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Abstract. Dark matter must be stabilized over the cosmological timescale, which demands the
existence of a stabilizing symmetry, derived by a dark charge, D. The existence of this dark charge
may affect the quantization of electric charge, which theoretically shifts the electric charge, thus
the hypercharge to a novel gauge extension, SU(3)C⊗SU(2)L⊗U(1)Y ⊗U(1)N , where N deter-
mines D = T3 +N, similar to Q = T3 +Y . New observation of this work is that the dark charge is
broken down to two kinds of dark parity, Z2 and Z′2, which subsequently imply three scenarios of
dark matter. The relic density and direct detection for the scenario of two-component dark matter
are investigated in detail.
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I. INTRODUCTION

The detection experiments of neutrino oscillations have shown that the neutrinos have
nonzero small masses and flavor mixing, which cannot be addressed within the framework of
the standard model [1, 2]. Furthermore, the standard model fails to explain dark matter, which
makes up most of the mass of the galaxies and galaxy clusters [3, 4].

Vast attempts have been paid to solve these long-standing questions, basically given in
terms of a seesaw or/and radiative mechanism [5–13] to induce a small neutrino mass, as well as
implementing a discrete symmetry [14–16] to stabilize a dark matter candidate. The small neutrino
masses can be appropriately generated by such a mechanism, but the existence and stability of dark
matter is ad hoc introduced. The discrete symmetry that stabilizes the dark matter is eventually a
Z2 or a matter parity as in supersymmetry [17], which is not naturally conserved by the theory.

It is shown that the dark matter stability symmetry may relax the quantization of electric
charge, similar to anomaly-free hidden symmetries studied in [18–20]. Therefore, a dequantization
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version of electric charge that deviates from the electric charge by a parameter already defines a
dark charge, i.e. a dark symmetry, to be a novel gauge extension [21]. The dark charge breaking
not only produces the neutrino masses and makes the electric charge quantized, but also determines
a dark parity as residual gauge symmetry, which is different from the studied Z2/matter parity
and not commuted with the weak isospin, similar to the electric charge. This approach provides
a possibility to unify both dark matter and normal matter in weak isospin multiplets, besides
revealing a novel stability mechanism for dark matter with the aid of electric and color charge
conservations, since the dark matter is electrically and color neutral [22, 23].

The current experiments have not unraveled any particle content of dark matter. Compared
to the rich structure of normal matter within atoms, a structured dark matter is preferred1. Indeed,
the simplest possibility—that dark matter contains two types of stable particles—is intriguing,
since it may solve the issues of dark matter self-interaction, boosted dark matter, and multiple
gamma-ray line [30]. In the literature, to stabilize the two components of dark matter simultane-
ously, a group Z2⊗Z′2 has been ad hoc included as global symmetry. It was indicated that such
global symmetry is violated by quantum effects, unless it emerges as a residual gauge symmetry
by spontaneous symmetry breaking [31].2 In this work, we argue that it is a recognization of dark
parities as a result of the dark charge breaking above. This double dark parity leads to three sce-
narios of cosmological dark matter, two single-component and one two-component schemes. This
result has not yet been realized in the literature, specially the last scenario of two-component dark
matter will be taken into account under the light of the existing experiments.

The rest of this work is organized as follows: In Sec. II, we give a review of the dark charge
and propose double dark parity. In Sec. III, we present three scenarios of dark matter implied
by the model. In Sec. IV, we examine the case of two-component dark matter, comparing to the
observational experiments. Finally, we summarize our results in Sec. V.

II. A MODEL OF DOUBLE DARK PARITY

The standard model is based upon the gauge symmetry SU(3)C⊗SU(2)L⊗U(1)Y , where
the first factor is the QCD group, while the remaining factors are the electroweak symmetry. The
electric charge Q always takes the form,

Q = T3 +Y, (1)

with Ti (i = 1,2,3) to be the weak isospin and Y to be the hypercharge.
It is stressed that the electric charge Q is not quantized, since the U(1)Y algebra is trivial, i.e.

[Y,Y ] = 0, for arbitrary value of Y . Further Y is constrained by the anomaly cancelation conditions
for the model consistency as well as the gauge-invariant Yukawa Lagrangian for fermion mass
generation. But, Y is still arbitrary, since the theory always conserves a hidden symmetry, N,
which subsequently shifts Y to Y + xN, analogous to B−L and Li−L j studied in [18–20].

