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Abstract. In this article the stable region and stabilizing process of dielectric particle in fluid by

the optical tweezer using the series of laser pulses are investigated. The influence of the repetition

period and number of laser pulses on the radial variance of particle and the “so-called” stable

space-time pillar is simulated and discussed.

I. INTRODUCTION

In 1970, Ashkin [1] first demonstrated the optical trapping of particles using the
radiation force produced by the focused continuous-wave (CW) beam. Since then the
optical traps and tweezers have been a powerful tool for manipulating dielectric particles
[2, 3].

Usually, the optical traps or tweezers in many experiments are conducted by using
the CW laser. It is well known that the CW laser with the power of a few milliwat can
only produce the radiation force with an order of a few pN to manipulate the micro-
sized particles. Recently, Ambardekar et al. [4], Deng et al. [5], Zhao [6] and Wang et

al. [7] used a pulsed laser to generate the large gradient force, up to 2500 pN within a
short duration, about picoseconds. Up to now, we have paid attention to optical traps
using pulsed Gaussian beam (PGB) [7] and optical traps using counter-propagating pulsed
Gaussian beams [8]. In works [8-11], the discussions about stability of the optical trap
and the tweezers as well as the effectively controlling dielectric particles as the gold nano-
particles and live membrane, have been conducted taking into account of Brownian force.
But, the stabilizing process during the pulsing of the optical beam and the absolutely-
stable conditions of dielectric particles were not clear. Therefore, in Ref. [12] the influence
of the intensity of laser pulse and the radius of particle on the stabilizing process was
simulated and discussed.

To see more clearly the stability of the particle in the optical tweezer, in this article,
the influence of the total energy, beam waist, duration, repetition period and number of
laser pulses on the radial variance, and dimension of the called “stable space-time pillar”
are simulated and discussed.
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II. THEORY

A PGB is considered to trap fluctuating glass nano particles in the plate with water
(Fig. 1). For simplicity, we consider the gradient optical force, which is induced by PGB
acting on a Rayleigh dielectric particle. It means that the radius a of the particle is much
smaller than the wavelength of the laser (i.e.,a << λ). In this case, we can treat the
dielectric particle as a point dipole. We also assume that the refractive index of the glass
particle is n1 and n1 >> n2. Here n2 is the refractive index of the water. The polarization
direction of the electric field is assumed to be along the x axis.
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Fig. 1. (a) The schematic of optical tweezer. (b) The motion with radial variance
of glass particle in the plate with water.

The expression for the electric field of the PGB is defined by [6]
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where W0 is the beam waist at the plane z = 0, ρ is the radial coordinate, x̂ is the unit
vector of the polarization along the x direction, k = 2π/λ is the wave number, ω0 is the
carrier frequency, and τ is the pulse duration. For the fixed input energy U of a single

pulsed beam, the constant E0 is determined by E2
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corresponding magnetic field under paraxial approximation can be given by

~H (ρ, z, t) ∼= ŷn2ε0c ~E (ρ, z, t) (2)

where c = 1/ (ε0µ0)
1/2 is the light speed in vacuum, and ε0 and µ0 are the dielectric

constant and permeability in the vacuum, respectively.
From the definition of the Poynting vector, we can readily obtain the intensity

distribution for the PGB as follows:
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By argument similar to that shown in Ref. [6] for PGB, the gradient optical force
acting on dielectric particle is given by

~Fgrad,ρ (ρ, z, t) = − ρ̂2βI (ρ, z, t) ρ̃

cn2ε0w0 (1 + 4z2)
(4)

where β = 4πn2
2ε0a

3
[(

m2 − 1
)

/
(

m2 + 2
)]

is the polarizability, and m = n1/n2[6, 7].
Assuming a low Reynold’s number regime [13], the Brownian motion of the dielec-

tric particle in the optical force field (in the optical tweezer) is described by a Langevin
equations as

γ~̇ρ (t) + ~Fgrad,ρ~ρ (t) =
√
2Dγ~h (t) (5)

where ~ρ (t) = [x (t) , y (t)] is the dielectric particle’s position in the water plate, γ = 6πaη

is its friction coefficient, η is the medium viscosity,
√
2Dγ~h (t) =

√
2Dγ [hx (t) , hy (t)] is a

vector of independent white Gaussian random processes describing the Brownian forces,
D = kBT/γ is the diffusion coefficient, T is the absolute temperature, and kB is the
Boltzmann constant.

We compute the two-dimensional (2D) motion and the radial variance (position)
of a glass particle in water using the Brownian dynamic simulation method. A particle
- spring model is employed to represent the glass particle, and the following equation of
motion is computed for each particle:

~ρ (t+ δt)− ~ρ (t) = −
~Fgrad,ρ (~ρ (t))

γ
× ~ρ (t)× δt+

√
2D × δt× ~h (t) (6)

where δt is the time increment of the simulation, ~h (t) is a random vector whose components

are chosen from the range [-1, 1] in each time step. ~Fgrad,ρ (~ρ (t))in Eq. (6) describes the
gradient optical force acting on the particle located at position ρ at time t. For example, at
beginning time t=0, the glass particle is assumed to locate at the position ρ(t = 0) = 0(at

center of tweezer), then we understand that the gradient optical force ~Fgrad,ρ (W0, z, 0)
acts on the particle, which will be located at position ∆ρ after a time increment δt.

