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Abstract. We present a theoretical study of electron transport properties through experimentally
controllable graphene nanobubbles [P. Jia et al., Nat. Commun. 10 (2019) 1] employing a tight-
binding model and the non-equilibrium Green’s function formalism. Sharp conductance peaks
are observed at low energy region which signifies the emergence of quasi-bound states caused by
pseudomagnetic field in the strained nanobubbles. Analysis based on local density of states reveals
the nature of electron transmission at peak energies. Our results also show that the emergence of
quasi-bound states and its role in electron transport depend on both strain strength and bubble
size: when the strain or size of the bubble increases, more quasi-bound states emerge and resonant
tunnelling assisted by these quasi-bound states becomes dominant.

Keywords: graphene nanobubbles; quasi-bound states; resonant tunnelling; tigh-binding; non-
equilibrium Green’s function.

Classification numbers: 72.10.Fk; 73.22.Pr; 78.35.+c.

I. INTRODUCTION

Thanks to its excellent electronic properties, graphene is a promising candidate for elec-
tronic technology innovation. However, practical applications of 2D graphene in conventional
semiconductor devices are still challenging due to its gapless nature [1, 2]. Strain engineering
has been proven to be effective in tuning electronic properties of graphene as well as other 2D
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materials [3–5]. Under a strain, C–C bond lengths in graphene change which alters the magni-
tude of hoping energies of π-electrons between carbon atoms. This effects electron dynamics in a
very similar way to applying an external magnetic field. While a real magnetic field acts similarly
on electrons at K and K’ Dirac points, effect of a strain is as if electrons at K and K’ feel oppo-
site magnetic fields, thus often referred to as pseudo-magnetic field (PMF). Following a theoretical
prediction of a zero-field quantum Hall effect in a designed triaxial strain [6], an experiment obser-
vation of Landau levels in highly-strained graphene nanobubbles (GNB) was reported [7]. Since
then, graphene nanobubbles–local, out-of-plane deformations on graphene sheets–has been a sub-
ject of much interest for both experimental and theoretical studies thanks to its large PMFs, up to
several hundreds Tesla, that is not possible to achieve with magnets in laboratory.

From an experimental standpoint, the formation of bubbles due to trapped gas or liquid is
almost inevitable when a graphene sheet is transferred to a substrate. On one hand, this is certainly
unwanted because it causes a degradation of many excellent electrical properties of graphene. On
the other hand, it can serve as a way to strain engineer graphene for potential applications if the
formation of the bubbles can be put under a controlled manner. In fact, it has been reported recently
that programmable GNBs, i.e. the creation of bubbles with expected location and size/shape, are
possible using atomic force microscope [8]. In short, the bubble is formed when hydrogen atoms
in hydrogen-terminated graphene, which is grown on a clean Ge(110) surface by chemical vapor
deposition, desorb and evolve into hydrogen molecules when a negative stimulus voltage is applied
to the tip. The precision of AFM tip allows one to a create bubble at the pre-defined location while
the contour profile of the bubble can be changed by tuning the tip voltage. When the tip voltage is
small, the entire bubble has a parabolic profile. For larger voltages, while the bottom of the bubble
is still parabolic, the top region changes to a Gaussian profile.

Theoretical investigations of electron transport in graphene nanobubbles mainly focused
on Gaussian-shaped deformations whose strain-induced PMF can be calculated analytically [9,
10]. The main result is that the stronger the deformation is, the larger the reduction in electron
conductance was observed. This is considered as a signature of electron confinement caused by
the bubbles. However, bubbles considered in these studies are rather small, with the radii of about
5 nm at the maximum. Such small bubbles are randomly formed, thus it is difficult to control their
size and location for practical applications. In this paper, we report our investigation of transport
properties of electrons in experimentally controllable parabolic-shaped nanobubbles with base
radii up to 50 nm [8]. The appearance of conductance peaks at low energy region signifies the
emergence of quasi-bound states in the bubbles and can be understood by the resonance with
continuum states in the infinite leads. The rest of the paper is organized as follows. In Section II, a
tight-binding model that takes into account the effect of strain is introduced to describe electrons
in nanobubbles. The model is then solved by employing recursive technique within the non-
equilibrium Green’s function formalism. Numerical results for conductance together with detailed
analyses based on local density of states (LDoS) will be presented in Section III. Our conclusions
and outlook are in the last Section.