We add three right-handed neutrinos, νaR (a= 1,2,3), since the left-handed neutrinos might
have a nonzero hidden charge, in order for gravity anomaly cancelation mixed with the hidden
charge. To obtain the hidden symmetry, we solve the conditions of anomaly cancelation as well

1See [24–29] for pioneer works, theoretically/phenomenologically motivated.
2It occurs similarly to continuous global symmetries to be inconsistent with quantum gravity and violated [32].
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as the constraints from Yukawa Lagrangian, for a generic hypercharge Y . Assuming Y (νaR) = δ ,
such conditions and constraints supply

Y (eaR) = δ −1, Y (laL) = δ −1/2,
Y (uaR) = (2−δ )/3, Y (daR) =−(1+δ )/3, Y (qaL) = (1−2δ )/6, (2)

where laL ≡ (νaL eaL)
T and qaL ≡ (uaL daL)

T . The generic hypercharge depends on δ , called the
parameter of charge dequantization [21–23].

It is noteworthy that for δ = 0, all the particles gain a correct electric charge and hyper-
charge, so we assign Q≡Q|δ=0 and Y ≡Y |δ=0, as usual. Whereas, for δ 6= 0, all the particles pos-
sess a new charge to be a variant of the electric charge and the hypercharge, that defines D≡Q|δ 6=0
and N ≡Y |δ 6=0, called dark charge and hyperdark charge, respectively. They are just two solutions
according to δ = 0 and δ 6= 0. Additionally, the solutions Y and N, as well as Q and D, are linearly
independent, indicating to a novel gauge extension of the standard model,

SU(3)C⊗SU(2)L⊗U(1)Y ⊗U(1)N , (3)

where N determines D, i.e.

D = T3 +N, (4)

in the same way for the hypercharge and electric charge, Q = T3 +Y . Note also that both Q and D
neither commute nor close algebraically with the weak isospin.

The fermion content transforms under the gauge symmetry (3) as

laL =

(
νaL
eaL

)
∼
(

1,2,−1
2
,δ − 1

2

)
, (5)

νaR ∼ (1,1,0,δ ), eaR ∼ (1,1,−1,δ −1), (6)

qaL =

(
uaL
daL

)
∼
(

3,2,
1
6
,
1
6
− δ

3

)
, (7)

uaR ∼ (3,1,2/3,2/3−δ/3), daR ∼ (3,1,−1/3,−δ/3−1/3), (8)

where δ is arbitrarily nonzero, δ 6= 0, and only νaR are the new fermions.
To break the gauge symmetry and produce the masses of the particles properly, the scalar

content is given by

φ =

(
φ+

φ 0

)
∼
(

1,2,
1
2
,
1
2

)
, χ ∼ (1,1,0,−2δ ). (9)

Here φ is the usual Higgs doublet, whose neutral Higgs field, φ 0, is neutral under both the elec-
tric charge and dark charge. Hence, the weak vacuum conserves both electric and dark charges.
However, the singlet scalar χ has a nonzero dark charge, −2δ , necessarily presented to break the
U(1)N symmetry, generating appropriate right-handed neutrino masses via the coupling, νRνRχ . It
is noteworthy that the dark charge breaking leads to a Majorana neutrino mass ∼ 〈χ〉νRνR, which
constrains the electric charge to be quantized [18]. Additionally, the left-handed neutrinos couple
to the right-handed neutrinos via the Higgs field, hence gain appropriate small masses through the
exchange of these heavy right-handed neutrinos [5–9].
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The vacuum expectation values (VEVs) are given by

〈φ〉=
(

0
v√
2

)
, 〈χ〉= Λ√

2
, (10)

satisfying Λ� v = 246 GeV for consistency with the standard model. The gauge symmetry is
broken via two stages,

SU(3)C⊗SU(2)L⊗U(1)Y ⊗U(1)N
↓ Λ

SU(3)C⊗SU(2)L⊗U(1)Y ⊗RN
↓ v

SU(3)C⊗U(1)Q⊗RD

where RN = eikπN/δ = (−1)kN/δ for k integer is the intermediate residual symmetry of U(1)N
defined by the new physics scale, RNΛ = Λ, while

RD = eikπD/δ = (−1)kD/δ (11)

is the final residual symmetry of U(1)D, shifted from RN by the weak breaking [21–23].
It is clear that if k = 0, then RD = 1, for all fields and every δ , is the identity transformation.

