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Abstract. In this paper, the temperature-dependent extended X-ray absorption fine structure (EX-
AFS) of distorted crystalline cadmium has been analyzed using an efficient calculation-model.
The analysis procedure is based on evaluating the influence of temperature on the phase shift and
amplitude reduction of EXAFS oscillation that is expressed in terms of the EXAFS Debye-Waller
factor. The anharmonic EXAFS cumulants are calculated by expanding the anharmonic correlated
Debye model based on the anharmonic effective potential that depends on the structural charac-
teristics of distorted crystalline cadmium. The numerical results satisfy well with those obtained
using the experimental data and other models at various temperatures. The obtained results in-
dicate that this theoretical model is useful for calculating and analyzing the experimental EXAFS
data of distorted crystalline metals.

Keywords: crystalline cadmium; anharmonic correlated Debye model; Debye-Waller factor; EX-
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I. INTRODUCTION

Nowadays, the extended X-ray absorption fine structure (EXAFS) technique is a widely
employed probe of the dynamical behaviors and structural parameters in disordered systems [1,2].
This is because EXAFS spectroscopy can contain information about local structures around X-ray
absorbing atoms and gives interatomic distances and coordination numbers in crystal lattices [3,4].
This resulted in the EXAFS technique being developed and expanded greatly based on the rapid
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development of synchrotron radiation facilities worldwide [5–7]. In reality, thermal disorders are
very sensitive to EXAFS oscillation under the influence of temperature because these disorders
can disturb the arrangement of atoms in the crystal lattice [7, 8]. The temperature-dependent EX-
AFS oscillation can be described using a cumulant expansion approach proposed by Bunker, in
which the anharmonic EXAFS oscillation is presented in terms of the Debye-Waller (DW) fac-
tor via the power moments of radial pair distribution (RD) function [9, 10]. In this approach, the
thermodynamic properties and structural parameters of materials can easily be derived using the
IFEFFIT program suite [11, 12] based on fitting the experimental EXAFS signals with a theoret-
ical EXAFS oscillation [13, 14]. Therefore, to obtain reliable results, it needs suitable physical
approximations and theoretical models that can accurately describe the anharmonic EXAFS DW
factor implemented in the FEFF code of this program suite [15, 16].

In recent years, crystalline cadmium (Cd) has been widely used to produce many essen-
tial materials in emerging technologies, such as rechargeable batteries, colorants, coating layers,
metal-plated sheets, heat stabilizers, etc. [17–20]. Compared to other cubic crystals, this crystal
has lower symmetry and isotropy because it has a hexagonal close-packed (HCP) structure with a
non-ideal axial ratio c/a [18, 19].

The temperature-dependent EXAFS cumulants of Cd have also been obtained from the
anharmonic correlated Einstein (ACE) (only the first three cumulants) [21] and classical anhar-
monic correlated Einstein (CACE) [22] models and experiment [22] by Hung et al. (2008,2014).
However, the ACE and CACE models have not yet evaluated the influence of cumulants on the
anharmonic EXAFS oscillation in detail. And only the first three cumulants are calculated in the
ACE model, and the CACE is not valid at the low-temperature (LT) region. Also, these models
use an ideal axial ratio c/a≈

√
8/3 in calculations, so Cd is only approximated as an undistorted

crystal [21, 22]. It means that the previous works have not considered the effect of structural
distortions on the anharmonic EXAFS oscillation of Cd.

Moreover, the effect of structural distortion on the anharmonic EXAFS signals has been
discussed by Tien in recent works [3, 5, 16]. The initial obtained results have shown that ignoring
this effect can lead to non-negligible errors in the experimental EXAFS data analysis of distorted
crystals. However, these works have not fully evaluated the effect of structural distortions on the
temperature-dependent EXAFS oscillation, and Cd with a distorted structure has also not been
considered in these investigations.