We interest only on the radial variance of glass particle in the pulsing time (this
parameter describes the stability of particle), so the simulation will be computed from
beginning moment t=-3τ (or t=0) to ending moment t=3τ (or t=6τ) of the laser pulse.
In following numerical simulation we choose parameters as follows: λ = 1.064µm, m =
n1/n2 = 1.592/1.332, η = 7.797 × 10−1Pa.s (the small glass particle and water, for
instance) [6], W0 = 1÷ 6µm, a = 10nm, τ = 1÷ 10ps, and the input power is changed by
U = 0.1÷0.6µJ [7], T=25oC. The gradient optical force Fgrad,ρ is calculated by expression
(4) in the ranges: t = (−3÷ 3) τ at z = 0 µm(consider the beam waist of pulsed Gaussian
beam located in the traping plane z=0).

III. SIMULATED RESULTS

The radial variance of the glass particle at initial position ρ(0) = 0 with radius of
10nm as a function of pulsing time, it means as a function of pulse power or of the optical
force, is shown in Fig.2a. At the begining and ending of laser pulse, when the optical
force is weak, the particle moves randomly under Brownian law. With the increasing of
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the gradient optical force from zero to peak (depends on time), the glass particle is pulled
into center of tweezer, where ρ = 0, and fluctuates in the stable region, which is defined
as a “called” space-time pillar with stable radius ρst and stable time ∆tst (Fig. 2b). The
fluctuation of the glass particle in Fig. 2a is in a good agreement with experimental and
theoretical ones for phagocytic membrane [9] and gold nanoparticles [10], respectively.
The glass particle is pushed outside the stable pillar when the gradient force decreases
from peak to a certain value. This means that the particle will be stable during stable
time ∆tst, where the optical force is larger than a certain value.

R
a
d

ia
l

v
a
ri

a
n

ce
,
ρ

(t
)
[m

]

L
as

er
P

u
ls

e,
I(

t)
[a

.u
]

R
a
d

ia
l

v
a
ri

a
n

ce
,
ρ

(t
)
[m

]

Δtst

ρst

(a) (b)

Fig. 2. (a) Radial variance of glass particle in water during pulse time. (b) The
stable space-time pillar created within the interval [-τ , τ ].

From Fig. 2(b) can see that the stabilily of the glass particle depends on the dimen-
sion of this pillar (ρst and ∆tst), that means the stability is higher when the stable radius
of pillar ρst is shorter and the stable time ∆tst is longer. Moreover, the stable radius and
stable time of pillar depend on optical parameters of PGB as total energy, beam waist
and duration (see figures 3, 4, and 5).

From Fig. 3 to Fig. 5, we can see that the stable radius of pillar decreases and stable
time of pillar increases when the total energy increases or the beam waist decreases. It
means that the stability of the glass particle will be enhanced with increasing of total
energy and decreasing of beam waist. But, when the duration increases, i.e. the laser
temporary power decreases, the stable radius and stable time increase together. It means
that the temporal stability is higher, but the spatial stability is lower.

When the priority is given to the spatial stability, i.e. using short pulse, the temporal
stability can be enhanced by using a series of short pulses. This question is concerned in
Fig.6, which is simulated using a series of pulses with different repetition period T and
number n.

From Fig. 6(a) can see that after a stable time ∆tst = 2τ , the glass particle is
pushed outside the stable pillar, and then pulled again to it after appearing of the next
pulse. The time interval noted by TB = T −∆tst = 6τ − 2τ = 4τ , in which the particle
oscillates under Brownian law outside the stable pillar, depends on the repetition period of
pulses (T ). When the repetition period of pulses decreases this interval is shorter, and the
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Fig. 3. a) ∆τst vs U. b) ρst vs U.
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Fig. 4. a) ∆τst vs W0. b) ρst vs W0.
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Fig. 5. ∆τst vs τ . b) ρst vs τ .

Brownian motion of the glass particle is reduced. Moreover, can see too that the spatial
stability is enhanced, i.e. ρst is shorter. At least, when the repetition period is 2τ (i.e.
TB = 0in this case only) the continuous stable region appears (see Fig.6(d)), consequently,
the stable time of stable pillar will be2nτ , where n is the number of pulses.
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Fig. 6. Stability process of particle in optical tweezer pumped by series of laser
pulses with different repetition period. (a): T = 6τ , n = 4; (b): T = 4τ , n = 6;
(c): T = 3τ , n = 8; (d): T = 2τ , n = 12. Note: Vertical unit [nm]; Horizontal
unit [τ ].

It is clear, that the stability and the dimension of the stable space-time pillar of
glass nanoparticle in the optical tweezer depend not only on the total energy, beam waist
of laser beam, but also on the duration, repetition period and number of the pulses.

IV. CONCLUSION

In conclusion, we find that the Brownian force has influences on the stabilizing
process of glass particles in water by the optical tweezer using PGB. The stability of
glass particle in tweezer depends on the total energy, beam waist, duration of the PGB.
The dimension of the stable space-time pillar can be improved by using short pulse with
high repetition and large number of pulses. The simulated results can be used for other
collection of principle parameters of optical tweezer.
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