To search for the final residual group structure of RD, we find a nonzero minimal value of |k|,
denoted m, that still satisfies RD = 1 for all fields. With the D values of the fields in the third
column in Table 1 (other stuffs explained below), we derive m dependent on δ to be

m = 2k1, (12)
m/δ = 2k2, (13)

m(δ −1)/δ = 2k3, (14)
m(δ −2)/3δ = 2k4, (15)
m(δ +1)/3δ = 2n, (16)

where k1,2,3,4 and n are generically integer (that determine m, with a given δ ) [23]. The first
equation demands that m must be a positive even integer, i.e. m = 2,4,6, · · · . The rest yields k2 =
3n−m/2, k3 = m−3n, k4 = m/2−2n to be integer, as expected, since m is even. Additionally,
we obtain the δ value,

δ =
m

6n−m
, (17)

which also depends the n integer. That said, the residual symmetry RD is automorphic to an
even cyclic group, Zm = {1,g,g2, · · · ,gm−1} with g ≡ (−1)D/δ and gm = 1, whose order m is
determined via the value of the neutrino dark charge, δ .

The simplest solution of the residual symmetry corresponds to m = 2. The corresponding
value of δ that yields such value is

δ =
1

3n−1
=−1,1/2,−1/4, · · · (18)

according to n = 0,±1, · · · . The residual symmetry RD is automorphic to a dark parity,

RD = Z2 = {1,g}, (19)

where g≡ (−1)D(3n−1) as well as noting that g2 = 1.
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Since the spin parity h≡ (−1)2s is always conserved by the Lorentz symmetry, we conve-
niently multiply the residual symmetry with the spin parity group PS = {1,h} to perform Z2⊗PS.
This new group has a normal subgroup

Z2 = {1, p}, (20)

where
p≡ g×h = (−1)D(3n−1)+2s. (21)

We factorize Z2⊗PS = Z2⊗ [(Z2⊗PS)/Z2] and note that the quotient group (Z2⊗PS)/Z2 =
{Z2,{g,h}} is conserved if p, thus Z2, is conserved, because of the h conservation. Hence, we
regard Z2 to be the relevant residual symmetry instead of Z2, i.e. taking RD→ Z2 into account.

For comparison, we collect the p values, along with the electric and dark charges, of all
fields in Table 1, where we denote A commonly to be all the gauge fields, except for the W boson.
There are two cases for n.

(1) If n is odd, n→ n1 =±1,±3, · · · , then all fields transform trivially under Z2, p = 1.
(2) If n is even, n→ n2 = 0,±2, · · · , then ν , u, χ , φ 0, and A transform as p = 1, while e,

d, φ+, and W+ transform as p =−1.
All these cases are presented in Table 1 too, where the (unit) irreducible representation 1 is ac-
cording to p = 1, whereas the remaining irreducible representation 1′ is associated with p =−1.

Table 1. Q, D, p values and Z2 representations for the model fields.

Field Q D p Z2(n odd) Z2(n even)

ν 0 δ 1 1 1

e −1 δ −1 (−1)n−1 1 1′

u 2/3 (2−δ )/3 1 1 1

d −1/3 −(1+δ )/3 (−1)n−1 1 1′

χ 0 −2δ 1 1 1

φ+,W+ 1 1 (−1)n−1 1 1′

φ 0,A 0 0 1 1 1

Last, but not least, each value of δ defines a corresponding U(1)N factor, since two distinct
values of δ → δ1,2 lead to two linearly independent solutions for hyperdark charge, U(1)N →
U(1)N1 ⊗U(1)N2 [22]. The above two cases may be simultaneously presented in the latter model
relevant to the two U(1) factors, if introduced, recognizing a novel double dark parity, Z2⊗Z′2,
corresponding to δ1 = 1/(3n1− 1) for n1 odd and δ2 = 1/(3n2− 1) for n2 even. It is stressed
that within a U(1)N factor, a residual symmetry Z4 according to m = 4 may be hinted; but, this
Z4 is not isomorphic to a Z2⊗Z′2 [23]. The Klein symmetry Z2⊗Z′2 that is extensively used for
recognizing two distinct kinds of odd fields of dark matter, might only arise from the two U(1)’s
symmetry.
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III. SCHEMES OF COSMOLOGICAL DARK MATTER

The first and second scenarios of dark matter are discussed within a single U(1)N frame-
work, while the third scenario of dark matter necessarily extends U(1)N →U(1)N1 ⊗U(1)N2 for
viability.