II. MODELS AND CALCULATION METHODOLOGY

In this study, graphene nanobubbles as experimentally fabricated in a controlled manner
in Ref. [8] are modeled by out-of-plane, parabolic-shaped deformations on an armchair graphene
nanoribbon as schematized in the Fig. 1. The shape of the parabolic bubble is uniquely determined
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Fig. 1. Schematic of deformed parabolic-shaped bubble studied in this work. Deformation is applied
locally in the central region of an armchair graphene nanoribbon with the width W and the length L
which is connected to two semi-infinite leads. Two parameters, i.e. the maximum height h0 and the
radius of the base R, that define a bubble are shown on the right.

by two parameters h0 (the maximum height) and R (the base radius) which are also illustrated in
the right of Fig. 1. The height of carbon atoms in the centrosymmetrically-deformed parabola is
given by

h(x,y) = h0(1−
(x− x0)

2 +(y− y0)
2

R2 ), (1)

where x0, y0 are the coordinates of carbon atoms at the centre of the bubble. For simplicity, in-
plane displacements are neglected, thus (x,y) coordinates of carbon atoms in undeformed ribbon
were used to calculate out-of-plane displacements in the above equation. For given bubble, the
width, i.e. the dimension along the zigzag direction, of the ribbons is chosen to be 1.5 times
larger than the diameter of the base of the bubbles. This is large enough to remove effects of the
boundaries on the bubbles since the base diameter of the smallest bubble reported in the experiment
is already 50 nm and the deformation vanishes beyond the distance larger than the radius. The
length, i.e. the dimension along the armchair direction, of the nanoribbons is however larger
than the width about 25% because this is the transport direction in the non-equilibrium Green’s
functions (NEGF) formalism employed in the calculation of electronic quantities such as density
of states (DoS), local DoS, transmission functions.

An atomistic tight-binding model was used to describe the electronic properties of the struc-
ture. The Hamiltonian reads

Htb = ∑
n

Unc†
ncn +∑

nm
tnmc†

ncm, (2)

where Un is the potential energy at the nth site and tnm is the hopping energy between nearest
neighbor nth and mth sites. Under the strain introduced by the parabola-shaped deformation, the
C–C bond vectors are changed as shown in Ref. [11]. The hopping parameter between atoms is
determined by [12]

tnm = t0 exp [−3.37(rnm/r0−1)] (3)
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with t0 =−2.8 eV and r0 = 0.142 nm being the hopping energy and the C-C distance in unstrained
graphene, respectively. rnm is the distance between the nth and mth atoms and is calculated as
rnm =

√
(xn− xm)2 +(yn− ym)2 +(zn− zm)2).

As in Refs.- [13,14], we employed the non-equilibrium Green’s function formalism within
the ballistic approximation to investigate the electronic transport properties of the devices. The
Green’s function is then computed using the equation [15]:

G = [ε+ i0+−Htb−ΣL−ΣR]
−1, (4)

with ΣL(R) being the self-energies that describe the left (right) contact-to-device couplings which
can be calculated analytically for an AGNR [16]. The transmission probability is calculated as
Te = Tr

{
ΓLGΓRG†

}
, with ΓL(R) = i(ΣL(R)−Σ

†
L(R)) being the transfer rate at the left (right) contact.

Direct inversion of matrices to obtain the Green’s function is computationally intractable due to
very large matrices involved. To overcome this problem, we employed recursive algorithms for
evaluating G that allow us to deal with systems containing up to a million of atoms [15–17].
Once the Green’s function is obtained, the local density of states (LDoS) at the nth lattice site is
computed as

D(~rn,E) =−
Im[Gnn(E)]

π
(5)

III. RESULTS AND DISCUSSION

It is well-known that AGNRs can be metallic (2M = 3p+2) or semiconducting (2M = 3p or
3p+1), depending on the number of carbon dimers, M, along the width. Thus, we will investigate
the effect of parabolic deformation on the electronic properties for all three cases. The width of an
AGNR is given by W = M×

√
3×a0, where a0 = 1.42 Å is the distance between two neighboring

atoms in pristine graphene. For the sake of brevity, we will denote nanoribbons as 3p0–, 3p1–, and
3p2–ribbon, respectively. We start with the smallest bubble reported in Ref. [8] with the radius
R = 30 nm and the height h0 = 2.5 nm. Even for this smallest bubble, the required nanoribbons in
our calculation are rather large which are rectangles of dimensions 120×90 nm and contain more
than 400 000 atoms. Throughout this work, the bubble is located at the center of the ribbon.

