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Abstract. In this paper, we study some higher-order nonclassical properties of the superposition
of three-mode photon-added trio coherent states such as antibunching, squeezing, and entangle-
ment. The results show that, for a fixed order, when the number of added photons is increased,
the three-mode sum squeezing is more obvious, but the degrees of antibunching and three-mode
entanglement are less manifested. Besides, for a fixed total number of photon added to the su-
perposition of three-mode photon-added trio coherent states, the higher the order the stronger the
antibunching and entanglement, but the weaker the three-mode sum squeezing.
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trio coherent state.
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I. INTRODUCTION

The nonclassical properties in nonclassical states play a heart role in many quantum tasks.
For example, antibunching is used to produce the single-photon resources [1], squeezing is ex-
ploited to detect the gravitational wave in the famous LIGO experiment [2], and entanglement is
applied to the protocols of quantum computation and quantum information [3], etc. Because the
efficiency of the quantum tasks strongly depends on the strength of these nonclassical properties,
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researchers try to construct states with strong nonclassical features. Therefore, many new nonclas-
sical states have been proposed and studied such as single-mode squeezed vacuum state [4], two-
mode squeezed vacuum state [5], pair coherent state [6], even and odd charge coherent states [7],
trio coherent state [8], three-mode squeezed vacuum state [9], and so on. The degree of non-
classicality in these nonclassical states can be adjusted by changing the amplitude of fields or the
degenerated parameters [9–11]. Recommending new nonclassical states with high nonclassical
features is still welcome in the study of quantum optics.

Given the available nonclassical states, we can enhance their degree of nonclassicality by
using non-Gaussian operations such as adding or subtracting photons. For example, the degree
of entanglement and squeezing can be enhanced by adding photons on the two-mode squeezed
vacuum state [12], the two-mode squeezed thermal state [13], the two-mode displaced squeezed
state [14], the pair coherent state [15], the trio coherent state [16, 17], etc. More importantly,
quantum tasks including quantum key distribution, quantum teleportation, quantum illumination
as well as quantum state engineering can be improved by the photon addition and subtraction
operations [15, 18–20]. The interesting thing is that these operations are no longer on paper, they
were done early in the laboratory [21]. Therefore, adding and subtracting photons to nonclassical
states have a lot of potential applications and need to be studied further.

In the multimode regime, we aim to add photons on three-mode states. These states can
be used to implement network quantum tasks, for example, controlled teleportation [22], quantum
secret sharing [23], joint remote state preparation [24], and so on. A nonclassical state which
we are interested in is the trio coherent state |Ψp,q〉abc of three modes a,b and c [8]. This state
is defined as the simultaneous eigenstate of three operators âb̂ĉ, b̂†b̂− â†â and ĉ†ĉ− b̂†b̂ with
respective eigenvalues ξ , p and q, i.e.,

âb̂ĉ|Ψp,q〉abc = ξ |Ψp,q〉abc, (1)

(b̂†b̂− â†â)|Ψp,q〉abc = p|Ψp,q〉abc, (2)

(ĉ†ĉ− b̂†b̂)|Ψp,q〉abc = q|Ψp,q〉abc, (3)

where x̂(x̂†) is bosonic annihilation (creation) operator of mode x,x = {a,b,c}, ξ = reiϕ , r and ϕ

are real, and degenerated parameters p and q are nonnegative integers. In terms of Fock states, the
trio coherent state is given by

|Ψp,q〉abc =
∞

∑
n=0

Np,q(r)ξ n√
n!(n+ p)!(n+ p+q)!

|n,n+ p,n+ p+q〉abc, (4)

where |n,n+ p,n+ p+ q〉abc ≡ |n〉a|n+ p〉b|n+ p+ q〉c is a three-mode Fock state, and the nor-
malization factor Np,q(r) is determined as

N−2
p,q(r) =

∞

∑
n=0

r2n

n!(n+ p)!(n+ p+q)!
. (5)