III.1. First scenario of single-component dark matter
According to the first solution above, δ → δ1 = 1/(3n1−1) for n1 being an odd integer, all

the fields in the model transform trivially under the dark parity group Z2 = Z2(n→ n1).3

Hence, the model provides a natural stability mechanism for single-component dark matter,
in which the dark matter candidate transforms nontrivially under Z2, such as

Ψ1 ∼
(

1,1,0,
2d1

3n1−1

)
∼ 1′ (22)

for a fermion or

Ψ1 ∼
(

1,1,0,
2d1 +1
3n1−1

)
∼ 1′ (23)

for a scalar, where d1 is an arbitrary integer. Hereafter, we also assume all dark matter candidates
to be a spin-0 bosonic or spin-1/2 fermionic field and a singlet under the standard model.

Hence, we get the simplest dark matter candidate to be either a fermion or a scalar with
d1 = 0 and n1 = 1. Further, since Z2 is conserved, Ψ1 can obtain an arbitrary mass, which does
not decay to the usual particles, responsible for dark matter.

III.2. Second scenario of single-component dark matter
For the second solution, δ → δ2 = 1/(3n2− 1) for n2 being an even integer, the model

provides a natural stability mechanism for single-component dark matter, where the dark matter
candidate, called Ψ2, and all e, d, φ+, W+ transform nontrivially under Z′2 = Z2(n→ n2), in which

Ψ2 ∼
(

1,1,0,
2d2

3n2−1

)
∼ 1′ (24)

for a fermion or

Ψ2 ∼
(

1,1,0,
2d2 +1
3n2−1

)
∼ 1′ (25)

for a scalar, where d2 is an arbitrary integer. Therefore, we obtain the simplest dark matter candi-
date to be either a fermion or a scalar with d2 = 0 and n2 = 0.

It is important to note that Ψ2 can have an arbitrary mass. The symmetries SU(3)C, U(1)Q,
and Z′2 jointly suppress the decay of the Ψ2 dark matter, if Ψ2 has a mass that is larger than the
ordinary odd particles (e,d,φ+,W+) [22, 23]. This is because the dark matter is electrically and
color neutral, while the rest of odd fields is not.

3This dark parity transforms similarly to R-parity on normal fields, but it differs from that in supersymmetry. As a matter
of fact, the dark charge does not commute with the weak isospin, while B−L that defines R-parity (cf. e.g. [33, 34])
does as well as has a nature distinct from the dark charge. Hence, the discrimination of the two kinds of parity is in
implied dark matter.
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III.3. Scenario of two-component dark matter
It is clear that the two solutions of δ according to δ1 and δ2, as well as the solution of δ = 0,

are linearly independent. Additionally, the model of multi dark charges is viable since the theory
is free from all the anomalies, as shown in Appendix of [22]. Therefore, we obtain a model with
the full gauge symmetry, such as

SU(3)C⊗SU(2)L⊗U(1)Y ⊗U(1)N1⊗U(1)N2 , (26)

where the hyperdark charges are N1 = Y |δ=δ1 and N2 = Y |δ=δ2 . They determine the relevant dark
charges, D1 = Q|δ=δ1 = T3 +N1 and D2 = Q|δ=δ2 = T3 +N2. Note that the fermion content is
remained as before. But, each fermion representation possesses a couple of hyperdark charges
(N1,N2), while each particle is charged under the dark charges as (D1,D2).

The U(1)N1⊗U(1)N2 symmetry is broken by the VEVs of two scalar singlets, which trans-
form under (26), such as

χ1 ∼ (1,1,0,−2δ1,−2δ2) and χ2 ∼ (1,1,0,0,−2δ2), (27)

where their VEVs are given by

〈χ1〉=
Λ1√

2
, 〈χ2〉=

Λ2√
2
, (28)

satisfying Λ1,Λ2 � v = 246 GeV. The field χ1 necessarily produces the right-handed neutrino
masses via the gauge-invariant coupling νRνRχ1, while χ2 does not. But, the presence of χ2 is
necessary, because this scalar and χ1 together break the new symmetry properly, and that this
breaking leads to the residual symmetry RN1 ⊗RN2 , as desirable. The weak breaking shifts this
symmetry to RD1⊗RD2 , where RDi = (−1)kDi/δi for i = 1,2.