Recently, an anharmonic correlated Debye (ACD) model was efficiently applied in inves-
tigating the temperature-dependent EXAFS oscillation of many metals [23–26]. The advantage
of this model is that it can calculate all first four cumulants and is valid even in the LT region
for crystals that have multiple acoustic phonons with low symmetry and isotropy. Therefore, the
analysis and calculation of the temperature-dependent EXAFS oscillation of Cd with a distorted
structure is based on the extension of the ACD model, which is a useful addition to the analysis of
the experimental data in the advanced EXAFS technique.
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II. FORMALISM

K-edge EXAFS function in the framework of plane-wave approximation for one scattering
path, including a non-Gaussian disorder, can be expressed via the anharmonic EXAFS cumu-
lants [27–30]:
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where k is the photoelectron wavenumber, T is the temperature, σ (n)(T ) is nth-order cumulants,
λ (k) is the electron mean free path, F(k) is the atomic backscattering amplitude, is the coordi-
nation number, S2

0(k) is the square of the many body overlap term, δ (k) is the net phase shift,
and r0 and R(T ) are the equilibrium distance and the average distance between the absorbing and
backscattering atoms, respectively.

The amplitude A(k,T ) and phase Φ(k,T ) of K-edge EXAFS function in an expression form
ξ (k,T ) = A(k,T )sinΦ(k,T ) can be defined from Eq. (1) as

A(k,T ) =
NS2

0(k)
k

F(k)exp
{
−2lnR(T )− 2R(T )

λ (k)
−2k2

σ
2(T )+

2k4

3
σ
(4)(T )

}
, (2)

Φ(k,T ) =2kr0 +2kσ
(1)(T )−4k

[
1

R(T )
+

1
λ (k)

]
σ

2(T )− 4k3

3
σ
(3)(T )+δ (k). (3)

Therefore, thermal vibrations influence the K-edge EXAFS amplitude and phase as the
temperature changes in the crystal lattice. Assuming that the quantities S2

0(k), δ (k), λ (k), and F(k)
are to be similar at the definite temperatures and reference temperature T0 [31, 32], the logarithm
of amplitude ratio M(k,T ) and phase difference δΦ(k,T ) between the definite temperatures T and
the reference temperature T0 can be inferred from Eqs. (2) and (3) in the form:
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where the contribution of the term−2
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is considered negligible in Eq. (4),

and the approximate expressions 1/R(T )≈ 1/R(T0)≈ 1/r0 are used in Eq. (5).
For cubic metals, the Morse potential can validly determine the pair interaction potential of

atoms [33,34]. If this potential is expanded around its minimum position to the fourth order, it can
be written as
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where mi is the deviation of the instantaneous bond length between two atoms from equilibrium,
D is the dissociation energy, and α characterizes the width of the potential.

In the relative vibrations of backscattering and absorbing atoms, considering only the nearest-
neighbor interactions and including the correlation-effect, the anharmonic effective (AE) potential
in the center of mass frame of single bond pair of absorber and backscatter atoms is given by [35]

Veff =V (x)+ ∑
i=1,2

∑
j 6=1,2

V
(
εixR̂12R̂i j

)
,εi = µ/mi, (7)

where mi is the mass of the ith atom, µ = m1m2/(m1+m2) is the reduced mass of the absorber (1)
and backscatter (2), the sum i is the over absorber and backscatter, the sum j is over their nearest
neighbor atoms, R̂12 is direction unit vector linking absorber and backscatter, and R̂i j is the unit
vector along with bond between the ith and jth atoms.

Fig. 1. (a) The crystal model and of Cd with a distorted HCP structure and (b) The
schematic diagram of the nearest-neighbor atoms of absorbing and backscattering atoms.