Adding photons to the trio coherent state can enhance the non-Gaussianity, the degree of
three-mode sum squeezing, and the degree of entanglement in the photon-added trio coherent state
(PATCS) [16] as well as the superposition of three-mode photon-added trio coherent state (STM-
PATCS) [17]. Besides, the higher-order antibunching, squeezing, and entanglement are revealed in
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the PATCS [25]. However, these properties have not yet been studied in the STMPATCS. There-
fore, in this paper, we investigate some of the higher-order nonclassical properties in this state
including single-mode and two-mode antibunching, three-mode sum squeezing, and three-mode
entanglement. The STMPATCS was proposed by adding nonlocal photons to the trio coherent
state as follows:

|Φp,q;h,k,l〉abc = Np,q;h,k,l(r)(εâ†h +λ b̂†k +σ ĉ†l)|Ψp,q〉abc, (6)

where h,k, l are positive integers, ε,λ ,σ are reals and lie in [−1,1], and the normalization factor
Np,q;h,k,l(r) is written as

N−2
p,q;h,k,l(r) = N2

p,q(r)
[
ε2Ah,0,0

0,0,0(r)+λ
2A0,k+p,0

0,p,0 (r)+σ
2A0,0,l+p+q

0,0,p+q (r)
]
, (7)

therein

Ai, j,m
t,u,v (r) = PFQ(1+ i,1+ j,1+m;1+ p,1+ p+q,1+ t,1+u,1+ v;r2)

i! j!m!
p!(p+q)!t!u!v!

, (8)

with PFQ being the hypergeometric function.
The quantum averages of operators âiâ†ib̂ jb̂† jĉwĉ†w and (â†b̂†ĉ†)u in the STMPATCS are

given by

Bi, j,w = 〈âiâ†ib̂ jb̂† jĉwĉ†w〉
= N2

p,q;h,k,l(r)N
2
p,q(r)

[
ε2Ai+h, j+p,w+p+q

0,p,p+q (r)+λ
2Ai, j+k+p,w+p+q

0,p,p+q (r)

+σ
2Ai, j+p,w+l+p+q

0,p,p+q (r)
]
, (9)

and

Cu = 〈(â†b̂†ĉ†)u〉
= N2

p,q;h,k,l(r)N
2
p,q(r)ξ

∗u[ε2Au+h,0,0
u,0,0 (r)+λ

2A0,u+k+p,0
0,u+p,0 (r)

+σ
2A0,0,u+l+p+q

0,0,u+p+q (r)
]
, (10)

with i, j,w,u being the nonnegative integers. In the next section, we investigate the higher-order
single-mode and two-mode antibunching of the STMPATCS. We study the higher-order three-
mode sum squeezing in Section III, and the higher-order three-mode entanglement of the STM-
PATCS in Section IV. Finally, we briefly summarize the higher-order nonclassical properties of
the STMPATCS in the conclusion.

II. HIGHER-ORDER ANTIBUNCHING

II.1. Single-mode antibunching
Single-mode higher-order antibunching (SMHOA) was first introduced by Lee [26], then

developed by several authors [27]. According to An [28], a state reveals the mth-order antibunch-
ing in mode x if

Ax(m)≡ 〈x̂
†(m+1)x̂m+1〉
〈x̂†mx̂m〉〈x̂†x̂〉

−1< 0. (11)
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The factor Ax(m) also indicates the degree of the SMHOA. The more negative the Ax(m) is, the
more obvious the SMHOA becomes. The degree of the SMHOA is maximum when Ax(m) =−1.
In the STMPATCS, we obtain

Aa(m) =
Dm+1,0,0

Dm,0,0D1,0,0
−1 (12)

for mode a. In mode b, the degree of the SMHOA becomes

Ab(m) =
D0,m+1,0

D0,m,0D0,1,0
−1, (13)

and in mode c, we have

Ac(m) =
D0,0,m+1

D0,0,mD0,0,1
−1, (14)

where

Di, j,w = 〈â†iâib̂† jb̂ jĉ†wĉw〉

= N2
p,q;h,k,l(r)N

2
p,q(r)

(
ε2

∞

∑
n=X

r2n[(n+h)!]2

(n!)2(n+h− i)!(n+ p− j)!(n+ p+q−w)!

+λ
2

∞

∑
n=Y

r2n[(n+ p+ k)!]2

[(n+ p)!]2(n− i)!(n+ p+ k− j)!(n+ p+q−w)!

+σ
2

∞

∑
n=Z

r2n[(n+ p+q+ l)!]2

[(n+ p+q)!]2(n− i)!(n+ p− j)!(n+ p+q+ l−w)!

)
, (15)

where X = max[0, i−h, j− p,w− p−q],Y = max[0, i, j− p−k,w− p−q], and Z = max[0, i, j−
p,w− p−q− l].

