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Abstract. In this paper, phonon frequencies and elastic constant of three different concentrations
of PdxNi1−xP20 (Pd64Ni16P20, Pd40Ni40P20, and Pd16Ni64P20) bulk metallic glasses are calculated
using approach of Hubbard-Beeby (HB) and Takeno-Goda (TG). We used our well established
local model potential. The Hartree (H), Farid, et al. (F), and Sarkar et al (S) local field correlation
functions are employed to study the effect exchange and correlation on the collective dynamics of
Pd-Ni-P bulk metallic glasses. The results are reported for pair potentials, phonon dispersion
curves, and elastic properties viz: coefficient of elasticity BT , modulus of rigidity G, Poisson’s
ratio ξ , Young’s modulus Y , Debye temperature θD. The calculated results of elastic constants are
agreed with other theoretical and available experimental data.

Keywords: vibrational dynamics; bulk metallic glass; elastic properties; pseudopotential; local
field correction functions.

Classification numbers: 63.20kr; 71.23cq; 73.20Mf.

I. INTRODUCTION

From the literature survey it is found that, the metal-metalloid Pd-based bulk metallic glass
was found before three decades [1–8] and known to be the first bulk metallic glass (BMG). In
early 1990s, Turnbull and co-workers [4, 5] were successful in preparing the centimeter sized
Pd–Ni–P metallic glass slab. Due to the high cost of Pd metals, initially the research work was
only academic. But the development and related research work on latest BMG systems and its
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usefulness in physics, chemistry and engineering fields has reworked interested in studying Pd-
Ni-P glass. Because of excellent physical properties and its glass forming ability, it is useful in
metallurgical and industrial application [4–9]. It is also necessary to understand thermodynamics,
transport, and other properties of condensed systems [10–12]. There are two simple ways to
compute frequencies in the BMG. First one is the approach due to Hubbard and Beeby [13], who
used random phase approximation and conceptualized that the maxima in the product of g(r) and
d2V (r)/dr occur near to the hard core radius [14]. The second approach is due to Takeno and
Goda [15, 16], who used many body correlation functions of atoms and interatomic potential.
Hosokawa et al. [1] have derived phonon excitation for Pd40Ni40P20 by inelastic X-ray scattering.
Wang [6, 7] has reported the thermodynamics and elastic properties of the ternary system for
Pd-Ni-P on specific three combinations viz; Pd16Ni64P20, Pd40Ni40P20, P64P16P20 bulk metallic
glasses (BMGs) using the ultrasound method. There are few theoretical investigations on Pd-
based bulk metallic glasses where researchers have used these approaches to study vibrational
dynamics [8]. In this paper we report the phonon dispersion curves (PDC) and elastic properties
for Pd16Ni64P20, Pd40Ni40P20 and P64P16P20 BMGs using (1) Hubbard- and Beeby [14] and (2)
Takeno and Goda (TG) approaches [15,16]. Our well established model potential [17,18] with the
exchange and correlation functions due to Hartree (H) [19], Farid et al. [20], Sarkar et al. [21] is
used in the present investigations for Pd-Ni-P bulk metallic glasses.

II. COMPUTATIONAL METHOD

II.1. Model potential
The selection of model potential is an important role as it describes the motion of valance

electrons in a metal. For the present study, we have used single parametric local model pseudopo-
tential of the following form [17, 18].

V ion (r) = 0, for r < rc

V ion (r) =
−Ze2

r
+

Ze2

r
exp
(
−r
rc

)
, for r ≥ rc,

(1)

where Z is the valency, e be the electronic charge and rc is the model potential parameter.
This well tested model potential [17, 18] is the improved form of Ashcroft’s empty core

model potential [17]. The potential is continuous in r- space and in comparison with Ashcroft
empty core model potential, we have introduced Ze2

r exp
(
−r
rc

)
as a repulsive term outside the

corsece which helps in making damping quicker than only Coulomb potential. Moreover, the
inclusion of the repulsive term outside the core makes the effective core smaller than the ionic
radius of the free electron. In the reciprocal space, the corresponding bare-ion form factor of the
present model potential is given by [18],

Vb (q) =
−4πZeffe2

Ω0effq2

cos
(
qrceff

)
−

exp(−1)
(
qrceff

)(
1+q2r2

ceff

) {
sin
(
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)
+qrceffcos

(
qrceff

)} . (2)

Here Zeff, Ω0eff, q, e and rceff is the valency, atomic volume, wave vector, charge of the electron
and the parameter of the potential, respectively.
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II.2. Pair Potential
In the present work, the Wills-Harrison (WH) [22] method is used to compute the pair

potential. The relation used is [8, 22]

V (r) =V s(r)+

(
−Zd

(
1− Zd

10

)(
12
Nc

) 1
2
(

28.06
π

)
2r3

d
r5

)
+Zd

(
450
π2

)
r6

d
r8 . (3)

Here, Zd is the contribution of d-electron to the pair potential and expressed in terms of the number
of d-electron, rd is the radius of d-orbital and NC is the nearest-neighbour coordination number [8,
12, 13].