Fig. 2 shows the conductance and DoS as a function of Fermi energy for three cases with
M = 366,365 and 364. We note that spin degeneracy is assumed which explains for the factor of
2 in the unit of conductance axes. Compared to perfect nanoribbons, the conductance is reduced
when the bubbles are present as one can see clearly in the top panel (red solid lines versus blue
dashed ones). This is not surprising because deformations introduce pseudo-magnetic potentials
which act as scattering regions, causing a degradation in transport of electrons. This is also con-
sistent with the DoS pictures in Fig. 2(d,e,f). However, a striking feature is clearly observed in
the DoS, namely the presence of sharp peaks, especially at low energy region, for all three cases
when the deformation is turned on (red solid line in the bottom panel). To inspect the effect of
these peaks on electron transport properties, we look into the conductance at a smaller energy
scale as displayed in the insets of three figures of the top panel. For each case, two sharp resonant
peaks are present in the conductance graph. Surprisingly, some resonant peaks appear even in the
gapped region for the case of semiconducting ribbons. This is a strong indication of the forma-
tion of quasi-bound states in the bubbles. We note that the role of quasi-bound states in resonant
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transport through pseudo-magnetic quantum dots created by in-plane, triaxial strain [18] as well
as magnetic quantum dots in the quantum Hall regime [19] was proposed before.

Fig. 2. (color online) Conductance (solid red line, upper panel) and DoS (solid red line,
lower panel) as a function of Fermi energy for the parabolic bubble with radius R =
30 nm and height h0 = 2.5 nm located at the center of semiconducting (a,d)(M = 366)
and (b,e)(M = 365), and metallic (c,f)(M = 364) 120×90 nm rectangular AGNRs. For
comparison, the same quantities undeformed AGNRs are also drawn in dashed blue lines.

To understand the nature of the observed resonant transport, we examine LDoS at peak
energies which are shown in Fig. 3 by contour plots (LDoS is zero in the white region). Two
distinct features are observed for three cases. First, LDoS at energies corresponding to both peaks
of 3p0− and the first peak of 3p1−ribbons spread to both left and right leads despite of still
being more concentrated in the bubbles. We note that these peaks are quite close to the energy
windows where the next subband start to play a dominant role in electron transport. This can
be seen in the insets of the top panel in Fig. 2, namely the rapid increase of conductance right
after the peak energies. Thus one can attribute this feature to some kind of mixing between these
quasi-bound states and the extended Bloch’s states in undeformed nanoribbons. Three other cases,
i.e. LDoS at energies corresponding to the second peak of 3p1− and both peaks of 3p2−ribbons
show well-localized electronic wavefunctions, especially from two leads. This indicates that these
quasi-bound states are weakly coupled to the leads and thus the resonant tunnelling mechanism
play a dominant role.
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Fig. 3. Contour plots of LDoS at energies corresponding to the first and second peaks of
conductance shown in the insets of Fig. 2.

