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Abstract. We investigate the influence of unparticle physics on the positron-electron (e+e−) col-
lider via the scalar unparticle (U) and electron (e−) exchange. From computing the contribution
of the unparticle exchange to the cross-section (CS) as well as evaluating the dependence of dif-
ferential cross-section (DCS) on the scattering angle (θ), we calculate the production of vector
unparticle (U µ) in the photon-electron (γe−) collider in s− and t− channels such as missing
energy distribution. Besides, we also found that the polarization of the e+,e− beams also signifi-
cantly contributes to the CS and DCS of the unparticle production.
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I. INTRODUCTION

The attractive scenario for describing a possible scale-invariant hidden sector with a con-
tinuous mass distribution, which is described in terms of “unparticle” was proposed by Georgi [1].
This scale - invariant sector combined with the Standard Model (SM) through interactions of the
form OUVOSM, where OUV is an unparticle operator and OSM is a SM operator. A concrete exam-
ple that can support unparticle stuff was suggested by Banks-Zaks [2, 3], with a suitable number
of massless fermions, theory attains a non-trivial infrared fixed point and a conformal field theory
can be realized at low energy [4].
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The Lagrangian of the unparticle physics is as follows [4]

L =
cn

MdUV+n−4 OUVOSM, (1)

where M is the energy scale characterizing the new physics, the operator OUV and operator OSM
have dimension dUV and n, respectively and cn is a dimensionless constant. In the low energy
effective theory, the form of the operator is:

L = cn
ΛdUV−dU

U
MdUV+n−4 OUOSM, (2)

where the unparticle operator OU with a dimension dU and an energy scale ΛU .
Base on effective interactions between SM fields and the unparticles, the collider phe-

nomenology of unparticle physics and Feynman rules for the scalar, vector, and tensor unparticle
operators with SM fields are presented in Ref. [5]. The Feynman rules for the scalar, vector and
tensor unparticle operators with SM fields are shown in Figs. 1, 2 and 3 [5]:
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Fig. 1. Feynman rules for the scalar unparticle operators.
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Fig. 2. Feynman rules for the vector unparticle operators.
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Fig. 3. Feynman rules for the tensor unparticle operators.

where λi are dimensionless effective couplings COi
U
ΛdBZ

U /MdSM+dBZ−4 with the index i = 0,1,2
labeling the scalar, vector, and tensor unparticle operators, respectively; Kµνρσ = −gµν pρ

1 pσ
2 −

(p1 p2)gρµgσν + pν
1 pρ

2 gσ µ + pµ

1 pσ
2 gρν ; Q f denoting the charge of the fermion.

The propagators for scalar, vector, and tensor operators are given by [5]:

∆F(P2) =
AdU

2sin(dU π)
(−P2)dU−2, (3)

[∆F(P2)]µν =
AdU

2sin(dU π)
(−P2)dU−2

πµν(P), (4)

[∆F(P2)]µνρσ =
AdU

2sin(dU π)
(−P2)dU−2Tµνρσ (P), (5)

with

AdU =
16π2√π

(2π)2dU

Γ(dU + 1
2)

Γ(dU −1)Γ(2dU)
, (6)

π
µν(P) =−gµν +

PµPν

P2 , (7)

T µνρσ (P) =
1
2

{
π

µρ(P)πνσ (P)+π
µσ (P)πνρ(P)− 3

2
π

µν(P)πρσ (P)
}
. (8)

Subsequently, many studies on unparticles have been done like that cosmology and astro-
physics [6], black holes [7–9], and super-conductors [10–12]. The data analysis at LHC [13–16]
is possible signatures of unparticle.

In the process of scattering to searching for the new physics effects, e+e− collision is one
of the especially advantageous processes for its simple and clean background which the Interna-
tional Linear Collider (ILC) is designed for this linear electron-positron collision [17]. The photon
collider (γe−) is examined as an option of a linear electron-positron collider and possibilities of
polarized e+,e− beams.