As indicated, choosing δ1 = 1/(3n1−1) for n1 odd and δ2 = 1/(3n2−1) for n2 even, the
symmetry RD1⊗RD2 yields a residual Klein group, Z2⊗Z′2, where the parity factors are generated
by independent dark charges,

pi = (−1)Di(3ni−1)+2s, (29)
for i = 1,2, respectively, after multiplying the spin parity h = (−1)2s to each group factor.

Hence, the model provides three kinds of dark fields, Ξ1,2,3 ∼ (p1, p2), implied by p1,2
values, as determined in Table 2, in which d1,2 are an arbitrary integer. Since each Z2’s factor

Table 2. Three distinct kinds of dark fields implied by Z2⊗Z′2.

Field Z2⊗Z′2 Fermion Scalar

Ξ1 (−,+)
(

1,1,0, 2d1
3n1−1 ,

2d2−1
3n2−1

) (
1,1,0, 2d1+1

3n1−1 ,
2d2

3n2−1

)
Ξ2 (+,−)

(
1,1,0, 2d1−1

3n1−1 ,
2d2

3n2−1

) (
1,1,0, 2d1

3n1−1 ,
2d2−1
3n2−1

)
Ξ3 (−,−)

(
1,1,0, 2d1

3n1−1 ,
2d2

3n2−1

) (
1,1,0, 2d1+1

3n1−1 ,
2d2−1
3n2−1

)
provides an independent stability mechanism, the residual group Z2⊗Z′2 supplies a natural stability
mechanism for structured dark matter of at least two-components. If any two among the dark fields



108 GAUGE ORIGIN OF DOUBLE DARK PARITY AND IMPLICATION FOR DARK MATTER

Ξ1,2,3 are introduced, they reveal a scheme of the relevant two-component dark matter. If all of
the fields Ξ1,2,3 are included, the schemes of dark matter are as follows. For instance, if Ξ1 and
Ξ2 are imposed to be the lightest fields among Ξ1,2,3 and mΞ3 > mΞ1 +mΞ2 , the model provides
two-component dark matter with Ξ1,2. Specially in this case, if mΞ3 < mΞ1 +mΞ2 by contrast, all
the fields Ξ1,2,3 are realistic dark matter components, i.e. one has a scheme of three-component
dark matter. Note that Ξ1,2,3 may have a self-interaction with appropriate dark charge choice. Last,
but not least, the mentioned dark matter candidates can be stabilized with an arbitrary mass, not
necessarily to be smaller than that of ordinary odd fields e, d, φ+, and W+ [22, 23].

IV. PHENOMENOLOGY OF THE TWO-COMPONENT DARK MATTER

Among the solutions of dark fields in Table 2, we obtain the simplest dark fields corre-
sponding to d1 = d2 = 0 and n1 = 1,n2 = 0, i.e.

δ1 = 1/2, δ2 =−1. (30)

Additionally, we consider the model with two-component fermion dark matter by imposing only
the first two fields of the third column, by which we relabel

Ξ1→ F1 ∼ (1,1,0,0,1) and Ξ2→ F2 ∼ (1,1,0,−1/2,0), (31)

for clarity. F1,2 have masses to be m1 and m2, respectively. The quantum numbers of F1,2 and all
other multiplets of the model are supplied in Table 3. The values of Q, D1, and D2 charges and
Z2⊗Z′2 parities for all fields are collected in Table 4 for convenience in reading.

Table 3. Quantum numbers of the model multiplets.

Multiplet laL qaL νaR eaR uaR daR φ χ1 χ2 F1 F2

SU(3)C 1 3 1 1 3 3 1 1 1 1 1

SU(2)L 2 2 1 1 1 1 2 1 1 1 1

Y −1/2 1/6 0 −1 2/3 −1/3 1/2 0 0 0 0

N1 0 0 1/2 −1/2 1/2 −1/2 1/2 −1 0 0 −1/2

N2 −3/2 1/2 −1 −2 1 0 1/2 2 2 1 0

Table 4. Q, D1, and D2 charges and Z2⊗Z′2 parities of the model fields.

