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I. INTRODUCTION

More than one and a half-century of being discovered, the family of real numbers R, com-
plex numbers C, quaternions H, and octonions O known as normed division algebras are no longer
abstract mathematical objects. However, they gradually become the popular language for various
physics aspects, from the low energy regime of condensed matter physics to the high energy regime
of particle physics.

The first appearance of normed division algebra in physics is on the aspect of monopole
physics. Dirac proposed a gauge field of the magnetic monopole and led it to the quantization
condition between magnetic charge and electric charge in 1931 [1]. In gauge field theory, people
also prefer Dirac monopole as the U(1) monopole. Almost the same time, a mathematician named
Hopf discovered a map from one three-dimensional unit sphere S3 onto another two-dimensional
unit sphere S2, at that the 3-sphere becomes the 2-sphere whose each point is a circle S1 ( [2].
He then also generalized it for other cases of dimensions in the next two years [3]. In modern
language, Hopf maps (also known as Hopf fibrations/bundles) are the consequence of the normed
division algebras in differential topology [4]. Four decades after these works, in 1978, C. N. Yang
noticed that the Dirac monopole discovery was an accidental appearance of the Hopf map. Hence,
he used the next Hopf map to propose a SU(2) monopole in five-dimensional space, named Yang
monopole [5–7]. In 1984, Grossman et al. used the last Hopf map belonging to octonions O to
describe an SO(8) monopole field [8]. This gauge field also appeared in the work of Zhang et al.
in 2001 on the 8D Hall effect [9, 10]. Then, Le et al. constructed the SO(8) monopole’s explicit
form in 2009 using the generalized Hurwitz transformation [11, 12].

In 1983, Laughlin investigated the 2D quantum Hall effect and showed its relation to the
first Hopf map S1 ↪→ S3 −→ S2, which relates to the algebra of complex numbers C [13]. This
result is the first step of differential topology application to condensed matter physics. After that,
Zhang et al. used the next two generations of Hopf maps (S3 ↪→ S7 −→ S4 and S7 ↪→ S15 −→ S8)
relating to the quaternion and octonion algebras H,O to investigate the 4D and 8D quantum Hall
effects at the beginning of this century [9, 10].

One can also find the application of normed division algebras in the high-energy regime of
particle physics. As well known, the Standard model leaves so many unsolved questions for physi-
cists to understand the nature of our world. In the scientific endeavor of solving these mysteries,
two recent publications [14, 15] showed the possibility of exploring and extending the Standard
Model by using octonion algebra O.

One of the fascinating problems in mathematical physics is the duality between the two
most basic systems: a harmonic oscillator and a hydrogen atom [16]. This duality led to the birth
of MICZ-Kepler problems in three-, five-, and nine-dimensional spaces [11, 17–19]. Indeed, the
harmonic oscillator is equivalent to the Kepler problem adding the monopole field in three cases of
dimension. They are Dirac U(1), Yang SU(2), and SO(8) monopoles corresponding to the three-,
five-, and nine-dimensional MICZ-Kepler problems [20]. To establish the connection between the
harmonic oscillator and the Kepler-Coulomb problem, scientists adopted the Hurwitz transforma-
tions [21–24] directly related to the normed division algebras. Interestingly, only four generations
of the oscillator-Coulomb problem duality correspond to four normed division algebras R,C,H,O.
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The above observations encourage us to summarize fundamental physics, where applied
the normed division algebra and its cousins (Hopf maps and Hurwitz transformations) as the ba-
sic mathematical language. We focus on the normed division algebras applications to monopole
physics and the MICZ-Kepler problems.

II. MATHEMATICAL BACKGROUND: NORMED DIVISION ALGEBRAS, HOPF
MAPS, AND HURWITZ TRANSFORMATIONS

For further discussions, we will review some background knowledge of the normed division
algebras, Hopf maps, and Hurwitz transformations and also settle a relationship between these
mathematical concepts.