In this work, we studied the effect of scalar unparticle (U) and electron (e−) exchange in
e+e−→ γγ collision. The photons are produced from the e+e−→ γγ process maybe collide with
the initial electron beams to produce vector unparticles(U µ). In this paper, we were interested
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in the production of U µ from γe−→U µe−collision. In our study, we evaluated the dependence
of the DCS on the scattering angle θ , and pointed the relevant direction to be able to observe
unparticles. Besides, the CS was also considered as a function of the center of mass-energy

√
s.

II. THE COLLISION PROCESSES e+e−→ γγ AND γe−→ Uµe− IN UNPARTICLE
PHYSICS

In this section, we investigate the influence of scalar unparticle in the e+e− collision process
and study the production of the vector unparticle in the collision of an electron with the photon.
The photon source could be the source from the previous e+e− collision, or an external laser
source. Taking into calculating the cross-section, we can point out a beneficial direction for the
unparticle signal. The above processes are described by Feynman diagrams through channels can
be as follows:

The photon-photon production at e+e− colliders via scalar unparticle and electron (e−)
exchange is given by Fig. 4. According to the Feynman rules, we write the amplitudes of the s-,
t- and u-channels in case of both the e+,e− beams are polarized as follows: Note that, we have
not included the intermediate calculation steps here, we only give the final result of the scattering
amplitude to support the numerical evaluation in the next section.

Fig. 4. The Feynman diagrams for the process e+e−→ γγ .

For both the e+ and e− beams are left-polarized, the amplitude (MLL) is:

MLL =
AdU

2sin(dU π)
(−q2

s )
dU−2

(
4i

λ0

ΛdU
U

(−(k1k2)gαβ + kβ

1 kα
2 )

)
ε
∗
α(k1)ε

∗
β
(k2)

λ0

ΛdU
U

× v(p2,s2)q̂s
(1− γ5)

2
u(p1,s1)+

i
2

e2

q2
u−m2

e
ε
∗
µ(k1)ε

∗
ν(k2)v(p2,s2)γ

vq̂uγ
µ(1− γ

5)u(p1,s1)

+
i
2

e2

q2
t −m2

e
ε
∗
v (k1)ε

∗
µ(k2)v(p2,s2)γ

vq̂tγ
µ(1− γ

5)u(p1,s1). (9)
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The case of both the e+ and e− beams are right-polarized, the amplitude (MRR) is:

MRR =
AdU

2sin(dU π)
(−q2

s )
dU−2

(
4i

λ0

ΛdU
U

(−(k1k2)gαβ + kβ

1 kα
2 )

)
ε
∗
α(k1)ε

∗
β
(k2)

λ0

ΛdU
U

× v(p2,s2)q̂s
(1+ γ5)

2
u(p1,s1)+

i
2

e2

q2
u−m2

e
ε
∗
µ(k1)ε

∗
ν(k2)v(p2,s2)γ

vq̂uγ
µ(1+ γ

5)u(p1,s1)

+
i
2

e2

q2
t −m2

e
ε
∗
v (k1)ε

∗
µ(k2)v(p2,s2)γ

vq̂tγ
µ(1+ γ

5)u(p1,s1). (10)

In case of the e+ beams are left-polarized, the e− beams are right-polarized, the amplitude
(MLR) is:

MLR =
AdU

2sin(dU π)
(−q2

s )
dU−2

(
4i

λ0

ΛdU
U

(−(k1k2)gαβ + kβ

1 kα
2 )

)
(i−1)

λ0

ΛdU−1
U

ε
∗
α(k1)ε

∗
β
(k2)

× v(p2,s2)
(1+ γ5)

2
u(p1,s1)+

ime

2
e2

q2
u−m2

e
ε
∗
µ(k1)ε

∗
ν(k2)v(p2,s2)γ

v
γ

µ(1+ γ
5)u(p1,s1)

+
ime

2
e2

q2
t −m2

e
ε
∗
v (k1)ε

∗
µ(k2)v(p2,s2)γ

v
γ

µ(1+ γ
5)u(p1,s1). (11)

For the e+ beams are right-polarized, the e− beams are left-polarized, the amplitude (MRL)
is:

MRL =
AdU

2sin(dU π)
(−q2

s )
dU−2

(
4i

λ0

ΛdU
U

(−(k1k2)gαβ + kβ

1 kα
2 )

)
λ0

ΛdU−1
U

(i+1)ε∗α(k1)ε
∗
β
(k2)