The distorted HCP structure of Cd is shown in Fig. 1(a), and the schematic diagram of the
nearest-neighbor atoms of absorbing (1) and backscattering (2) atoms is shown in Fig. 1(b). It can
be seen that each atom is similar and is bonded to twelve other surrounding atoms in the first shell.
In this crystal, the lattice constants c and a are often used to describe a unit cell, and the distortion-
degree of HCP structure can be characterized by the ratio e = c/a, in which c is the height, and a
is the basal plane edge length. For monatomic crystals like Cd, the values of the parameter are the
same, and the values of the parameter in Eq. (7) are all equal 1/2 because all atoms are the same
and have mass mi = m. Herein, in calculating the AE potential Veff(x) from Eq. (7), the structural
parameter e appears in the scalar multiplication of the term R̂12R̂i j, in which i is the position of
absorbing and backscattering atoms, and the sum j is the position of their nearest-neighbor atoms,
as seen in Fig. 1(b). Ignoring the overall constant after the use of the Morse potential in Eq. (6) to
calculate the AE potential of Cd from Eq. (7), we obtain the result in the form:

Veff(x) =
1
2

k0x2− k3x3 + k4x4, (8)

where k3 and k4 are the anharmonic force constants, k0 is the effective force constant [4, 22], and
they can be written in the temperature-independence as follows:
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The ACD model is developed from the correlated Debye model using the many-body per-
turbation (MBP) approach and the AE potential [23–26]. In this model, each atomic vibration in a
crystal lattice is quantized as a phonon, and each phonon is treated using a wave described via the
dispersion relation:

ω(q) = ωD |sin(qa/2)| , |q| ≤ π/a, (10)

where ω(q) is the oscillation frequency, ωD is the correlated Debye frequency, a is a lattice con-
stant in the one-dimensional system, and q is the phonon wavenumber in the first Brillouin (FB)
zone.

In a crystal lattice, the correlated Debye temperatureθD and frequency ωD of Cd can char-
acterize atomic thermal vibrations [24, 25]. They are obtained using the effective force constant
from Eq. (9) as follows:
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3e2 +4)m

, θD =
h̄ωD

kB
= 4
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where ωD can be treated using the formula ωD = cqD, kB is the Boltzmann constant and h̄ is the
reduced Planck constant.

The general expressions of the anharmonic EXAFS cumulants in the ACD model were
calculated by Hung et al. in previous works [23]. However, these obtained expressions are not
optimized yet because they still depend on the lattice constant a. Therefore, we have extended
the previous ACD model to calculate the temperature-dependent EXAFS cumulants of Cd. After
substituting the expressions of local force constants k0, k3 and k4 in Eq. (9) into these general
expressions in the ACD model [23] and converting from variable to variable in the formula , we
obtain the following results:
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where the angular bracket 〈 〉 is the thermal average, σ (1) characterizes the net thermal expansion
(NTE), σ (2) is the parallel mean-square relative displacement (MSRD) σ2, σ (3) is the mean-cubic
relative displacement (MCRD), σ (4) describes the symmetric deviations from the Gaussian shape,
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and the related functions Z(p), F(p1, p2), G(p1, p2) are identified as

Z(p) = exp{β h̄ω(p)} , (16)
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Herein, the obtained expressions using the present ACD model are derived from the AE
potential. This potential took into account three-dimensional interactions because the second
term in Eq. (7) includes the influence of nearest-neighbor atoms on a pair interaction potential.
Therefore, in this ACD model, the three-dimensional vibration can be modeled using the one-
dimensional vibration model based on the dispersion relation in the crystal lattice. The modeling
in the present approach is also used in the previous ACD models and has shown its validity and
effectiveness [23–26].

Thus, an extended ACD model can successfully calculate the correlated Debye temperature
and frequency, local force constants, and anharmonic EXAFS cumulants of Cd. The obtained
expressions of these EXAFS cumulants can satisfy all fundamental properties in their temperature
dependence and have also been optimized to not depend on the lattice constant as in the previous
ACD model. In this work, the effect of structural distortion is caused by the non-ideal axial ratio
of Cd described via a structural parameter e in the calculated expressions. Meanwhile, this effect
was not considered in the previous works because Cd is only considered an undistorted crystal
using a structural parameter e≈

√
8/3.
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III. NUMERICAL RESULTS AND DISCUSSIONS