Field ν e u d χ1 χ2 φ+,W+ φ 0,A F1 F2

Q 0 −1 2/3 −1/3 0 0 1 0 0 0

D1 1/2 −1/2 1/2 −1/2 −1 0 1 0 0 −1/2

D2 −1 −2 1 0 2 2 1 0 1 0

Z2⊗Z′2 (+,+) (+,−) (+,+) (+,−) (+,+) (+,+) (+,−) (+,+) (−,+) (+,−)



DUONG VAN LOI AND PHUNG VAN DONG 109

We assume that the dark matter components, F1 and F2, have a nature of weakly-interacting
massive particles (WIMPs), which are produced through the freezeout mechanism, governed by
the U(1)N1 ⊗U(1)N2 gauge portals. [Note that F1,2 do not interact with the Higgs fields.] To
consider the relic abundance as well as direct detection for the dark matter components, we draw
the relevant Feynman diagrams in Fig. 1, which describe dark matter pair annihilation into the
standard model particles and the conversion between dark matter components. Here, Z and H
are the neutral gauge and Higgs bosons of the standard model, respectively, while Z′ and Z′′ are
the new neutral gauge bosons associated with the U(1)N1 ⊗U(1)N2 groups. Let us note that the
processes that govern direct dark matter detection signals are given by the t-channel diagrams
similar to those in the left side of Fig. 1.

F1(F2)

F c
1 (F

c
2 )

Z ′, Z ′′

ν, e−, u, d, Z

νc, e+, uc, dc, H

F1(F2)

F c
1 (F

c
2 )

Z ′, Z ′′

F2(F1)

F c
2 (F

c
1 )

Fig. 1. Channels for dark matter pair annihilation into standard model particles (left)
and conversions between dark matter components (right).

First note that the dark matter relic abundance is solved from the coupled Boltzmann equa-
tions that describe the yields of F1,2. Given that the production of lighter dark matter component
from heavier dark matter component is less significant than their annihilation to the standard model
particles, we get the approximate solution [35]

ΩF1h2 ' 0.1 pb
〈σv〉F1

, ΩF2h2 ' 0.1 pb
〈σv〉F2

, (32)

where the thermal average annihilation cross-section times the relative velocity of each dark matter
component is determined by

〈σv〉F1 = 〈σv〉F1F1→SM SM + 〈σv〉F1F1→F2F2 , 〈σv〉F2 = 〈σv〉F2F2→SM SM (33)

if m1 > m2, or

〈σv〉F1 = 〈σv〉F1F1→SM SM, 〈σv〉F2 = 〈σv〉F2F2→SM SM + 〈σv〉F2F2→F1F1 (34)

if m2 > m1. Hence, one has the total dark matter relic abundance to be

ΩDMh2 = ΩF1h2 +ΩF2h2. (35)
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Applying the Feynman rules for the diagrams in Fig. 1, we obtain

〈σv〉F1F1→SM SM ' m2
1

16π
∑
f ,i, j

NC( f )
CF1F1ZiCF1F1Z j [g

Zi
V ( f )gZ j

V ( f )+gZi
A ( f )gZ j

A ( f )]
(4m2

1−m2
Zi
)(4m2

1−m2
Z j
)

+
m2

1

16πm2
Z
∑
i, j

CF1F1ZiCF1F1Z jCZHZiCZHZ j

(4m2
1−m2

Zi
)(4m2

1−m2
Z j
)
, (36)

〈σv〉F1F1→F2F2 '

√
m2

1−m2
2(2m2

1 +m2
2)

2πm1
∑
i, j

CF1F1ZiCF1F1Z jCF2F2ZiCF2F2Z j

(4m2
1−m2

Zi
)(4m2

1−m2
Z j
)
, (37)

〈σv〉F2F2→SM SM = 〈σv〉F1F1→SM SM(F1↔ F2,m1↔ m2), (38)
〈σv〉F2F2→F1F1 = 〈σv〉F1F1→F2F2(F1↔ F2,m1↔ m2), (39)

where NC is the color number, Zi,Z j = Z′,Z′′, and f refers to every standard model fermion. The
couplings of Z′ with the standard model fermions are supplied in Table 5, while

CF1F1Z′ '−g2sξ , CF2F2Z′ '−
1
2

g1cξ , CZHZ′ '−
1

2cW
gv(g1cξ −g2sξ ), (40)

in which g,g1,g2 are the coupling constants according to SU(2)L,U(1)N1 ,U(1)N2 groups, cW is
the cosine of the Weinberg angle. The mixing angle (ξ ) between the new neutral gauge bosons
and their masses are given by

t2ξ ≡ tan(2ξ )' 4g1g2Λ2
1

g2
1Λ2

1−4g2
2(Λ

2
1 +Λ2

2)
, (41)

m2
Z′,Z′′ '