II.1. Octonions as a last normed division algebra
We call A a division algebra over the real field R if, for any of its elements a and non-zero

element b, there is one element x and one element y in A such that a = b× x and a = y×b. Here,
the multiplication × is a bilinear map in the algebra. The division algebra is normed if we can
define a norm ||a|| as a real number, and this norm satisfies the following condition:

||a×b||= ||a||||b||. (1)

Interestingly, there exist only four normed division algebras over the real field R by the Hur-
witz composition theorem [25]. They are the real numbers R, the complex numbers C, quaternions
H, and octonions O. For more details of these algebras, one can see Refs. [4, 26, 27]. Below, we
will go quickly through these normed division algebras and focus on the composition law, which
is essential for further applications.

Elements of a normed division algebra can be written in the general form

x = x0 e0 + x1e1 + . . .+ xD−1eD−1, (2)

where x0,x1, . . . ,xD−1 are real numbers; e0 is a unit element; e1, . . . ,eD−1 are image unit elements.
The dimension D equals 1,2,4, 8, corresponding to the real R, complex C, quaternions H, and
octonions O algebras. We also define a scalar product of two elements a,b in algebra as a map to
a real number a ·b, where

e0 · e0 = 1,
e j · e j = −1, ( j = 1,2, . . . ,D−1),
e j · ek = 0, j 6= k ( j,k = 0,1,2, . . . ,D−1). (3)

Thus, the unit elements are perpendicular to each other.
By this definition of the scalar product, we can now define the norm of an element x as

||x||=
√

x · x =
√

x2
0 + x2

1 + . . .+ x2
D−1, (4)

where x is a conjugate of element x, defined as

x = x0e0− x1e1− . . .− xD−1eD−1. (5)

It is easy to see that the conjugates of the unit elements are

e0 = e0, e j =−e j ( j = 1,2, . . . ,D−1).

From (3), we also have the norms of unit elements as ||e0||= ||e1||= . . .= ||eD−1||= 1.
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We can rewrite equation (4) as

||x||=
√

x2
0 + x2

1 + . . .+ x2
D−1. (6)

After applying this definition to any three elements a,b,c where c = a×b, condition (1) now reads
as

||c||= ||a×b||= ||a|| ||b||
⇐⇒ c2

0 + c2
1 + . . .+ c2

D−1 =
(
a2

0 +a2
1 + . . .+a2

D−1
)(

b2
0 +b2

1 + . . .+b2
D−1
)
. (7)

It is the composition law for the normed division algebras. Here, the explicit forms of a,b,c are
used as a = a0 e0 + a1e1 + . . .+ aD−1eD−1, b = b0 e0 + b1e1 + . . .+ bD−1eD−1, and c = a0 e0 +
c1e1 + . . .+ cD−1eD−1.

In 1898, A. Hurwitz had proved a theorem that the composition law (7) is only valid for
four cases of dimensionality D = 1,2,4,8, i.e., there are only four normed division algebras whose
dimensions are D= 1 (real, R), D= 2 (complex, C), D= 3 (quaternions, H), and D= 4 (octonions,
O) using Cayley construction [25]. This theorem is known as the Hurwitz theorem of composition
algebras.

The multiplication × needs to define by such a way that satisfies the composition law (7).
For this purpose, we first rewrite explicitly the map c = a×b as follows [27]

ck =
D−1

∑
i=0

D−1

∑
j=0

Ck
i jaib j, k = 0,1, . . .D−1, (8)

whereas Ck
i j is the projection of the multiplication ei×e j on unit vector ek, i.e., Ck

i j = (ei× e j) ·ek.
The coefficients Ck

i j are called structural constants, which define the multiplication ×. Replacing
ck in the law (7) by the expression (8), we obtain

Ck
i jC

k
mn = δimδ jn, (9)

which is also called the composition law for the structure constants. Here, δ jk is Kronecker delta
notation. Note that there is another version of the composition law ||a×b||= ||a|| ||b||. It is

(a×b) · (c×d) = (a · c)(b ·d)+(a ·d)(b · c) (10)

which leads to the more general law for structure constants

Ck
i jC

l
mnδkl +Ck

m jC
l
inδkl = 2δimδ jn. (11)

We provide below specific values for the structure constants of the real numbers R, complex
numbers C, quaternions H, and octonions O.