The factors Ax(m),x = {a,b,c}, in Eqs. (12), (13), and (14) allow us to investigate the
SMHOA in the STMPATCS. For mode a, in Fig. 1, we plot Aa(m) in Eq. (12) as a function of
r when p = q = 0 for several values of (h,k, l) and different orders m. The results show that the
degree of the SMHOA in mode a is enhanced by increasing the order m. However, it is reduced if
the numbers of added photons h,k and l are increased. Besides, when m is small and h,k and l are
large, the factors Aa(m) becomes more negative in the high value region of r. More importantly,
when m is large, the STMPATCS always exists the SMHOA.

When h+ k+ l is fixed, i.e. the total number of photons added is a constant, in Fig. 2, we
plot the factor Aa(m) as a function of r when p = q = 0 and m = 2 with different values of h,k and
l. We can see that the degree of the SMHOA is the largest when the number of photons added to
mode a is the smallest. From another perspective, when p = q = 0,h = k = l = λ = 1 and r = 4,
the negativeness of Aa(m) is highest if λ = σ = 0, i.e. photons are added only to the mode a (see
Fig. 3). Note that the above expressions are also true for modes b and c.
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Fig. 1. The factor Aa(m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h= k = l = 1 (the red solid line), h= k = l = 2 (the green dashed curve), and h= k = l = 3
(the blue dot-dashed curve) with in (a) m = 1, in (b) m = 2, and in (c) m = 3.
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Fig. 2. The factor Aa(m) as a function of r when p = q = 0, ε = λ = σ = 1 and m = 2
for h = k = l = 2 (the red solid line), h = 2,k = 1, l = 3 (the green dashed curve), and
h = k = 1, l = 4 (the blue dot-dashed curve).
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Fig. 3. The factor Aa(m) as a function of λ and σ when p = q = 0,h = k = l = ε =
1,m = 2 and r = 4.

II.2. Two-mode antibunching
According to Lee and An [26,28], the factor for measuring the degree of two-mode higher-

order antibunching (TMHOA) of the two mode x and y can be written as

Ax,y(m) =
〈x̂†(m+1)x̂m+1〉+ 〈ŷ†(m+1)ŷm+1〉
〈x̂†mx̂mŷ†ŷ〉+ 〈ŷ†mŷmx̂†x̂〉

−1. (16)

In a given multimode state, it reveals mth-order two-mode antibunching when Ax,y(m) < 0. This
criterion was used to study the TMHOA in several nonclassical states [28,29]. In the STMPATCS,
we derive the mth-order antibunching in two modes a and b as

Aa,b(m) =
Dm+1,0,0 +D0,m+1,0

Dm,1,0 +D1,m,0
−1. (17)

Similaly, we obtain the factor Aa,c(m) for two modes a and c as

Aa,c(m) =
Dm+1,0,0 +D0,0,m+1

Dm,0,1 +D1,0,m
−1, (18)

For two modes b and c, we have

Ab,c(m) =
D0,m+1,0 +D0,0,m+1

D0,m,1 +D0,1,m
−1, (19)

where Di, j,w is also given in Eq. (15).
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Fig. 4. The factor Aa,b(m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h= k = l = 1 (the red solid line), h= k = l = 2 (the green dashed curve), and h= k = l = 3
(the blue dot-dashed curve) with in (a) m = 1, in (b) m = 2, and in (c) m = 3.

We use the analytical expressions in Eqs. (17), (18) and (19) to study the TMHOA in the
STMPATCS. In Fig. 4, we plot the factor Aa,b(m) as a function of r when p = q = 0 for several
values of h,k, l and m. It is not difficult to recognize that the degree of the TMHOA is enhanced
by increasing the order m. It is also true for a large number of added photons, and high r. Similar
to the SMHOA, the degree of the TMHOA in the STMPATCS is reduced when increasing the
number of added photons.
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If we fix the sum of h,k and l but change the number of photons added to each mode, as
in Fig. 5, h+ k + l = 6, p = q = 0, ε = λ = σ = 1 and m = 2, the results show that the degree
of the TMHOA is the highest when the numbers of photons added to the two modes a and b
are the smallest. This can be explained as the effect of adding photons to reduce the degree of
antibunching. In the other hand, in the fixed case p = q = 0,h = k = l = ε = 1,r = 4 and m = 2,
in Fig. 6, we plot Aa,b(m) as a function λ and σ . We can easily see that the antibunching degree is
improved in the small |λ | and high |σ | regions. The above results are also true for the two modes
a and c or b and c.
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Fig. 5. The factor Aa,b(m) as a function of r when p = q = 0, ε= λ = σ = 1 and m = 2
for h = k = l = 2 (the red solid line), h = 1,k = 2, l = 3 (the green dashed curve), and
h = k = 1, l = 4 (the blue dot-dashed curve).
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Fig. 6. The factor Aa,b(m) as a function of λ and σ when p = q = 0,h = k = l = ε =
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III. HIGHER-ORDER THREE-MODE SUM SQUEEZING