Also,

V s(r) =

(
Z2

effe
2

r

)
+
Ω0eff

r

∫
dqFeff (q)

[
sin(qr)

qr

]
q2. (4)

Here Feff(q) is the effective wave number characteristics.
The other important integral in the study of phonon dispersion curves is the pair correlation

function g(r). The pair correlation function is computed by

g(r) = exp

[(
−V ′′eff (r)

kBT

)
−1

]
. (5)

The energy wave number characteristics, feff (q) appearing in Eq. (4) is written as

Feff (q) =
(
−Ω0eff

16π

)∣∣∣V e f f
b (q)
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[
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e f f
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]
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Here, V e f f
b (q) is the effective bare ion local pseudo potential as given in Eq. (1), ε

e f f
H (q) is the

Hartree dielectric response function [12] and feff (q) is the local field correction function that
presents the exchange and correction effects. The three exchange and correlation functions of
Hartree (H) (without exchange and correlation effect) [19], Farid et al. (F) [20] and Sarkar et al.
(S) [21] are considered for the examination of relative effect of exchange correction on PDCs and
elastic properties of Pd-Ni-P metallic glasses.

II.3. Photon Dispersion Curves and Elastic Constants Equations
In the Hubbard and Beeby [14] approach, the longitudinal and transverse phonon frequen-

cies are computed using [8, 14, 18];

ω
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Here, ωE represents the maximum phonon frequency and is given by

ωE =
4πneff

3Meff

∫
∞

0
g(r)r2V ”

eff(r)dr. (9)

Here, ρ, Meff, g(r), Ω0eff, and Feff(q) are the number density, atomic mass, pair correlation func-
tion, atomic volume and energy wave number characteristic, respectively.

Moreover, in the approach of Takeno Goda (TG) [15,16] for longitudinal phonon frequency
ωL and transverse phonon frequency ωT are [15, 16]
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The elastic nature in the phonon modes has been seen in the long-wavelength limit, hence,
the longitudinal νl and transverse νt sound velocities are also computed by HB and TG ap-
proaches, respectively [12, 13]

vl (HB) = ωEσ
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3
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, (12)
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1
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, (13)

where σ is the hard sphere diameter.
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The bulk modulus BT, Poisson’s ratio ξ, modulus of rigidity G, Young’s modulus Y and the
Debye temperature θD are studied with the following equation [12, 13, 18],
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Y =2G(ξ +1) (19)
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and

θD =
h
kB

[(
9ρ

4π

)1/3( 1
v3
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+

2
v3

t

)−1/3
]
, (20)

where ρ is the isotropic density of the solid, ‘h’ is Planck constant and kB is the Boltzmann
constant.

III. RESULTS AND DISCUSSION

Table 1. Input parameters and constants.

Parameters Zeff Ω0eff(a.u) rceff (a.u) Zd rd(a,u) Nc
Pd16Ni64P20 2.52 80.24 1.003 7.50 1.143 10.4
Pd40Ni40P20 2.40 86.63 1.074 7.20 1.247 10.4
Pd64Ni16P20 2.28 93.01 1.310 6.96 1.351 10.4

Fig. 1. Pair potential for Pd-Ni-P bulk metallic glasses.

In the present computational study, required input parameters and constants are presented
in Table 1. In the present study, our well-tested and modified version of Ashcroft’s potential is
employed to computing pair potential for the Pd-based bulk metallic glasses. The calculated pair
potentials for Pd16Ni64P20 BMG, Pd40Ni40P20 BMG, and Pd64Ni16P20 BMG [6-8] are presented in
Fig. 1. It is seen that nature of the pair potential is affected by the f (q). The local field correction
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function due to Farid et al. [20] influences larger in magnitude compared to Sarkar et al. [21]. The
first zero for Veff (r) due to F local field correction functions arises at r0 ≈ 10.55 (a.u), r0 ≈ 10.91
(a.u), and r0 ≈ 11.61 (a.u) for Pd16Ni64P20 BMG, Pd40Ni40P20 BMG and Pd64Ni16P20 BMG,
respectively.

The phonon dispersion curves for longitudinal and transverse branches are shown in figures
2 to 4, respectively for Pd16Ni64P20, Pd40Ni40P20 and Pd64Ni16P20 BMGs. The PDC for trans-
verse modes achieve maxima at a higher q compared to the longitudinal modes. As the concentra-
tion of Pd increases, the collective modes suppressed. This is due to the increasing of the atomic
mass of the ternary glass. Also, as the concentration of the Pd increases, the position at which the
first maxima occur is shift toward the origin. That is broadening decreases. The influence of
various local–field correction functions increase the higher frequencies mode. The local–field cor-
rection does not affect appreciably the position of the maxima and minima of longitudinal and
transverse modes. Moreover, Chaudhary [8] has computed the phonon dispersion curve using
model potential and HB approach but we avoid comparison of PDC to avoid complication in the
presentation of graph. From Fig. 3, the results of longitudinal phonon modes in Pd40Ni40P20 are
closer to a recent experimental study of Hosokawa et al. [1]. They have reported phonon modes
using the IXS (inelastic X-ray scattering) method [1]. Comparison with the IXS results also sup-
ports present data very well. It is seen that the sound velocities in the case of Pd40Ni40P20metallic
glass is higher than the other two glasses. For the same glass BT is also higher.