× v(p2,s2)
(1− γ5)

2
u(p1,s1)+

ime

2
e2

q2
u−m2

e
ε
∗
µ(k1)ε

∗
ν(k2)v(p2,s2)γ

v
γ

µ(1− γ
5)u(p1,s1)

+
ime

2
e2

q2
t −m2

e
ε
∗
v (k1)ε

∗
µ(k2)v(p2,s2)γ

v
γ

µ(1− γ
5)u(p1,s1). (12)

From (9), (10), (11) and (12), we obtained the square of the amplitude elements above as
follows:

|MLL|2 = |MRR|2

=32
(

AdU

2sin(dU π)
(−q2

s )
dU−2

)2
(

λ0

Λ
dU
U

)4(
2(k1k2)

2 + k2
1k2

2

)[
2(p1qs)(p2qs)− (p1 p2)q2

s
]

+
1
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(
e2

q2
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e
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×16
[
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1
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(
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[
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+
8AdU e2

sin(dU π)(q2
u−m2

e)
(−q2

s )
dU−2

(
λ0

Λ
dU
U

)2(
2(k1k2)

{
[(p1qs)(p2qu)− (p1 p2)(qsqu)+(p1qu)(qs p2)]

+ p2
1 [(p2k1)(quk2)− (p2qu)(k1k2)+(p2k2)(k1qu)]+ p2

2[(p1k1)(quk2)− (p1qu)(k1k2)+(p1k2)(k1qu)]
}

+
8AdU e2

sin(dU π)(q2
t −m2

e)
(−q2

s )
dU−2

(
λ0

Λ
dU
U

)2(
2(k1k2)

{
[(p1qs)(p2qt)− (p1 p2)(qsqt)+(p1qu)(qs p2)]

+ p2
1[(p2k1)(qtk2)− (p2qt)(k1k2)+(p2k2)(k1qt)]+ p2

2[(p1k1)(qtk2)− (p1qt)(k1k2)+(p1k2)(k1qt)]
}

− 32e4

2(q2
u−m2

e)(q2
t −m2

e)
×
(
{(p1qu)(qt p2)− (p1qt)(qu p2)+(p1 p2)(quqt)}

+12{(p1qu)(p2qt)− (p1 p2)(quqt)+(p1qt)(qu p2)}

+8{(p1 p2)(quqt)− (p1qt)(p2qu)+(p1qt)(p2qu)}
)
, (13)

|MLR|2 = |MRL|2

=64
(

AdU

2sin(dU π)

(
−q2

s
)dU−2

)2
(

λ0

Λ
dU−1
U

)2(
λ0

Λ
dU
U

)2

×
(

2(k1k2)
2 + k2

1k2
2

)
× (p1 p2)

+
16m2

e

2

(
e2

q2
u−m2

e

)2

(p1 p2)+
16m2

e

2

(
e2

q2
t −m2

e

)2

(p1 p2)

−
2e2AdU me

sin(dU π)

(
−q2

s
)dU−2 λ 2

0

Λ
2dU−1
U

(
1

(q2
u−m2

e)
+

1(
q2

t −m2
e
))

× [−4(k1k2)(p1 p2)+{(p1 p2)(k1k2)− (p1k1)(p2k2)+(p1k2)(p2k1)}]

+
16e4m2

e

(q2
u−m2

e)(q2
t −m2

e)
(p1 p2), (14)

The corresponding Feynman diagrams for the pair production of the vector unparticle
(U µ)and electron in γe− collider are shown in Fig. 5.

Fig. 5. The Feynman diagrams for the process γe−→U µ e−

Similar to the above process, the amplitude of the s, t- channels in case of both the e− initial
and final beams are polarized, is given by:
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• For both the e− initial and final beams are left-polarized, the amplitude (MLL) is:

MLL =uL (k2,s2) i
λ1

ΛdU−1
U

γ
v (1+ γ

5)−i(q̂s +me)

q2
s −m2

e
ieγ

µuL (p1,s1)ε
∗
v (k1)εµ (p2)

+uL (k2,s2) ieγ
v
εv (p2)

