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Abstract. In this work, entropy scaling approaches for viscosity of pure Lennard-Jones (LJ) fluids
and their mixtures have been investigated. To do so, we have used a reliable viscosity database
available in the literature for the pure LJ fluids, and performed molecular dynamics simulations
to generate a viscosity database over a wide range of thermodynamic conditions for LJ mixture
fluids. It has been found that, for the pure LJ fluid, the entropy scaling approaches using macro-
scopic properties for the reduction of viscosity yield a noticeably better collapse of data in the
dense fluid region than the approach using the zero-density viscosity. Then, we have developed
viscosity correlations replied on these approaches. It has been obtained that the correlations
based on macroscopic properties scaling predict the pure LJ fluid viscosity with an average abso-
lute deviation of about 4% mostly coming from the low-density states, whereas it is of about 8.50%
mostly coming from the dense states for the other correlation. Finally, the viscosity correlations
combined with a one-fluid approximation have been applied to the LJ mixtures. Interestingly, the
correlations based on macroscopic properties scaling are able to provide good estimations for all
mixtures studied. However, for the other correlation, the results deteriorate in dense mixtures.
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I. INTRODUCTION

Viscosity of fluid is a key quantity in many fields such as physical engineering and chemical
engineering. To estimate this property, an extensive number of methods, both correlative and theo-
retical, have been developed and reported in the literature [1-3]. However, they are often unreliable
when applied to extreme thermodynamic conditions, e.g. high pressures and high temperatures,
and mixtures.

Entropy scaling approach, originally suggested by Rosenfeld to deal with dense fluids [4],
has recently attracted a lot of attention. This approach is somewhat a hypothesis, as it cannot be
derived from a rigorous theory [5]. Still, physical understanding of the approach can be achieved
within the framework of hidden scale invariance [5-6]. To extend it to low-density regions, alter-
native approaches have been proposed [7-10]. Very interestingly, it has been shown that they are
able to provide very promising results on pure model and real compounds [8-14]. However, their
capability to be extended to mixtures has been less investigated [15-18], which is probably due to
the lack of accurate data, e.g. viscosity and excess entropy. Therefore, the applicability to mix-
tures of these entropy scaling approaches is still questionable. Thus, we propose in this work to
systematically study their capability to correlate viscosity of pure and mixture fluids over a wide
range of thermodynamic conditions.

Lennard-Jones fluids are not only of great interest in fundamental research, but also in ap-
plication engineering [19-20]. This is because this model fluid exhibits main physical interaction
characteristics found between real molecules [19], i.e. consisting of attractive and repulsive in-
teractions. Therefore, it can be used to consistently describe some real small compounds such
as gases [20]. In particular, with recent progresses in the molecular simulations and equations of
state [21-24], their thermophysical properties including viscosity and excess entropy can be now
accurately estimated over a wide range of thermodynamic conditions. Thus, the Lennard-Jones
fluids are fully consistent with the purpose of this work and we have used them to better assess the
capability of the excess entropy scaling frameworks.

The article is organized as follows. A brief description on excess entropy approaches is
presented in Sec. II. The molecular simulations are detailed in Sec. III. The results obtained from
molecular simulations and excess entropy approaches are presented and discussed in Sec. IV.
Finally, we summarize the main outcomes of this study to form the conclusion in Sec. V.

II. THEORETICAL BACKGROUND

Entropy scaling approach is based on the idea of expressing a dimensionless/reduced vis-
cosity ηr as a mono-variant function of the reduced excess entropy sex

r that is defined as:

sex
r (T,ρ) =

sex(T,ρ)
kB

=
s(T,ρ)− sid(T,ρ)

kB
, (1)

where sex(T,ρ) is the excess entropy, s(T,ρ) is the total entropy per molecule, sid(T,ρ) is the ideal
gas entropy per molecule, and kB is the Boltzmann constant. In the original approach of Rosenfeld
[4], the dimensionless viscosity is given as:

η
r
Ros = η

ρ−
2
3

(MkBT )
1
2
, (2)
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where η is the viscosity, ρ is the molecular number density, M is the molecular mass, and T the
temperature. It is worth noticing that Rosenfeld has employed macroscopic properties, temper-
ature and density, for reduction, which is somewhat similar to the application of the isomorph
theory [5]. Interestingly, it has been shown that this assumption often yields a rather-linear rela-
tionship between lnηr

Ros and sex
r in the dense-fluid region for various fluids [9]. So, this framework

is an efficient way to develop viscosity correlations of fluids in such region. However, it exhibits
an inconsistency in the dilute-gas region due to a divergence of ηr

Ros at zero density, i.e. when ?
tends to zero. To circumvent this problem, some approaches have been proposed in the literature
[7-10].

Novak has proposed to define the dimensionless viscosity as [8]:

η
r
Nov =

η

η0
, (3)

where η0 is the Chapman-Enskog viscosity, i.e. the one at zero density. By doing so, at extremely
low-density conditions the dimensionless viscosity converges to one, which enables to fit the vis-
cosity data of fluid in the entire fluid region, i.e. including the dilute gas region. This approach
has shown to provide reasonable results for real fluids [8, 11-12, 15]. It has also been applied to
LJ fluid and their mixtures, but limited to a small range of thermodynamic conditions [15].

Another approach, proposed by Galliero et al. [9], is to apply the Rosenfeld’s assumption
only to the residual contribution into the viscosity, ηRes, defined as:

ηRes = η−η0 (4)

instead of using the viscosity η , i.e.,

η
r
Gal = ηRes

ρ−
2
3

(MkBT )
1
2
= (η−η0)

ρ−
2
3

(MkBT )
1
2
. (5)

Using this option, the viscosity in the zero-density limit can be correctly calculated. The
approach has been applied to many pure fluids, and has clearly shown an improvement compared
to the Rosenfeld’s approach [9]. Rather surprisingly, its extensions to mixtures has been less
studied, even for simple mixtures of LJ fluids.

More recently, Bell et al. have proposed another definition of the dimensionless viscosity
[10], thanks to an analysis of the transport properties of dilute gas, as:

η
r
Bel = η

ρ−
2
3

(MkBT )
1
2
(−sex

r )
2
3 . (6)

This approach retains the use of macroscopic properties to define the dimensionless vis-
cosity as Rosenfeld’s assumption, in order to be somewhat consistent with the requirement of
application of the isomorph theory [5]. It has been shown that the approach does not only elimi-
nate the divergence at the zero-density limit, but also yield a good one-to-one relationship between
ηr

Bel and sex
r over a wide range of thermodynamic conditions for various fluids [10, 13, 14, 16, 18].

However, its application to mixtures of LJ fluids has not yet been largely considered.
Thus, in the present work, the capabilities of these three approaches to correlate the viscos-

ity of LJ fluids have been tested and compared.
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III. MOLECULAR SIMULATIONS

III.1. Molecular Modelling
A Lennard-Jones fluid is composed of spherical molecules whose interactions are described

by the LJ potential as [25]:

uLJ(ri j) = 4εi j[(
σi j

ri j
)12− (

σi j

ri j
)6], (7)

where εi j is the potential well depth, σi j is the collision diameter and ri j the distance between the
two spheres.

Binary mixtures used in this work consist of species differing in terms of either the potential
well depth or the collision diameter, while the molecular masses are the same. More precisely,
two binary mixtures have been considered: Mixture I: ε22 = 2ε11 and σ22 = σ11, and mixture
II: ε22 = ε11 and σ22 = 1.25σ11. Interaction parameters between unlike molecules have been
determined by the classical Lorentz-Berthelot combining rules:

σi j =
(σii +σ j j)

2
(8)

εi j =
√
εiiε j j. (9)

We have investigated the binary mixtures at different molar fractions of species 1, x1, uniformly
varying from 0.00 to 1.00 with steps of 0.05. Thermodynamic conditions have been chosen to rep-
resent different component phase behaviors of binary mixtures: gas-gas, liquid-liquid and liquid-
gas, detailed in Tables 1 and 2. It is worth mentioning that all thermodynamic states of mixtures
studied are stable. This is because either its temperature is greater than the critical temperatures
of components, i.e. for gas-gas mixtures, or its pressure at lower temperatures, i.e. for liquid-gas
and liquid-liquid mixtures, is greater than the saturation pressures of components. In the following
sections, we express thermophysical variables in the dimensionless LJ units, noted with a star as
superscript, by using the molecular parameters of component 1 for the reduction [19].