(i) For the real numbers R, the structure constant is only one value C0
00 = 1.

(ii) For the complex numbers C, there are two unit vectors, e0 = 1 and e1 = i; thus, their
structure constants C0

i j,C
1
i j are elements of the two matrices correspondingly

C0 =

[
1 0
0 −1

]
, C1 =

[
0 1
1 0

]
.
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(iii) The quaternions H described first by the Irish mathematician W. R. Hamilton in 1843
contain four unit vectors e0 = 1, e1 = i, e2 = j, and e3 = k. The multiplication rule is as follows e0× e1 = e1× e0 = e1, e0× e2 = e2× e0 = e2, e0× e3 = e3× e0 = e3,

e0× e0 = e0, e1× e1 = e2× e2 = e3× e3 =−e0,
e1× e2 =−e2× e1 = e3, e2× e3 =−e3× e2 = e1, e3× e1 =−e1× e3 = e2.

(12)

We can see that, except e0 = 1, the multiplication rule of i, j,k is similar to the cross product of
three unit vectors in Cartesian coordinates: i× i= j× j = k×k =−1, i× j = k, j×k = i, k× i= j.
From the formula Ck

i j = (ei× e j) · ek, the structure constants C0
i j,C

1
i j,C

2
i j, and C3

i j are elements of
the four matrices correspondingly

C0 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , C1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,

C2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , C3 =


0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

 .
(iv) The last normed division algebra, octonions O, was discovered by J. T. Graves in

1843 [4]. Except for e0 = 1, there are seven image unit vectors e1,e2,e3, . . . ,e7 which obey the
following multiplication rule

e0× ei = ei× e0 = ei
ei× ei =−e0

ei× e j =
7
∑

k=1
εi jk ek i 6= j, (i, j = 1,2, . . . ,7).

(13)

Here, εi jk is a completely antisymmetric Levi–Civita symbol which equals 1 for (i, j,k) equal
to (1,2,3),(5,1,6),(6,2,4),(4,3,5),(1,7,4),(3,7,6), or (2,7,5) [27]. The structure constants of
octonion are then written as

Ck
i j = δ0 jδik +δ0iδ jk−δ0kδi j + εi jk. (14)

It should be noted that u×u = u ·u = ||u|| for all R,C,H, and O. Further, we will omit the
multiplication and scalar product notations for simplicity. For example, we use notation ab instead
of a×b; uu instead of u ·u.

II.2. Hopf maps
Hopf maps (also called Hopf fibrations or Hopf bundles) are important topological objects

applied in various aspects of physics [28]. These were named after H. Hopf for his discovery
of these bundles. The first Hopf map discovered in 1931 is a map from a unit 3-sphere S3 to
the unit 2-sphere S2 such that each point of the S2 is mapped by the distinct circle S1 of the unit
3-sphere [2]. Mathematically, this Hopf map is denoted as

S1 ↪→ S3→ S2. (15)
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In differential topology language, the fiber space S1 is embedded in the sphere S3 when projecting
to the sphere S2. H. Hopf, in his works [2, 3], showed that there are possible only 4 such these
maps

Sn−1 ↪→ S2n−1→ Sn

for n = 1,2,4,8. The four families of Hopf maps correspond to the four types of normed division
algebras introduced in the previous Subsection. To obtain this relation, we first need to construct
the map from S2n−1→ Sn. We will demonstrate for the case of n = 2. The other cases are obtained
analogically.

There are some geometric interpretations of the Hopf map. However, we will show below
the direct analytical construction of the Hopf map (15). Considering the four-dimensional real
space R4 with coordinates (u1,u2,v1,v2), we can identify it with the two-dimensional complex
space C2 with coordinates (u,v) = (u1 + iu2,v1 + iv2). The unit 3-sphere S3 can be defined as a
subset of all (u,v) in C2 so that

||u||2 + ||v||2 = 1. (16)

Now let us consider a point (u,v) of S3, i.e., satisfying the condition (16), and map it to the space
R×C by the rule {

x3 = uu− vv,
x = 2uv. (17)

Here, x is a complex number while x3 is a real number because of the identity uu−vv= ||u||−||v||.
We will prove that if (u,v) belongs to the unit 3-sphere S3, i.e., satisfies the condition (16), its
mapped point (x3,x) belongs to the unit 2-sphere S2. Indeed,

x2
n + ||x||2 = (uu− vv)2 +4||uv||2

=
(
||u||2−||v||2

)2
+4||u||2||v||2 (18)

=
(
||u||2 + ||v||2

)2
= 1.