The condition for first-order three-mode sum squeezing was first introduced by Kumar and
Gupta [30]. Using this criterion, several authors investigated the three-mode sum squeezing prop-
erty in some states [16, 17]. The criterion for higher-order three-mode sum squeezing (HOTMSS)
was introduced by An [28]. For this criterion, we consider the two operators in higher-order as
follow:

Û =
â†mb̂†mĉ†m + âmb̂mĉm

2
, (20)

V̂ =
i(â†mb̂†mĉ†m− âmb̂mĉm)

2
, (21)

with m being the nonnegative integer. These two operators obey the commutative relation

[Û ,V̂ ] =
i
2

Ŵ , (22)

in which

Ŵ = âmb̂mĉmâ†mb̂†mĉ†m− â†mb̂†mĉ†mâmb̂mĉm. (23)

A state exists the HOTMSS if it is satisfied

SU(m)≡ 4(∆X̂)2−〈Ŵ 〉
|〈Ŵ 〉|

< 0, (24)

or

SV (m)≡ 4(∆V̂ )2−〈Ŵ 〉
|〈Ŵ 〉|

< 0, (25)

where (∆ f̂ )2 = 〈 f̂ 2〉− 〈 f̂ 〉2, f = {U,V}. The factors SU(m) and SV (m) also manifest the degree
of the HOTMSS. The more negative the factor SU(m)(SV (m)) is, the higher the squeezed degree
becomes.

In the STMPATCS, we obtain the explicit expressions of SU(m) and SV (m) when ξ = r as
follows:

SU(m) =
2C2m−4C2

m +2Dm,m,m

|Bm,m,m−Dm,m,m|
, (26)

and

SV (m) =
−2C2m +2Dm,m,m

|Bm,m,m−Dm,m,m|
, (27)

where Bi, j,w,Cu and Di, j,w are given by Eqs. (9), (10) and (15). Analytical expressions in Eqs. (26)
and (27) allow us to study the HOTMSS in the STMPATCS. In Fig. 7, we graph the factor SU(m)
as a function of r when p = q = 0 and ε = λ = σ = 1 with several values of h,k, l and m. From
this figure, we can see that the squeezing degree is enhanced by increasing h,k, l as well as r with
any order m. However, the negative degree of SU(m) is reduced if m gets a high value. Note that
the trio coherent state does not exist the three-mode sum squeezing. Therefore, the appearance of
the HOTMSS in the STMPATCS demonstrates the important role of photon addition.

We set p = q = 0, ε= λ = σ = 1 and m = 2, in the case of h+k+ l = constant, Fig. 8 plots
the dependance of SU(m) on r but h,k and l are changed. The degree of HOTMSS is the greatest
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when the numbers of photons added to the two modes are the smallest. In Fig. 9, we also graph
the factor SU(m) as a function of λ and σ with p = q = 0,h = k = l = ε= 1,r = 4 and m = 2. In
this case, the degree of HOTMSS is the highest when both |λ | and |σ | are lowest.
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Fig. 7. The factor SU (m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h= k = l = 1 (the red solid line), h= k = l = 2 (the green dashed curve), and h= k = l = 3
(the blue dot-dashed curve) with in (a) m = 1, in (b) m = 2, and in (c) m = 3.
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for h = k = l = 2 (the red solid line), h = 1,k = 2, l = 3 (the green dashed curve), and
h = k = 1, l = 4 (the blue dot-dashed curve).
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Fig. 9. The factor SU (m) as a function of λ and σ when p = q = 0,h = k = l, ε= 1,r = 4
and m = 2.