Table 1. Thermodynamic conditions and corresponding component phase behavior of
binary mixture I used in this work.

T∗=1.50 T∗=3.00
P∗=1.635 Liquid-Gas
P∗=0.502 Gas-Gas (Low density)
P∗=1.662 Gas-Gas (Moderate density)
P∗=7.904 Gas-Gas (High density)

III.2. Numerical details
To calculate the thermodynamics properties, Monte Carlo molecular simulations in the

isothermal-isobaric ensemble (NPT) [15] have been performed using an in-house code. Simu-
lation boxes are cubic and contain at least 500 LJ molecules. Periodic boundary conditions (PBC)
are applied in three directions. The LJ potential is computed by truncating the interaction at a
cut-off radius of 4σi j, and the long range corrections (LRC) are included. In the simulations, two
MC moves are implemented: volume change and molecular translation.
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Table 2. Thermodynamic conditions and corresponding component phase behavior of
binary mixture II used in this work.

T∗=1.00 T∗=2.00

P∗=0.787 Liquid-Liquid

P∗=0.227 Gas-Gas (Low density)

P∗=0.746 Gas-Gas (Moderate density)

P∗=3.763 Gas-Gas (High density)

Fig. 1. Evolution of thermodynamic properties scaled by their corresponding equilibrium
values for a highly asymmetric mixture, i.e. a liquid-gas mixture at (x1=0.5, P∗=1.635, T∗

=1.50), obtained from MD simulations in NPT ensemble. (a) Density. (b) Temperature.
(c) Potential energy.

All MC simulations are carried out in two steps. First, the simulation systems were equi-
librated during a run of 10× 106 MC moves. During this step, maximum amplitudes of the MC
moves were adjusted so that the acceptance rates are about 50%. Then, the data production was
performed during 50×106 MC moves to compute the thermodynamics properties. To determine



192 ENTROPY SCALING FOR VISCOSITY OF PURE LENNARD-JONES FLUIDS AND THEIR BINARY MIXTURES

the chemical potential that is required to calculate the excess entropy, we have employed the
Widom insertion method, with at least 1×108 trial insertions [26-27].

Viscosity was computed by performing molecular dynamics (MD) simulations [15] using
an in-house code. All MD simulations consist of three steps. In the first step, the simulation
systems were equilibrated during a run of 1× 106 timesteps, see Fig. 1. Then, a reverse non-
equilibrium molecular dynamics (RNEMD) algorithm, proposed by F. Müller-Plathe [28-29], has
been employed to shear the fluid. The second step to reach the steady state was carried out during
5×106 timesteps. In the last step, a run of 30×106 timesteps was used for the samplings.

Simulation boxes, containing 3000 molecules, were set up such that Lz = 2Lx = 2Ly. The
PBC were applied in all directions [15]. The cut-off radius of 3σi j was employed to compute
the LJ interaction. The equations of motion were computed by employing the velocity Verlet
algorithm with timestep δ t = 0.002 [30]. To maintain the temperature, the Berendsen algorithm
[31] was applied to all directions of velocity during the equilibrium MD simulations, whereas
it was applied to only the two directions perpendicular to the shear direction during the NEMD
simulations to remove the effect of streaming velocity.

In all MC and MD simulations, a sub-block method was employed to estimate error bars. It
has been obtained that the error bars of excess entropy and viscosity are often smaller than 0.5%
and 3%, respectively. For clarity, the error bars are not shown in following figures.