Here, to prove (18), we use the composition law (1) for the complex numbers C: ||uv||= ||u|| ||v||.
More than one point of the S3 connects to one point (x3,x) of the S2 by the map (17).

Indeed, it is easy to verify that all the points (gu,gv) with the complex number g satisfy the map
(17). If we choose g so that ||g|| = 1, the points (gu,gv) belong to S3, i.e., satisfy the identity
(16). Moreover, for any given point (u,v) of the S3, all the points (gu,gv) are the subset of the
complex numbers C, and because ||g||= 1, these points belong to a cycle S1. Conversely, we can
also prove that any point in S3 which maps to the point (x3,x) of S2 belongs to the cycle S1, i.e.,
has the coordinate (gu,gv). Indeed, from the equations (16) and (17), we can obtain

||u||2 = 1+ x3

2
, ||v||2 = 1

2(1+ x3)
||x||

that leads to the map from (x3,x) to the points (u,v) of S3 as follows

u =

√
1+ x3

2
g, v =

√
1

2(1+ x3)
xg, (19)

where ||g||= 1. It means any points of S3 projected to S2 belong to the cycle S1.
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In conclusion, we have provided the concrete analytical construction of the Hopf map S1 ↪→
S3→ S2. For proof, we use the composition law of the complex numbers C. This law is available
for the real numbers R, quaternions H, and octonions O; therefore, the constructions of the other
Hopf maps are analogic. Because of only four normed division algebras, there are only four Hopf
maps as follows

S0 ↪→ S1→ S1,

S1 ↪→ S3→ S2,

S3 ↪→ S7→ S4,

S7 ↪→ S15→ S8. (20)

For more details about the proof of Hopf maps, one can see Refs. [10, 28, 29] .

II.3. Hurwitz transformations
Hurwitz transformations is a class of bilinear transformations [11, 22–24, 30] connecting

two Euclidean spaces, Rn+1 and R2n, that satisfy the Euler identity(
u2

1 +u2
2 + . . .+u2

n + v2
1 + v2

2 + . . .+ v2
n
)2

= x2
1 + x2

2 + . . .+ x2
n + x2

n+1. (21)

This equation can be rewritten as r = ρ2, a relation between the radial distances ρ and r of the
points (u1,u2, . . .un,v1,v2, . . .vn) ∈ R2n and (x1,x2, . . . ,xn,xn+1) ∈ Rn+1, respectively. Here, we
use the notations:

ρ =
√

u2
1 +u2

2 + . . .+u2
n + v2

1 + v2
2 + . . .+ v2

n, (22)

r =
√

x2
1 + x2

2 + . . .+ x2
n + x2

n+1. (23)

These transformations have a long history of discovery and highly relate to the fundamental prob-
lems in physics. Like the normed division algebras and Hopf maps, only four Hurwitz transfor-
mations correspond to n = 1,2,4,8.

Although these transformations were discovered independently later, they were similar to
the maps given by Hurwitz while proving the composition theorem. For this reason, in several
references, these were named the Hurwitz transformations [11, 22–24, 30]. The first (2−2) Hur-
witz transformation was constructed by Levi-Civita in 1904 [21]. It is also the only solution of
Pythagorean triangles problem x2 + y2 = z2 in positive integer variables. In 1965, Kustaanheimo
and Stiefel built the (3− 4) Hurwitz transformation to examine the three-dimensional classical
Kepler problem [22], known as the Kustaahnheimo-Stiefel transformation. The (5− 8) Hurwitz
transformation was constructed first in 1986 by Kibler et al [23] and independently used and ex-
amined in some other works of Davtyan et al. and Van-Hoang Leet al. [30,31]. In 1988, Kibler and
Lambert had found the relation between the Hurwitz transformation construction and the Cayley
– Dickson algebras, whose first four cases are the real numbers R, complex numbers, C, quater-
nions H, and octonions O. Kibler et al. also mentioned about generalized Hurwitz problem in the
(9− 16) case [32]. However, the explicit form of the (9− 16) Hurwitz transformation was con-
structed in 1993 by Van-Hoang Le and Komarov utilizing a simple graphic method. They called
it the generalized Hurwitz transformation [24]. Historically, higher dimensional Hurwitz trans-
formation appeared in mathematical square identities: Brahmagupta–Fibonacci identity, Euler’s
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four-square identity (1748, letter to Goldbach), and Degen’s eight-square identity (1818). There-
fore, the Hurwitz transformations naturally relate to the normed division algebras because both
originally arise from problems of quadratic forms [26].