To discuss the efficiency of the present theoretical model in calculating and analyzing the
temperature-dependent EXAFS oscillation of Cd, we use the obtained expressions from Sec. II
in calculations to obtain the numerical results of Cd. In these calculations, using the Morse po-
tential parameters α = 1.9069 Å−1, D = 0.1675 eV, and r0 = 3.0419 Å [21], the atomic mass
m = 112.41 u [36], and the lattice constants a = 2.98 Å, c = 5.62 Å, and e = 1.89 [36], we cal-
culate and analyze the first four EXAFS cumulants σ (1), σ (2), σ (3) and σ (4), the correlated Debye
temperature θD and frequency ωD, the local force constants k0, k3 and k4, and the logarithm of
amplitude ratio M(k,T ) and phase difference ∆Φ(k,T ) of the anharmonic EXAFS oscillation.

Table 1. The thermodynamic parameters k0, k3, k4, ωD and θD of Cd obtained using the
ACD model, the ACE [21] and CACE [22] models, and experimental Morse potential [21,
22].

Method k0(eVÅ−2) k3(eVÅ−3) k4(eVÅ−4) ωD (×1013 Hz) θD(K)

ACD model with e = 1.89 2.975 1.429 1.521 3.186 243.391

ACD model with e≈
√

8/3 3.045 1.452 1.534 3.224 246.275

ACE model [21] 3.045 1.452 - 3.224 246.275

CACE model [22] 3.045 1.452 1.534 3.224 246.275

Experimental Morse

potential [21, 22] 3.001 1.429 1.509 3.199 244.447

The values of the correlated Debye temperature and frequency and local force constants ,
and of Cd are given in Table 1, in which our obtained results using the ACD model are calculated
from Eqs. (9) and (11) in both cases e (for a distorted crystal) and e (for an undistorted crys-
tal). Herein, the obtained results using the ACE [21] and CACE [22] models do not consider the
structural distortion of Cd and use the structural parameter e in calculations. And the correlated
Debye temperature and frequency can be inferred from the correlated Einstein temperature and
frequency using the related expressions and [24, 29]. Meanwhile, the obtained results using the
experimental Morse potential are calculated from Eqs. (9) and (11) based on the measured Morse
parameters Å−1, eV, and Å [21, 22]. It can be seen that our results fit with those obtained using
the ACE and CACE models and experimental Morse potential [21, 22]. And our obtained results
with e are the same as those obtained using the ACE and CACE models because Cd is considered
an undistorted crystal in all these models. Moreover, compared to the values obtained from the
experimental Morse potential, our obtained results with e fit better than those obtained using other
models, as seen in Table 1. It means that the effect of structural distortion on the thermodynamic
parameters of Cd needs to be considered in calculations.

The (a) first cumulant σ (1)(T ), (b) second cumulant σ (2)(T ), (c) third cumulant σ (3)(T ),
and (d) fourth EXAFS cumulant σ (4)(T ) of Cd in the temperature dependence are shown in Fig. 2.
Herein, our obtained results using the ACD model are calculated by Eqs. (12)-(18) in both cases
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Fig. 2. Temperature-dependent (a) first, (b) second, (c) third, and (d) fourth EXAFS cu-
mulants of Cd obtained using the ACD, ACE [21], CACE [22] models and experi-
ments [22].

e = 1.89 (for a distorted crystal) and e≈
√

8/3 (for an undistorted crystal), and the experimental
values at 77 K and 300 K [22] are derived from measured EXAFS data analysis. Meanwhile,
the ACE [21] and CACE [22] models only treat Cd as an undistorted crystal using a structural
parameter e ≈

√
8/3, so the effect of structural distortion on the EXAFS cumulants of Cd is not

taken into account in these models. It can be seen that our results fit well with those obtained from
the ACE [21] and CACE (only in the high-temperature region) [22] models and experiment [22].
Also, in the LT region, the obtained results using the ACE model [21] are slightly greater than
our calculated results because the ACE model use only one effective frequency to describe the
atomic thermal vibrations. Meanwhile, the CACE model [22] approaches zero as the temperature
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approaches the zero-point (ZP) because it cannot calculate the ZP energy and quantum effects
using classical statistical theory. Moreover, our obtained results with e are significantly greater
than our obtained results with e ≈

√
8/3 and fit best with the experimental data in comparison

with other models, especially in the high-temperature (HT) region. It can be seen that the effect of
structural distortion significantly increases the third and fourth cumulants (high-order cumulants)
and visibly increases the first and second cumulants (low-order cumulants), as seen in Fig. 2.