Fig. 2. Phonon dispersion curve of Pd16Ni64P20 BMG.
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Fig. 3. Phonon dispersive curve of Pd40Ni40P20BMG along with experimental data [1].

Fig. 4. Phonon dispersive curve of Pd64Ni16P20BMG.

The presently computed elastic properties for three metallic glasses and their comparison
with the available other theoretically [6, 7] and/or experimentally [1, 7] data are listed in Tables 2
to 4.
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Table 2. Elastic and thermodynamics properties of Pd16Ni64P20 BMGs.

LFCF→
Properties
↓

H F S
Exp. [6, 7] Other [8]HB TG HB TG HB TG

υL×105

(cm s−2)
4.045 4.334 4.513 5.724 4.226 5.668 5.017 3.87, 3.92, 3.24

3.39, 3.35, 3.29
υT×105

(cm s−2)
2.333 2.234 2.606 3.159 2.439 3.111 2.080 2.24,1.87,1.94

2.27, 1.96, 1.90
BT (GPa) 79.40 106.10 99.01 170.1 56.82 168.2 169.0 204.3,152.8, 163.8

210,167.4,158.0
G (GPa) 47.64 43.65 59.40 87.33 52.09 84.67 37.9 47.1,35.7, 37.8

48.5, 38.6, 36.5
ξ 0.25 0.319 0.25 0.281 0.25 0.284 0.396 0.25

Y (GPa) 127.5 123.8 159.6 240.0 139.9 233.7 105.8 117.9, 88.15, 94.5
121.3, 96.6, 91.2

θD(K) 337.9 326.2 376.0 459.2 377.4 452.4 – 295.2, 252.5,261.4
299.5, 266.6,

256.8

Table 3. Elastic and thermodynamics properties of Pd40Ni40P20 BMGs.

LFCF→
Properties
↓

H F S
Exp. [6, 7] Other [8]HB TG HB TG HB TG

υL×105

(cm s−2)
3.988 5.383 4.473 6.933 4.194 6.757 4.90,

4.87 [1]
2.69, 2.56, 2.83

3.39, 2.82
υT×105

(cm s−2)
2.302 2.445 2.582 3.878 2.421 3.768 1.96,

1.99 [1]
1.55, 1.48, 1.63

1.95, 1.629
BT (GPa) 83.11 163.7 104.5 263.5 91.93 251.3 175.0 105, 95.64,

116.3
167, 116

G (GPa) 49.86 81.55 62.71 141.4 55.14 81.53 36.5 24.4, 22.0, 26.8
38.5, 26.7

ξ 0.25 0.286 0.25 0.272 0.25 0.274 0.40 0.25
Y(GPa) 124.7 209.7 156.8 359.8 137.9 340.3 105.0 61, 55.2, 67.1

96.3, 66.9
θD(K) 325.56 418.5 365.5 550.2 342.71 534.8 292.0 210.2, 199.8,

220.3264.1,
220.0
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Table 4. Elastic and thermodynamics properties of Pd64Ni16P20 BMGs.

LFCF→
Properties
↓

H F S
Exp. [6, 7] Other [8]HB TG HB TG HB TG

υL×105

(cm s−2)
3.850 2.697 4.458 3.863 4.093 3.744 4.560 4.98, 3.38, 4.28

4.3, 2.38, 3.40
υT×105

(cm s−2)
2.223 1.407 2.574 2.049 2.363 1.979 1.790 2.88, 1.95, 2.47

2.48, 1.37, 1.96
BT (GPa) 83.04 46.73 111.3 94.04 93.82 88.7 172.0 394.8, 166.5,

267.1
252.2, 128.1,

169.2
G (GPa) 49.8 19.94 66.79 42.30 56.29 39.46 32.8 91.1, 27.5, 58.2

21.9, 22.7
ξ 0.25 0.313 0.25 0.304 0.25 0.306 0.410 0.25

Y (GPa) 124.6 52.37 166.9 110.4 140.7 103.1 93.5 117.9, 96.0, 154.2
145.4,73.83, 97.5

θD(K) 306.6 195.4 354.9 284.4 325.9 274.7 256 300.2, 263.6,
333.9

327.9, 231.3,
265.6

IV. CONCLUSION

The present work reports pair potential, phonon dispersion curves and elastic properties for
Pd-Ni-P bulk metallic glass using local model potential. The PDCs computed from the HB and
TG approaches reproduces all major characteristics of dispersion curves of Pd-Ni-P bulk metal-
lic glasses. The result of longitudinal modes of Pd40Ni40P20 are very close to reported data [1].
The model potential with the Farid et al. (F) local field correction function generates over all con-
sistent results for PDCs and elastic properties. The obtained elastic properties employing a HB and
TG approach with F local field correlation function give good comparison with the experimental
results for Pd-Ni-P bulk metallic glasses. The above results also give the confirmation of applica-
bility of the model potential and supports the present method for studying the phonon dynamics
and elastic properties of bulk metallic glasses. It is also to note that these results may provide a
useful set of data for comparison in future.
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