Once we know about the normed division algebras and Hopf maps, we may easily construct
the Hurwitz transformations. Indeed, the Hopf map (17) from S3 to S2 can be used for the map
from the C×C space with coordinates (u,v) onto the C×R space with coordinates (x,x3) as{

x3 = uu− vv,
x = 2uv. (24)

We can verify that this transformation leads to

x2
3 + ||x||2 =

(
||u||2 + ||v||2

)2
, (25)

i.e., the Euler identity for the three-dimensional real space (x2,x2,x3) and four-dimensional real
space (u1,u2,v1,v2) as

x2
1 + x2

2 + x2
3 =

(
u2

1 +u2
2 + v2

1 + v2
2
)2
. (26)

Considering the complex numbers x = x1+ ix2, and u = u1+ iu2, v = v1+ iv2, we rewrite equation
(24) more explicitly as

x1 = 2u1v1 +2u2v2,

x2 = −2u1v2 +2u2v1, (27)
x3 = u2

1 +u2
2− v2

1− v2
2.

This is the so-called Kustaanheimo-Stiefel transformation [22].
Analogically, the transformation (24) can be considered for mapping from the R×R space

with coordinates (u,v) onto the R×R space with coordinates (x1,x2). As a result, we have the
Levi-Civita transformation [21] as

x1 = 2uv, x2 = u2− v2, (28)

which also satisfies the Euler identity x2
1 + x2

2 =
(
u2 + v2

)2. This transformation is also equivalent
to the zeroth Hopf map S0 ↪→ S1→ S1.

For the map from H×H space with coordinates (u,v) onto the H×R space with coordinates
(x,x5), the transformation (24) can be rewritten as x5 = uu−vv, x= 2uv. Plugging the explicit form
of quaternion coordiantes x and u,v into this equation leads to the Kibler transformation [23]:

x1 = 2u1v1 +2u2v2 +2u3v3 +2u4v4,

x2 = −2u1v2 +2u2v1−2u3v4 +2u4v3,

x3 = −2u1v3 +2u2v4 +2u3v1−2u4v2, (29)
x4 = −2u1v4−2u2v3 +2u3v2 +2u4v1,

x5 = u2
1 +u2

2 +u2
3 +u2

4− v2
1− v2

2− v2
3− v2

4.

Here, to obtain (29), we use the coordinates x = x1 + x2i+ x3 j+ x4k and u = u1 +u2i+u3 j+u4k,
v = v1 + v2i+ v3 j+ v4k and the multiplication rules (12) for quaternions. We can verify the Euler
identity for this case as

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 =

(
u2

1 +u2
2 +u2

3 +u2
4 = v2

1 + v2
2 + v2

3 + v2
4
)2
.
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The last (9−16) Hurwitz transformation can be constructed using the transformation (24)
mapping the O×O space with coordinates (u,v) onto the O×R space with coordinates (x,x9).
Plugging the explicit octonion coordinates x = x1+x2e1+x3e2+ . . .+x8e7, u= u1+u2e1+u3e2+
. . .+u8e7, and v = v1+v2e1+v3e2+ . . .+v8e7 into equation x9 = uu−vv, x = 2uv and then using
the multiplication rule (13) for octonions, we obtain