1
2

{
g2

1Λ
2
1 +4g2

2(Λ
2
1 +Λ

2
2)∓

√
[g2

1Λ2
1−4g2

2(Λ
2
1 +Λ2

2)]
2 +16g2

1g2
2Λ4

1

}
. (42)

Table 5. Couplings of Z′ with the standard model fermions.

f gZ′
V ( f ) gZ′

A ( f )

νa 3g2sξ 3g2sξ

ea 7g2sξ −g1cξ g1cξ −g2sξ

ua g1cξ −3g2sξ g2sξ −g1cξ

da −g1cξ −g2sξ g1cξ −g2sξ

Note that the couplings of Z′′ to the particles can be obtained from those of Z′ substituting
cξ → sξ ,sξ →−cξ , which need not necessarily be determined.

There is a mixing between Z and Z′,Z′′ which deviates the ρ parameter by an amount,

∆ρ ≡ ρ−1 =
m2

W

c2
W m2

Z
' v2

16

(
4

Λ2
1
+

9
Λ2

2

)
. (43)
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Using the global fit ∆ρ ≤ 0.00058 [30], we limit the new physics scales, Λ1 ≥ 5.1 TeV for Λ1�
Λ2, Λ2 ≥ 7.7 TeV for Λ1� Λ2, and Λ1,2 ≥ 9.2 TeV for Λ1 ' Λ2. These limits are appropriate to
the Z decay width and various collider bounds studied in [22] for a single U(1)N , which can be
translated to this model without significant change.

To study the direct detection for dark matter components, we determine the effective La-
grangian describing dark matter-normal matter interactions as induced by the new neutral gauge
bosons,

L eff
F1

= ∑
i,q

1
4m2

Zi

CF1F1ZiF̄1γ
µF1q̄γµ [g

Zi
V (q)−gZi

A (q)γ5]q, (44)

L eff
F2

= L eff
F1

(F1↔ F2), (45)

where Zi = Z′,Z′′ and q = u,d. Hence, the spin-independent (SI) scattering cross-sections of the
dark matter components with target nucleus are given by [36]

σ
SI(F1) ' ∑

i

m2
N

16πm4
Zi

C2
F1F1Zi

[
gZi

V (u)(Z +A)+gZi
V (d)(2A−Z)

]2
, (46)

σ
SI(F2) = σ

SI(F1)(F1↔ F2), (47)

where Zi = Z′,Z′′, mN is the nucleon mass, and Z,A are the nucleus charge and the total number
of nucleons in the nucleus, respectively. Note that the dark matter–nucleon reduced masses do
not depend on m1,2, since these dark matter masses are much bigger than the nucleon mass (see
below). We obtain the effective SI cross-section for each dark matter component as

σ
SI
eff(F1) =

ΩF1h2

ΩDMh2 σ
SI(F1), (48)

σ
SI
eff(F2) =

ΩF2h2

ΩDMh2 σ
SI(F2). (49)

Further, the numerical investigation will use the following parameter values,

v = 246 GeV, s2
W ' 0.231, (50)

g' 0.652, mZ ' 91.187 GeV, (51)
Z = 54, A = 131, mN ' 1 GeV. (52)

In Fig. 2, we make contours of the total relic density, ΩDMh2 = 0.12 [30], as a function of
the dark matter masses, m1 and m2, for g1 = g2 = 0.8, according to the several choices of Λ1 and
Λ2 (left panel), as well as for Λ1 = Λ2 = 10 TeV, according to the several choices of g1 and g2
(right panel). It is clear that the disconnected (very narrow) regions on each curve are due to the
Z′,Z′′ mass resonances, m1 = m2 = mZ′/2 and m1 = m2 = mZ′′/2, in the relic density. Note that
such a resonance reduces the relic density to zero, so the disconnected regions are omitted for the
correct density. Additionally, since the Z′,Z′′ masses are quite separated and that the resonances
are strongly derived by Z′,Z′′, the allowed regions of the relic density are not overlapped, resulting
as separated, closed curves on the dark matter mass ranges. The figure shows that the dark matter
components obtain a mass in the TeV region.