Fig. 4. (color online) Conductance as a function of Fermi energy for parabolic bubbles
with fixed radius R = 30 nm and bubble height, h0, varying around the experimental
value of 2.5 nm (red dotted line). The insets are LDoS at energies corresponding to the
first peaks for selected values of h0 which show a stronger confinement as h0 increases.
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Next, we investigate the effect of strain strength on quasi-bound states by varying the height
of the nanobubble around the experimental values h0 = 2.5 nm, while keeping the base radius
R = 30 nm unchanged. We note that maximum strain defined as the ratio of the largest C-C
bond length in deformed ribbon and the undeformed one for this case is about 1.4% which is still
very small compared to the largest strain that a graphene sheet can endure [20]. Fig. 4 shows the
conductance for different bubble heights of the representative case of 3p0−ribbon. The general
trend is that when the bubble height increases, the resonant peaks shift to lower energies, together
with a decrease in the peak heights. This can be understood as follows. As one can expect, the
larger the maximum height h0, the greater the strain strength in the bubble (2.1% for the case of
h0 = 3.1 nm) which causes a stronger pseudo-magnetic field. As a consequence, the confinement
of electrons in the quasi-bound states increases as supported by the pictures of more localized
LDoS of the first peaks shown in the inset of Fig. 4. This results in the smaller couplings with two
leads, thus smaller peak heights when the transport is dominant by the tunnelling mechanism. It
is also seen that the first conductance peak almost disappears for the case of h = 1.9 nm (strain of
0.8%). This indicates that quasi-bound states will not emerge when the strain is small.

Fig. 5. Conductance as a function of Fermi energy for three parabolic bubbles having the same radius
R = 50 nm, but different heights. The red, dotted line corresponds to h0 = 5.0 which is the experimental
value. The insets are LDoS at energies corresponding to the first peaks which also show a stronger
confinement as h0 increases.

Finally, we present the results for bubbles with larger radius of 50 nm in Fig. 5 where the
conductance as a function of Fermi energy for several bubble heights were plotted. For comparison
purposes, we chose to present the results for the representative case of 3p0−ribbon with the width
∼ 150 nm and the length ∼ 200 nm which contains more than one million atoms. For the case
of h0 = 5.0 nm which was observed in experiment [8], resonant peaks are observed as before
(see the red dotted line), but the number of peaks as well as their height and position are rather
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different from that of the smaller bubble. Specifically, three peaks appear in the energy window
corresponding to the first subband which is consistent with three peaks in the DoS picture (not
shown) and the first resonant peak in the gapped region is also far from this energy window. This
leads us to a speculation that this might be the behaviour corresponding to large strain region,
despite of the fact that the maximum strain as defined before is about 2.0% for this case. To
check this point, we also plotted in the same figure the conductance for two bubbles with smaller
heights of 4.5 and 4.0 nm whose strain are 1.6% and 1.3%, respectively. It turns out that the
observed resonant picture is qualitatively similar to what was obtained for smaller bubble with
a strain of 2.1%, namely two resonant peaks in the energy window of the first subband. Well-
localized LDoSs at the first peaks of three bubble heights as plotted in the insets of Fig. 5 show a
strong confinement which further supports our speculation. These observation indicates that the
emergence of quasi-bound states is also effected by the bubble size: quasi-bound states are easily
formed and more localized in larger bubbles. Based on our observation here, we suspect that
clear signatures of quasi-bound states were not observed and reported in previous studies [9, 10]
because the Gaussian-shaped bubbles under study were too small, thus require much larger strain
for quasi-bound states to emerge.

IV. CONCLUSIONS

In this work, we have investigated electron transport properties through nanobubbles formed
on armchair graphene nanoribbons, focusing on the emergence of quasi-bound states and their role
in electron transport. Unlike previous studies where rather small Gaussian-shaped bubbles with
base radii less than 5 nm were used, we carried out tight-binding calculations within the non-
equlibrium Green’s function formalism for much larger parabolic-shaped bubbles which were
realized in experiment with controllable precision of position and contour profile thanks to the
utilization of atomic force microscopy techniques. For such a large bubble which contains up
to million atoms, the calculations are only possible with efficient implementations of numerical
algorithms, such as recursive Green’s function and Haydock-Heine-Kelly recursive algorithm for
evaluation of Green’s function.

The emergence of quasi-bound states was observed in the conductance peaks and the lo-
calization properties of these states were analyzed using LDoS picture. Our results show that
quasi-bound states emerge more easily in larger bubbles and they are more localized when strain
is stronger. This localization determines the transport mechanism at the energies of quasi-bound
states: resonant tunnelling plays a dominant role when the quasi-bound state is well localized from
left and right leads. Although only parabolic-shaped bubbles were studied in this work, larger bub-
bles with Gaussian profile in the top region were also reported in experiment. We anticipate that
more interesting transport properties could be observed for this mixed structure and this will be
studied systematically, together with size effect discussed before and the role of ribbon types, in
our future work.
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