x1 = 2u1v1 +2u2v2 +2u3v3 +2u4v4 +2u5v5 +2u6v6 +2u7v7 +2u8v8,

x2 = −2u1v2 +2u2v1−2u3v4 +2u4v3 +2u5v8−2u8v5 +2u6v7−2u7v6,

x3 = −2u1v3 +2u3v1 +2u2v4−2u4v2−2u5v7 +2u7v5 +2u6v8−2u8v6,

x4 = −2u1v4 +2u4v1−2u2v3 +2u3v2 +2u5v6−2u6v5 +2u7v8−2u8v7,

x5 = −2u1v5 +2u5v1−2u2v8 +2u8v2 +2u3v7−2u7v3−2u4v6 +2u6v4, (30)
x6 = −2u1v6 +2u6v1−2u2v7 +2u7v2−2u3v8 +2u8v3 +2u4v5−2u5v4,

x7 = −2u1v7 +2u7v1−2u3v5 +2u5v3 +2u2v6−2u6v2−2u4v8 +2u8v4,

x8 = −2u1v8 +2u8v1 +2u2v5−2u5v2 +2u3v6−2u6v3 +2u4v7−2u7v4,

x9 = u2
1 +u2

2 +u2
3 +u2

4 +u2
5 +u2

6 +u2
7 +u2

8− v2
1− v2

2− v2
3− v2

4− v2
5− v2

6− v2
7− v2

8.

The transformation (30), satisfing the Euler identity

x2
1 + x2

2 + . . .+ x2
9 =

(
u2

1 +u2
2 + . . .+u2

8 + v2
1 + v2

2 + . . .+ v2
8
)2
,

was constructed in 1993 by Van-Hoang Le and Komarov [24] and named the generalized Hurwitz
transformation.

Because of only four normed division algebras R,C,H, and O, we can construct only four
Hurwitz transformations corresponding to (2−2), (3−4), (5−8), (9−16). Besides, we can write
the four Hurwitz transformations in one general form. Let us consider two spaces, R2n and Rn+1,
with the coordinates (u1,u2, . . .un,v1,v2, . . .vn) and (x1,x2, . . . ,xn,xn+1). Scaling these spaces by
the transforms

U j =
1
ρ

u j, Vj =
1
ρ

v j, X j =
1
r

v j,

leads to two unit-spheres (U1,U2, . . .Un,V1,V2, . . .Vn)∈ S2n−1 and (X1,X2, . . . ,Xn+1)∈ Sn. Follow-
ing the Hopf maps construction Sn−1 ↪→ S2n−1 −→ Sn, we can represent the Hurwitz transforma-
tions as {

xk = 2 ∑
1≤i, j≤n

Γk
i juiv j, k = 1,2, . . . ,n,

xn = u2
1 +u2

1 + . . .+u2
n− v2

1− v2
2− . . .− v2

n,
, (31)

with the tensor Γk
i j determined via the structural constants as

Γ
k
i j = ∑

0≤m≤n−1
Ck−1

i−1,mC0
m, j−1. (32)

In the pioneer works on Hurwitz transformations of Levi-Civita [21], Kustaanheimo and
Stiefel [22], Kibler et al. [23], and Van-Hoang Le and Komarov [24], the tensors Γk

i j were con-
structed independently to the structure constants of the normed division algebras. It is not a big
deal since there are various solutions for Γk

i j to obey the Euler identity (21). These solutions are
just permutation or changing the sign of non-zero elements from Γk

i j.
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As the above observations, even though coming from different aspects of mathematics, the
normed division algebras, Hopf maps, and Hurwitz transformations are closely related. Table 1
illustrates the relationship between these mathematical objects for four cases n = 1,2,4,8.

Table 1. Four generations of the normed division algebras, Hopf maps and Hurwitz transformations.

