturbative series is the second order of
the reflection amplitudes. It means the heat conductance oscillates weakly on the gate voltage N j.
The heat conductance as a function of both dimensionless gate voltages N1, N2 is plotted for the
weak link between two non-Fermi liquid states on Fig. 2 (right panel).

The Eqs. (24), (28), and (32) are central results of this paper. The heat conductance is
affected by FL states more strongly than by NFL states. The zero order terms (the main terms)
follow the temperature scaling T 5, T 4, and T 3 corresponding to the situations coupling between
two FL states, between FL and NFL states, and between two NFL states. The Coulomb oscillations
appear at the first order term when one or both of the charge Kondo circuits is/are in FL regime
while they appear at the second order when one or both sides is/are in NFL states. It is understood
that the NFL states originated from a two-channel charge Kondo with strong fluctuations of the
isospin. Therefore, at the lowest order, the heat conductanceis deducted by a percentage which is
proportional to 1/T (see terms inside the bracket) concerning NFL states.

V. CONCLUSION

In summary, we have derived equations for the heat conductance of a quantum circuit con-
taining a weak coupling between two QD-QPC structures where each one is corresponding to a
charge Kondo simulator: either single channel – Fermi liquid state or two channel – non-Fermi
liquid state. The heat conductance is computed in perturbation theory assuming the smallness of
the reflection amplitudes at the QPCs. In this regime the heat conductance in the complex charge
Kondo circuit is small and consistent with classical explanation for bulk materials [43]. The gate
voltage dependence is more pronounced when the Kondo states are FL than when the Kondo
states are NFL. For the mixed regime when the weak link connects the FL and NFL states, the FL
state dominates in the heat conductance. All regimes can be experimentally verified in quantum
transport measurements with charge Kondo simulators.

Other interesting directions for future work can be investigating heat conduction in the pres-
ence of Kondo charge correlation in different complex setups. The extensions of the calculations
beyond the linear response [44] and/or the perturbation theory is a challenging problem [45]. In-
vestigations of the effects of the strong couplings between quantum dots in the Kondo regime are
currently open for future research [19, 45].
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