IV. RESULTS AND DISCUSSIONS

IV.1. Computations of excess entropy
In this work, we have employed a LJ equation of state (EoS) developed by Thol et al [24]

to compute excess entropy of pure LJ fluids. This EoS was also extended to deal with mixtures
thanks to a mixing rule based on the van der Waals one-fluid (vdw1) theory [32, 33], so-called as
a vdw1 mixing rule.

The LJ EoS equation is written in terms of the reduced Helmholtz free energy α = a
kBT with

a is the Helmholtz free energy per molecule [24]. More precisely, it is decomposed into ideal-gas
and residual contributions, α0 and αr, that are as functions of the inverse temperature and density,
τ = Tc

T and δ = ρ

ρc
with Tc and ρc being the critical temperature and density respectively, as:

α(τ,δ ) = α
0(τ,δ )+α

r(τ,δ ) (10)

where the contributions are given by:

α
0(τ,δ ) = lnδ +1.5lnτ + c1τ + c2, (11)

α
r(τ,δ ) =

6

∑
i=1

niδ
diτ

ti +
12

∑
i=7

niδ
diτ

ti exp(−δ
li)+

12

∑
i=7

niδ
diτ

ti exp(−ξi(δ −χi)
2−βi(τ− γi)

2) (12)

where ci, ni, di, ti, li,ξi, χi, βi and γi are coefficients, given in [24]. With this formalism, the excess
entropy can be computed from:

sex

kB
= τ(

∂αr

∂τ
)δ −α

r (13)
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Mixtures are treated as a pure fluid by using the vdw1 mixing rules [32, 33], as:

ρ
−3
c,m =∑

i
∑

j
xix jρ

−3
c,i j, (14)

Tc,mρ
−3
c,m =∑

i
∑

j
xix jTc,i jρ

−3
c,i j (15)

ρc,i j and Tc,i j corresponding to the Lorentz-Berthelot combining rules given by:

ρ
− 1

3
c,i j =

ρ
− 1

3
c,ii +ρ

− 1
3

c, j j

2
, (16)

Tc,i j =
√

Tc,iiTc, j j. (17)

As the excess entropy is the key quantity for the entropy scaling approaches, we have ver-
ified the capability of the LJ-EoS to provide this quantity. To do so, molecular simulations have
been performed to compute the excess entropy per molecule for a given state by using the follow-
ing classical thermodynamic relation [34]:

sex =
[ures + pres

ρ
−µres]

T
, (18)

where ures is the residual potential energy per molecule, pres is the residual pressure, and µres is the
residual chemical potential per molecule. The residual thermodynamic quantities are calculated
as the total thermodynamic quantities minus the ideal gas thermodynamic quantities at the same
temperature and density.

Fig. 2. Comparison between minus reduced excess entropy of pure LJ fluid obtained
from the molecular simulations and LJ-EoS. (a) Simulation data versus LJ-EoS data. (b)
Absolute deviation versus minus reduced excess entropy. Line corresponds to the identity
function, i.e. (−sex

r )Simulation = (−sex
r )LJ−EoS.

Figure 2 shows a comparison between the minus reduced excess entropy obtained from
molecular simulations and the LJ EoS for the pure LJ fluids. Results clearly indicate that the LJ
EoS is able to yield excellent results with an absolute deviation (AD) smaller than 0.3%. For
the studied mixtures, as illustrated in Fig. 3, the method slightly deteriorates with the maximum
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absolute deviation (MAD) up to 1.4%, which is probably due to the limitation of the van der Waals
one fluid approximation.

IV.2. Entropy Scaling
A. Pure Lennard-Jones Fluid

Fig. 3. Comparison between minus reduced excess entropy obtained from the molecular
simulations and the LJ-EoS for the studied mixtures. (a) Simulation data versus LJ-
EoS data. (b) Absolute deviation versus minus reduced excess entropy. Red diamonds
correspond to mixture I. Green circles correspond to mixture II. Line corresponds to the
identity function, i.e. (−sex

r )Simulation = (−sex
r )LJ−EoS.