Normed division algebras Hopf maps Hurwitz transformations

Real numbers R S0 ↪→ S1 −→ S1 Levi-Civita transformation [21]

Complex numbers C S1 ↪→ S3 −→ S2 Kustanheimo-Steifel transformation [22]

Quaternions H S3 ↪→ S7 −→ S4 Hurwitz transformation [23]

Octonions O S7 ↪→ S15 −→ S8 Generalized Hurwitz transformation [30]

III. The normed division algebras and Dirac, Yang and SO(8) monopoles

The story of applying normed division algebras or Hopf maps on physics was started in
1931 by P. A. M. Dirac. It is well-known to the physics community about the proposal of Dirac on
magnetic monopole and Dirac quantization condition between electric charge and magnetic charge
of a particle [1]. The work of Dirac on constructing the U(1) gauge field for Dirac monopole may
be the discovery of fiber even before the works of H. Hopf and other mathematicians [7]. Both
works of Dirac and Hopf were done in 1931.

Here, we outline some basic knowledge about the connection between the Hopf map S1 ↪→
S3 −→ S2 and the U(1) Dirac monopole. For more details, one can see Refs. [5, 6, 8, 33, 34].
Dirac monopole with magnetic charge g placed on the origin of R3 Euclidean space induces the
following magnetic field

~B =
µ0g
4π

~r
r3 , (33)

corresponding to the vector potential

~A =
µ0g
4π

1
r(r+ x3)

[
−x2~i+ x1~j

]
, (34)

where~r = x1~i+ x2~j+ x3~k. Notably, the vector potential has a pole at x3 =−r; however, the Yang
overlap technique can avoid this singularity [5, 6]:

~A± =
µ0g
4π

1
r(x3± r)

(
−x2~i+ x1~j

)
, + when x3 > 0. (35)

Trivially, the vector potential is not uniquely defined under the gauge transformation

~A→ ~A′ = ~A−~∇χ. (36)

Then integrating the magnetic field strength over the cross-section at the equator x3 = 0 of the
sphere of radius r, we obtain

g =
1
µ0

Br2
Ω =

∫
x2=0+

~B+ ·d~S+
∫

x2=0−
~B− ·d~S =

∮
x2=0

[
~A+−~A−

]
·d~l =

∮
~∇χ ·d~l. (37)
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When an electric charge q moves under the presence of the Dirac monopole, its momentum
is influenced by the equation

~p→ ~p−q~A. (38)

Under the U(1) gauge transformation of the wavefunction

ψ → ψ
′ = exp

( ıqχ

h̄

)
ψ, (39)

the momentum becomes ~p−~A′, where the vector potential changes via the gauge transformation
(35) as ~A′ = ~A−~∇χ . The invariance of observation under this gauge transformation suggests that

q
h̄

∮
C
~∇χ ·d~l = n2π, n ∈ Z. (40)

Comparing (37) and (40), we obtain the Dirac quantization rule

gq = nh, n ∈ Z (41)

with the Planck constant h.
Now let us consider the first Hopf map S1 ↪→ S3 −→ S2. As mention in the previous Sub-

section, each point (X1,X2,X3) = (sinθ cosφ ,sinθ sinφ ,cosθ) in the unit sphere S2 corresponds
to a set of points in the unit sphere S3 as{

U1 + ıU2 = cos(θ/2)eıα

V1 + ıV2 = sin(θ/2)eı(−φ+α) . (42)

All the points with the same θ and φ but different α form a unit circle S1 on the unit sphere S3.
They have the same projection on the unit sphere S2. Therefore, the geodesic line element on the
unit-sphere S3 now is

dl2
S3 = dθ

2 + sin2
θdφ

2 +

[
dα− sin2

(
θ

2

)
dφ

]2

= ds2
S2 +

[
dα− sin2

(
θ

2

)
dφ

]2

. (43)

The appearance of the last term in the above equation shows the connection between the unit
sphere S3 and the basic space, the unit sphere S2, via the fiber circle S1. Note that the circle S1 has
a nontrivial fundamental group U(1). Invariance of the form

[
dα− sin2 (θ

2

)
dφ
]

under the U(1)
gauge transformation of S3 leads to the gauge potential Aφ = C sin−2 (θ

2

)
= C(1+ cosθ)/sinθ ,

identical to the Dirac monopole gauge field (36). It is amazing because the Dirac monopole
may come naturally from the differential topology. For more details about this discussion, see
Refs. [33, 34] and references therein.