−i(q̂t +me)

q2
t −m2

e
ε
∗
µ (k1) i

λ1

ΛdU−1
U

γ
µ
(
1+ γ

5)uL (p1,s1)

=0, (15)

• For both the e− initial and final beams are right-polarized, the amplitude (MRR) is:

MRR =
ieλ1

ΛdU−1
U (q2

s −m2
e)

ε
∗
v (k1)εµ (p2)u(k2,s2)γ

v (1+ γ
5) q̂sγ

µu(p1,s1)

+
ieλ1

ΛdU−1
U (q2

t −m2
e)

εv(p2)ε
∗
µ(k1)u(k2,s2)γ

v(1+ γ
5)q̂tγ

µu(p1,s1), (16)

• For the e− initial beam is left-polarized and the final beam is right-polarized. Note
that, this case only happens in the s-channel and we have:

MRL = MsRL = me
ieλ1

ΛdU−1
U (q2

s −m2
e)

ε
∗
v (k1)εµ(p2)u(k2,s2)γ

v(1+ γ
5)γµu(p1,s1), (17)

• For the e− initial beam is right-polarized and final beam is left-polarized. Note that,
this case only happens in the t-channel and we have:

MLR = MtLR = me
ieλ1

ΛdU−1
U (q2

t −m2
e)

εv(p2)ε
∗
µ(k1)u(k2,s2)γ

v(1− γ
5)γµu(p1,s1). (18)

From (16), (17) and (18), we obtained the following results:

|MRR|2 =32

(
eλ1
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U
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1

(q2
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2
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]
, (19)



418 THE EFFECT OF UNPARTICLE IN THE PROCESSES e+e−→ γγ AND γe−→U µ e− . . .
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1
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M+
RLMLR =−16m4

e

(
eλ1

ΛdU−1
U

)2
1

(q2
s −m2

e)(q2
t −m2

e)
(24)

Next section, we evaluate the DCS as a function of cosθ and CS depends on
√

s in the
center-mass frame.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the center of mass system, we use the formula (25) to estimate the numerical values and
evaluate the DCS and CS.

dσ

dΩ
=

1
64π2s

∣∣∣∣→k 1

∣∣∣∣∣∣∣→p1

∣∣∣
∣∣M f i

∣∣2 , dΩ= d(cosθ)dϕ. (25)

Fig. 6. The CS for e+e− → γγ via U ex-
change (s-channel) as a function of dU when
the e+,e− beams are polarized.

When the two final particles are identi-
cal then the formula (25) is reduced by a factor
1/2.

To study this work, we choose λ0 = 1;
λ1 = 1; ΛU = 1 TeV [5] and

√
s = 3000 GeV.

First, we evaluate the CS of the process
e+e−→ γγ as a function of dU (Fig. 6) and the
DCS as a function of cosθ (Fig. 7).

Depending on the spin choice (scalar,
vector, or tensor) a bound on dU can be de-
duced from unitarity conditions [18]. The dU is
a continuous parameter and is not necessarily
bound to integer values, unparticles would ap-
pear as fractional particles, for scalar 1≤ dU ≤
2 (and, in the case of fermions: vector and ten-
sor, 3/2 ≤ dU ≤ 5/2) [19]. In this task, the
CS’s of the process e+e−→ γγ as a function of dU are plotted in Fig. 6.
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For the process e+e−→ γγ via scalar unparticle exchange only happens in s-channel, the
CS obtained has the same value in each of the following cases: both the e+, e− beams are left-
polarized or right-polarized (σs(e+R,L,e

−
R,L → γγ)); the e+ beams are left-polarized, e− beams are

right-polarized or vice versa (σs(e+R,L,e
−
L,R → γγ)). These results are shown in Fig. 6. In these

cases, CS increases strongly when dU increases from 1.7 to 1.9. This is the most interesting range
for the influence of scalar unparticles during this collision. At dU = 1.9, the CS has the values
σs(e+R,L,e

−
R,L→ γγ)≈ 1.35×10−8pb; σs(e+R,L,e

−
L,R→ γγ)≈ 2.61×104 pb.

a) b)

c) d)

e) f)