First, we have investigated the three entropy scaling approaches, described in Sect. 2.1, for
the pure LJ fluid over a wide range of thermodynamic conditions. To do so, we have employed
a database of LJ viscosity over the range (0.6 ≤ T ≤ 6 and 0 ≤ ρ ≤ 1.275) obtained from the
MD simulations by Meier and Galliero et al. [35-36]. The zero-density viscosity η0, used in the
approaches of Novak and Galliero et al., has been estimated by using Chapman-Enskog theory
[37], similarly to previous works [8-9], as:

η0 =
5

16Ω(2,2)(T )

√
T
π
, (19)

where Ω(2,2) is the collisional integral, which has been computed from the correlation given by
Neufeld et al. [38].

Figure 4 shows the dependence of the dimensionless viscosity on the reduced excess en-
tropy. It appears that approaches of Novak and Bell et al. yield reasonable convergence at the
zero-density limit, whereas it is very noise for the approach of Galliero et al. The latter can be
understood as they have defined the dimensionless viscosity for the residual viscosity, instead of
using the total viscosity, which becomes very small in the dilute states and so very sensitive to the
accuracy of the simulation data. In the dense fluid region, a good collapse of data is achieved with
the approaches of Galliero et al. and Bell et al., but the results are less good for the one of Novak.
This is probably related to the consistency of the reduction of viscosity. More precisely, Galliero
et al. and Bell et al. approaches use the macroscopic properties scalings, i.e. temperature and
density, as required to apply the isomorph theory [5].
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Fig. 4. Dependence of dimensionless viscosity on reduced excess entropy. (a) Novak’s
approach. (b) Galliero et al. approach. (c) Bell et al. approach. Lines correspond to the
fitting curves.

To quantify the capability of the approaches to develop viscosity correlations, we have first
regressed the dimensionless viscosity data as:

η
r = exp(

5

∑
i=0

Ai(−sex
r )i), (20)

where Ai are the fitting coefficients given in Table 3. Then, the viscosity is given by:

ηNov =η0 exp(
5

∑
i=0

Ai,Nov(−sex
r )i), (21)

ηGal =η0 +(ρ )
2
3 (T )

1
2 exp(

5

∑
i=0

Ai,Gal(−sex
r )i), (22)

ηBel =(ρ )
2
3 (T )

1
2 (−sex

r )−
2
3 exp(

5

∑
i=0

Ai,Bel(−sex
r )i). (23)

It has been obtained that the correlation of Novak’s approach predicts the viscosity with
an average absolute deviation (AAD) of 8.50%, and of 4.24% and 4.01% for the approaches of
Galliero et al. and Bell et al., respectively. For further details, the AD are illustrated in Fig. 5.
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As can be seen, in the gas-like region that consists of the states with the excess entropy larger
than the critical one, equal to about -0.90 [39], all the correlations yield results with similar AAD
about 5.5%. In the remaining region, i.e. the liquid-like, as expected, the two correlations based
on Galliero et al. and Bell et al. approaches provide even better estimation than in the gas-like
region, i.e. 3.4% and 2.5% respectively, but the correlation based on Novak approach noticeably
deteriorates, yielding the AAD equal 11.1%.

Table 3. Values of fitting coefficients in Eqs. (21, 22, 23).

Novak’s approach Galliero et al. approach Bell et al. approach
A0 -0.1249 -2.6870 -1.3260
A1 1.0410 2.0540 0.4854
A2 -0.07374 -0.4905 0.5091
A3 0.01827 0.0650 -0.1760
A4 N/A N/A 0.02057

Fig. 5. Variation in absolute deviation of viscosity between predicted and simulations
ones with reduced excess entropy. (a) Novak’s approach. (b) Galliero et al. approach. (c)
Bell et al. approach. Shadowed regions correspond to the gas-like behavior.
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B. Binary Mixtures of Lennard-Jones Fluids
In this section, we evaluate the capability of the viscosity correlations based on the entropy

scaling approaches when applied to binary mixtures of LJ fluids. To do so, we have performed
MD simulations to provide a viscosity database on LJ mixtures. Similarly, to previous work [15],
the zero-density viscosity of mixture is computed by using the approximation of Wilke [40] given
by:

η0,m = ∑
i

xiη0,i

∑ j xiϕi j
(24)

with

ϕi j =
[1+(

η0,i
η0, j

)
1
2 (

M j
Mi
)

1
4 ]2

[8(1+ Mi
M j
)]

1
2

(25)

Fig. 6. Viscosity computed from the entropy scaling approaches versus the viscosity pro-
vided from the MD simulations. (a) Novak’s approach. (b) Galliero et al. approach. (c)
Bell et al. approach. Diamonds correspond to mixture I. Circles correspond to mixture
II. Red color corresponds to gas-gas mixtures. Green color corresponds to liquid-liquid
mixtures. Blue color corresponds to gas-liquid mixtures. Line corresponds to the identity
function, i.e. ηSim = ηEnt .

Viscosity obtained from the entropy scaling correlations is displayed against the simulation
data in Fig. 6. Interestingly, results indicate that the correlations based on Galliero et al. and Bell
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et al. approaches are able to provide a good estimation of viscosity of the LJ mixtures considered,
whatever phase behavior: gas-gas, liquid-liquid and liquid-gas, even when the partial molar prop-
erties of the components are very different from each other. However, the results are less good for
the correlation based on Novak’s approach, in particular for densest states, i.e. largest values of
−sex

r
kB

, see Fig. 7. This is consistent with the results obtained on pure LJ fluids.

Fig. 7. Dependence of absolute deviation between viscosities computed by the entropy
scaling approaches and the MD simulations on the minus reduced excess entropy. (a)
Novak’s approach. (b) Galliero et al.’ approach. (c) Bell et al. approach. Legend of this
figure is the same as that given in Fig. 5.

V. CONCLUSIONS

In this work, we have investigated three excess entropy approaches, that are proposed to cir-
cumvent the inconsistency of Rosenfeld approach at the zero-density limit, for the pure Lennard-
Jones fluids and their mixtures. One approach, proposed by Novak, uses zero-density viscosity
to define dimensionless viscosity, whereas the other two, proposed by Galliero et al and Bell et
al, are based on density and temperature to perform the scaling. An equation of state has been
used to compute the excess entropy both pure and mixture fluids. Viscosity data of pure fluid
covering a wide range of thermodynamic conditions provided in the literature has been employed.
For the mixtures that are composed of species differing in terms of either the molecular energy
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or the molecular diameter at various thermodynamic conditions containing different component-
phase behaviors: gas-gas, liquid-liquid and liquid-gas, we have performed the molecular dynamics
simulations to compute their viscosities.

First, we have verified the accuracy of the equation of state to provide the excess entropy
by comparing the results with the molecular simulations. It has been shown that the EoS is able to
yield excellent results for pure LJ fluids, but slightly deteriorates for the studied mixtures, probably
because of the limitation of the van der Waals one fluid approximation.

Then, the three excess entropy approaches have been investigated for the pure LJ fluid.
Results have shown that the Novak and Bell et al. approaches yield a good convergence at the
zero-density limit, whereas it is less the case for the Galliero et al. one. However, in the dense
states, only the approaches of Galliero et al. and Bell et al. lead to a good collapse of data.

In addition, we have developed viscosity correlations of pure LJ fluids based on these three
approaches. It has been obtained the correlations based on Novak and Galliero et al., Bell et al.
approaches yield results with the average absolute deviation (AAD) of 8.50%, 4.24% and 4.01%
respectively. For more details, we have computed the AAD in the gas-like and the liquid-like
regions. The correlations result in a similar AAD about 5.5% in the gas-like region, but different
values in the liquid-like, i.e. about 11.10%, 3.44% and 2.51% respectively.

Finally, we have applied these viscosity correlations to the LJ mixtures. It has been found
that the two correlations based on Galliero et al. and Bell et al. approaches provide good results
for the mixtures considered, whereas the other one deteriorates for dense mixtures, particularly
mixtures containing a liquid component. This finding is consistent with the pure fluid results.
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