Fig. 3. Influence of temperature change on wavenumber-dependent (a) logarithm of
amplitude ratios and (b) phase differences of Cd obtained using the ACD, ACE [21],
CACE [22] models and experimental data [22] with the reference temperature K.

The wavenumber-dependent (a) logarithm of amplitude ratios M(k,T ) = ln[ A(k,T )
A(k,77K) ] and

(b) phase differences ∆Φ(k,T ) = Φ(k,T )−Φ(k,77 K) of Cd at T = 300 K, 400 K, and 500 K
are shown in Fig. 3. The obtained results are calculated by Eqs. (4)-(5) with the temperature-
dependent EXAFS cumulants are obtained using the ACD, ACE [21], and CACE [22] models and
experiments. In these calculations, our obtained results using the ACD model are calculated in
both cases e (for a distorted crystal) and e (for an undistorted crystal). It can be seen that our results
have a reasonable characterization with those obtained using the ACE [21] and CACE [22] models.
In comparison with these experimental values, the obtained results of using the ACE model [21]
are not in good agreement because this model can not calculate the fourth EXAFS cumulants and
treats it as zero. Meanwhile, the nonconformity of obtained results using the CACE model [22]
is because this model does not work well in the LT region temperatures (T0 = 77 K). Also, it can
be seen that the influence of temperature strongly decreases the ∆W (k,T ) and ∆Φ(k,T ), in which
∆W (k,T ) decreases more slowly than ∆Φ(k,T ), especially at the large wavenumbers. Moreover,
our obtained results with e = 1.89 are clearly different from our obtained results with e ≈

√
8/3

and fit best with those obtained using experimental data [22] in comparison with other models,
especially for the phase differences. It can be seen that the effect of structural distortion visi-
bly increases M(k,T ) and significantly decreases ∆φ(k, t) with increasing the temperature T and
wavenumber k, in which the effect of structural distortion on M(k, t) changes faster and is smaller
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than its effect on ∆Φ(k,T ), as seen in Fig. 3. It means that the EXAFS amplitude reduction is
clearly reduced by the effect of structural distortion, and the EXAFS phase shift is significantly
increased by this effect. Therefore, the structural distortion has a significant effect and needs to be
considered in treating the temperature-dependent EXAFS oscillation, especially in the HT region.

IV. CONCLUSIONS

In this work, we have developed and expanded an efficient model for calculating and ana-
lyzing the temperature-dependent EXAFS oscillation of Cd with a distorted structure. The anhar-
monic EXAFS oscillation has been fully evaluated in variating the wavenumber using the anal-
ysis of the phase shift and amplitude reduction through the first four EXAFS cumulants. The
temperature-dependent EXAFS cumulants are calculated by extending the ACD model that is
based on the AE potential of Cd with a distorted structure. The effect of structural distortion is
caused by the non-ideal axial ratio c/a of Cd described via a structural parameter e in the calculated
expressions that can satisfy all fundamental properties in their temperature-dependence. The ana-
lytical results of the temperature-dependent EXAFS oscillation of Cd have indicated that the effect
of structural distortion increases the logarithm of amplitude ratio and reduces the phase difference
in variating the wavenumber. This effect is of considerable magnitude and should be considered
in analyzing the temperature-dependent EXAFS signals of Cd, especially in the HT region.

The obtained numerical results using the present theoretical model satisfy well with those
obtained using the experimental data and other models. This suitability indicates the efficiency
of the present model in treating the temperature-dependent EXAFS oscillation of Cd with a dis-
torted structure. This model can also efficiently treat the anharmonic EXAFS signals of other
distorted crystalline metals with multiple acoustic phonons with low symmetry and isotropy in the
temperature range from above zero to just before the melting point.
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