Fig. 7. The DCS for e+e−→ γγas a function of cosθ .
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Our next attention, the cosθ dependence of DCS which is shown in Fig. 7 in the cases
of polarized e+,e− beams. We see that: the DCS of the process e+e− → γγ via e− exchange
depends very strongly on cosθ . The DCS decreases fast for u-channel (Fig. 7a), increases quickly
for t-channel (Fig. 7b) when cosθ is between −1 and 1. The DCS reaches the maximum value
at cosθ ≈ −1.0 for the u-channel and at cosθ ≈ 1.0 for the t-channel. Remarkable thing: For
s-channel, the DCS does not depend on the cosθ and has the value DCSs(e+R,L,e

−
R,L → γγ) ≈

6.75× 10−9(pb), DCSs(e+R,L,e
−
L,R→ γγ) ≈ 1.31× 104(pb) at dU = 1.9; DCSs(e+R,L,e

−
R,L→ γγ) ≈

2.37×10−11(pb), DCSs(e+R,L,e
−
L,R→ γγ)≈ 4.6×101(pb) at dU = 1.1. However, when the phases

are associated with all s-, t- and u- channels, the DCS is shown in Figs. 7 c, d, e, f, we can see
that, in the case of both the e+, e− beams are left-polarized or right-polarized (Figs. 7 c,d) the
DCS has the same result when dU = 1.1 and dU = 1.9, meanwhile, for the case of the e+ beams
are left-polarized, e− beams are right-polarized or vice versa, the DCS changes negligible and
have a different form when dU = 1.1 and dU = 1.9(Figs. 7 e,f). In particular, the DCS converges
at the cosθ = 0 with dU = 1.1 (see Fig. 7 e). This shows that the influence of dU , as well as
the polarization of e-beams on the DCS, are very important in investigating the behavior of the
unparticle, it tells us the direction favored by the signal of the unparticle by experiment. In the
SM, when the e+,e− beams are polarized, the DCS for the e+e− → γγ process has been shown
in Figs. 7 g, h. We can see, the DCS when e+,e− beams are both left polarized or right polarized
is larger than the DCS in the case when e+,e− beams are polarized differently. In addition, in
the low-energy region, the DCS of the process e+e− → γγ is much larger than the DCS in the
high-energy region.

In our next task, in Fig. 8, we plot the integrated DCS versus the
√

s with 200 GeV≤
√

s≤
3000 GeV, this is the energy that can be tested on ILC. The obtained CS has the identical value
in the case of u-channel or t-channel. The CS decreases for u-, t- channels and increases for s-
channel while

√
s increases (Figs. 8a, 8b). The total CS in the case of associating with all s-, t-

and u- channels (Fig. 8c and Fig. 8d) decreases when both the e+, e− beams are left-polarized or
right-polarized and increases when the e+ beams are left-polarized, e− beams are right-polarized
or vice versa. Thus, the cross-section of the process e+e−→ γγ via the scalar unparticle exchange
increases when

√
s increases. The contribution of the scalar unparticle (s- channel) is much larger

than the contribution of the electron (u, t-channels).
For the scalar unparticle exchange contribution (s-channel), the obtained CS in the case

of the e+, e− beams with the same polarization is much smaller than when the e+,e− beams are
polarized differently. For the electron exchange contribution (u-, t-channels), the obtained CS in
the case of the e+, e− beams the same polarization is much larger than when the e+,e− beams
are polarized differently. However, the obtained total CS in the case of the e+,e− beams with
different polarization is the largest when dU = 1.9. In the high-energy region, the scalar unparticle
exchange contribution is mainly in the process e+e−→ γγ .

In the SM, unlike with the participation of scalar unparticles, the process e+e−→ γγ is only
performed via the u- and t-channels (not via the s-channel). When the e+, e− beams are polarized,
the dependence of the cross-section on

√
s is shown as in Figs. 8 e, f. We can see, the cross-section

of this process decreases when
√

s increases. Besides that, we can also see the CS when e+, e−

beams are both left polarized or right polarized is larger than the CS in the case when e+, e−

beams are polarized differently (see Figs. 8e, 8f). This is contrary when there is the participation
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a) b)

c) d)

e) f)

Fig. 8. The CS for e+e−→ γγ as a function of
√

s.

of the scalar unparticles (see Figs. 8c, 8d). Thus, when the contribution of the scalar unparticles,
the value of the cross-section of the process e+e−→ γγ has been changed.