It is clear that the SI cross-sections of F1,2 from (46) and (47) do not depend on the heavy
dark matter masses, but they depend on the Z′,Z′′ masses and couplings. In Tab. 6, we determine
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Λ1 = Λ2 = 10 TeV

Λ1 = 10 TeV, Λ2 = 15 TeV

Λ1 = 15 TeV, Λ2 = 10 TeV
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Fig. 2. (Color online) Total dark matter relic density contoured as a function of com-
ponent dark matter masses for different choices of Λ1,Λ2 with fixed g1 = g2 = 0.8 (left
panel) and of g1,g2 with fixed Λ1 = Λ2 = 10 TeV (right panel).

these SI cross-sections of F1,2 according to the benchmark parameters of Λ1,2 and g1,2 above, and
note that they become the measured effective SI cross-sections as in (48) and (49), given that the
dark matter components, F1 and F2, dominate over the total relic density, respectively. Because
the values of σSI(F1,2) from the table are all below the experimental bound [37,38], the measured
σSI

eff(F1,2) also satisfy such bound, since σSI
eff(F1,2)≤ σSI(F1,2).

Although the effective SI cross-sections agree with the current direct detection, their de-
pendence on the dark matter masses coming only from the contributing factors ΩF1,2h2/ΩDMh2

might reduce their values, providing a fit for a future-projected stronger limit of direct detec-
tion cross-section. Hence, we will illustrate such a case, for completeness. Supposing that the
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dark matter components yield a correct total relic density, in Fig 3 we plot the effective SI cross-
sections for dark matter components as a function of their mass according to Λ1 = Λ2 = 10 TeV
and g1 = 0.8, g2 = 0.5. In this figure, the XENON1T bound has also been shown, with the upper
limit (black line), 1σ (green), and 2σ (yellow) sensitivity bands. Additionally, the gray space
is obviously the excluded region. It is noted that for the benchmark values of Λ1,2 and g1,2, the
effective SI cross-sections have a similar shape, but all are below the current bound.
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Fig. 3. Effective SI cross-section of each dark matter component plotted as a function
of its mass, for Λ1 = Λ2 = 10 TeV and g1 = 0.8, g2 = 0.5.

Since the direct detection is satisfied, we obtain the viable dark matter mass regimes as
extracted directly from Fig. 2, which are collected in Table 6.
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Table 6. Benchmark g1,2 and Λ1,2 values, corresponding SI scattering cross-sections, and
viable dark matter mass regimes.

g1 g2 Λ1[TeV] Λ2[TeV] σSI
F1
/10−46[cm2] σSI

F2
/10−45[cm2] m1[TeV] m2[TeV]

0.8 0.8 10 10 6.41786 1.27936 2.14–3.32 and 8.71–16.44 1.83–4.15 and 11.00–12.17
0.8 0.8 10 15 1.4729 0.21129 2.94–3.61 and 11.19–19.38 2.42–4.45 and 14.22–14.92
0.8 0.8 15 10 7.87098 1.32997 2.32–4.05 and 12.42–19.66 2.14–4.63 and 14.53–15.91
0.5 0.5 10 10 6.41786 1.27936 1.47–1.95 and 6.05–9.04 1.32–2.21 and 7.07–7.49
0.5 0.8 10 10 6.39605 1.18251 1.5–1.98 and 8.17–16.41 1.34–2.26 and 11.22–11.66
0.8 0.5 10 10 6.77424 1.50503 2.03–3.21 and 6.67–9.19 1.77–3.91 and 7.08–8.12

V. CONCLUSION AND OUTLOOK

The simplest way to have a multicomponent dark matter scenario adds to the standard
model an exact symmetry, Z2⊗Z′2. One also adds an exact Z2 symmetry to supersymmetric mod-
els, universal extra-dimension models, or B−L models. Supersymmetric models with N = 2 also
reveal it. A period, the existence of such Z2⊗Z′2 symmetry from gauge principle is questioning
and doubtful (cf. [39] for a discussion). To our best knowledge, a Z4 group is the smallest residual
gauge symmetry recognized consistent with multicomponent dark matter [40–42]. In this work,
we have shown that each Z2 factor arises from a dark charge symmetry and that the double dark
charges are needed to obtain a double dark parity. A model of two-component dark matter recog-
nizing this double dark parity shown obey the observations. Further, the U(1) factors may be well
hinted from a GUT, GUT flipped, or string compactification, which are worth exploring.
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