With respect to SV (m), in Fig. 10, we plot this factor as a function or r when p = q = 0 and
m = 2 for several values of h,k and l. It is easy to see that the STMPATCS does not reveal the
HOTMSS in V̂ because the values of SV (m) are always nonnegative. This is explained because
such state already exists the STMPATCS in Û .
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Fig. 10. The factor SV (m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h= k = l = 1 (the red solid line), h= k = l = 2 (the green dashed curve), and h= k = l = 3
(the blue dot-dashed curve).

IV. HIGHER-ORDER THREE-MODE ENTANGLEMENT

There are many criteria for detecting entanglement in multimode states [31–34]. These
criteria were also applied to investigate the entangled property in many two-mode and three-mode
states [11, 25, 29]. To verify the higher-order entangled characteristic in the STMPATCS, we use
the criterion introduced by Duc et al. [11]. It is given in the form of the inequality as follows:

|〈âmb̂mĉm〉|>
(
〈â†mâm〉〈b̂†mb̂m〉〈ĉ†mĉm〉

)1/2
. (28)

A state is entangled if it satisfies the inequality in Eq. (28). By setting

E(m) =
(
〈â†mâm〉〈b̂†mb̂m〉〈ĉ†mĉm〉

)1/2−|〈âmb̂mĉm〉|, (29)

we can see that the condition E(m) < 0 confirms the entanglement in a given state. The more
negative E(m) is, the more entangled the state becomes. Using Eqs. (10) and (15), we write the
factor E(m) in the case ξ = r as follows:

E(m) =
(
Dm,0,0D0,m,0D0,0,m

)1/2−Cm. (30)

The factor E(m) in Eq. (30) allows us to study the entangled property in the STMPATCS. In
Fig. 11, we plot the dependance of E(m) on r with p = q = 0 and ε= λ = σ = 1 for several values
of (h,k, l. It indicates that the negative degree of the factor E(m) is increased (decreased) with
raising m(h,k, l). In addition, the higher the parameter r becomes, the more negative the factor
E(m) is.

When fixed h+ k+ l =constant, as shown in Fig. 12, h+ k+ l = 6, and fixed some param-
eters as p = q = 0 and ε= λ = σ = 1, the results show the value of E(m) is the highest if both h
and k are the smallest. Furthermore, we investigate the dependance of the factor E(m) on λ and σ

in the case p = q = 0,h = k = l = ε= 1,r = 4, and m = 2 (see Fig. 13). It is not surprising that the
factor E(m) peaks at λ = σ = 0, i.e. adding only photons to one mode of the trio coherent state.
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Fig. 11. The factor E(m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h= k = l = 1 (the red solid line), h= k = l = 2 (the green dashed curve), and h= k = l = 3
(the blue dot-dashed curve).
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Fig. 12. The factor E(m) as a function of r when p = q = 0 and ε = λ = σ = 1 for
h = k = l = 2 (the red solid line), h = 1,k = 2, l = 3 (the green dashed curve), and h =
k = 1, l = 4 (the blue dot-dashed curve).
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Fig. 13. The factor E(m) as a function of λ and σ when p = q = 0,h = k = l = ε =
1,r = 4, and m = 2.

V. CONCLUSIONS

In this paper, we have studied the higher-order single-mode and two-mode antibunching,
higher-order three-mode sum squeezing, and higher-order three-mode entanglement in the STM-
PATCS. The investigated results have indicated that the nonclassical degree is improved in higher-
order. On the other hand, the depth of the factors of higher-order antibunching, higher-order
squeezing, and entanglement is enhanced by increasing the parameter r, i.e. increasing the am-
plitude of the field of the trio coherent state. Besides, the nonlocal photon addition plays an
important role in raising the higher-order three-mode sum squeezing in the STMPATCS, while the
trio coherent state does not exist the three-mode sum squeezing. The results have also shown that
this operation reduces the intensity of nonclassicality including the higher-order single-mode and
two-mode antibunching, and the higher-order three-mode entanglement. It also explains why the
parameters p,q,h,k, l, ε and r are fixed, the nonclassical intensity peaks at λ = σ = 0. Finally, by
fixing the total of h,k and l but varying h,k or l, we have found that all the antibunching, squeez-
ing, and entanglement degrees in higher-order are the highest when the number of added photons
to the two modes of the trio coherent state is the smallest.
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