Next to our part, we considered the process γe−→U µe− when the initial and final e− beams
are polarized. In Fig. 9 shows the dU dependence of σ(γe−→U µe−). The cosθ dependence of
DCS(γe−→U µe−) is shown in Fig. 10 and the

√
s dependence of σ(γe−→U µe−) is shown in

Fig. 11. Here we plotted the dependence of dU ,cosθ ,
√

s on the CS of the process γe−→U µe−
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for both right-polarized initial and final e− beams (s-, t-channels,γe−R →U µe−R ); right-polarized
initial e− beam, left-polarized final e− beam (t-channel, γe−R →U µe−L ); left-polarized initial e−

beam, right-polarized final e− beam (s-channel, γe−L →U µe−R ). In the case of both left-polarized
initial and final e− beams (γe−L →U µe−L ), the CS has the value zero.

Fig. 9. The cross-section for γe−→U µ e− via U exchange (s-channel) as a function of
dU when the e+,e−beams are polarized.

a) b)

c) d)

Fig. 10. The DCS for γe−→U µ e− as a function of cosθ
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a) b)

c) d)

Fig. 11. The CS for γe−→U µ e− as a function of
√

s.

Fig. 9 shows that the CS decreases strongly while 1.5≤ dU ≤ 1.8. The CS is much smaller
for 1.8 ≤ dU ≤ 2.5. So that, we evaluated the DCS, CS of γe−→U µe− as a function of cosθ or√

s at dU = 1.5, dU = 1.9.
For the s-channel, the DCS is a linear function of cosθ . For the t-channel, the DCS in-

creases when cosθ is from −1 to 1. For both right-polarized initial and final e− beams in the
t-channel, the DCS has a very much bigger value than the DCS for initial and final e− beams are
polarized differently. In this case, the DCS has the maximum value atcosθ ≈ 1.

The
√

s dependence of the CS of γe−→U µe− is shown in Fig. 11. Figs. 11a, and 11b had
been plotted for each u -, and t- channel; Figs. 11c, and 11d had been plotted for the simultaneous
contribution of both u -, t- channels. Where we see that, the CS decreases while

√
s increases from

200 GeV to 3000 GeV in all cases polarized initial and final e− beams. In the case of both right-
polarized initial and final e− beams, the obtained CS is the biggest (see Fig. 11c for dU = 1.5,
and Fig. 11d for dU = 1.9). From Fig. 11c we also see that the σ(γe−R → U µe−L ) (at the order
of 10−9 pb) and the σ(γe−L → U µe−R )(at the order of 10−13 pb) are very small compared to the
σ(γe−R →U µe−R ) (at the order of 1pb), because of in the analytic expressions from (19) to (24),
only the case of both right-polarized initial and final e− beams is not proportional to the term m2

e
(see Exp. 19). The remaining cases are all proportional to the terms m2

e or m4
e . This is the same as

for Fig. 11d.
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At
√

s = 200 GeV, the CS has a value of about 18×102 pb with dU = 1.5 and about 2.86×
10−2 pb withdU = 1.9. At

√
s = 3000 GeV, the CS has value about 9.7pb with dU = 1.5 and about

1,54×10−4 pb withdU = 1.9.
The unparticle production is the same as the missing energy signature. The final electron

plus missing energy via the process γe− →U µe− in the low-energy region is much bigger than
in the hight-energy region. So we hope that experiments will give more information about the
unparticle production in the low-energy region.

IV. CONCLUSION

In high-energy region, the scalar unparticle exchange contribution is mainly in the process
e+e−→ γγ in the case of the e+, e− beams are polarized differently and the influence of dU , as
well as the polarization of e+, e− beams on the cross-section, are very important in investigating
the behavior of the unparticle, it tells us the direction favored by the signal of the unparticle by
experiment.

The cross-section of the process γe− → U µe− is biggest when both initial and final e−

beams are right-polarized. In the high-energy region, the missing energy signature is much smaller
than in the low-energy region, this results may be contributed to experiment in researching unpar-
ticles in γe−collider in the low-energy region.
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