In 1975, Wu and Yang utilized the second Hopf map S3 ↪→ S7 −→ S4 to generalize Dirac
monopole in five-dimensional space [5, 6]. Since the bundle S3 is isomorphic to the Lie group
SU(2), the Yang monopole is a SU(2) monopole. A decade later, Grossman et al. used the last
Hopf map S7 ↪→ S15 −→ S8 to find the eight-dimensional Yang-Mills equation solutions. The
gauge field and the SO(8) structure of octonion monopole was also obtained [8]. The SO(8)
monopole was also discovered again in the 8D quantum Hall effect by Bernevig et al. in 2003 [10]
and in the 9D Kepler problem by Van-Hoang Le et al. in 2009 [11, 12]. Table 2 below shows
the relationship between the normed division algebras, Hopf maps, Lie groups, and magnetic
monopoles.
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Table 2. The relationship between the normed division algebras, Hopf maps, Lie groups,
and magnetic monopoles.

Algebras Hopf maps Lie groups Mangetic monopoles

Real numbers R S0 ↪→ S1 −→ S1 Z2 –

Complex numbers C S1 ↪→ S3 −→ S2 U(1) Dirac monopole [1]

Quaternions H S3 ↪→ S7 −→ S4 SU(2) Yang monopole [5, 6]

Octonions O S7 ↪→ S15 −→ S8 SO(8) SO(8) monopole [8, 10–12]

IV. Duality between isotropic harmonic oscillator and Kepler Coulomb problems

Isotropic harmonic oscillator (HO) and Kepler Coulomb (KC) problem are two of the most
fundamental physics problems, from macroscopic to microscopic scale. The former was widely
used to describe the macroscopic motion of a pendulum to the microscopic motion of a free elec-
tron in a solid lattice or even the motion of nucleon in spherical nuclei; while the latter corresponds
to the motion of planets in the solar system as well as an electron in a hydrogen atom. When estab-
lishing the basic equation for quantum mechanics, Schrödinger immediately examined these two
problems. Furthermore, both HO and KC problems are in a few quantum-mechanical problems
whose wavefunctions are exactly expressed by the classical polynomial. Amazingly, these two
problems have a dual connection between each other. To the best of our knowledge, the work [16]
by Bergmann and Frishman in 1965 was the first study noticing the connection between these two
problems’ wavefunctions.

The Schrödinger equation of N-dimensional isotropic harmonic oscillator (ND-HO) is given
in dimensionless units (h̄ = m = e = 1) as follows{

−1
2
MN +

1
2

ω
2
ρ

2
}

Ψ = E Ψ, (44)

where MN is the N-dimensional Laplace operator, and ρ is the radius from the origin in RN space.
Thus, the radius part of ND-HO wavefunctions R(ρ) is governed by the equation{

−1
2

d2

dρ2 −
N−1

2ρ

d
dρ

+
L(L+N−2)

2ρ2 +
1
2

ω
2
ρ

2
}

R(ρ) = E R(ρ), (45)

where the solutions are written in the associated Laguerre polynomial [35, 36] as

Rm,L(ρ)∼ ρ
`e−ωρ2/2L

L+N/2−1
m

(
ωρ

2) , Em,L = (2m+L+N/2)ω. (46)

The Schrödinger equation of the n-dimensional Kepler Coulomb (nD-KC) problem is given in
dimensionless units: {

−1
2
Mn −

Z
r

}
Ψ = EΨ, (47)
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where r is the radius from the origin in Rn space. Thus, the radius part of nD-KC wavefunction
R(r) is governed by the equation [16]:{

−1
2

d2

dr2 −
n−1

2r
d
dr

+
`(`+n−2)

2r2 − Z
r

}
R(r) = ER(r), (48)

where the solution is written in the associated Laguerre polynomial [35, 36] as Rm,`(r)∼ rL exp
(

−2Zr
m+`+(n−1)/2

)
L 2`+n−2

m

(
4Zr

m+`+(n−1)/2

)
,

Em,` =− Z2

m+`+(n−1)/2 .
(49)

Comparing the wavefunctions of these two problems (46) and (49), one may easily pay attention
to the associated Laguerre polynomial and then find out that the ND-HO and nD-KC problems are
related to each other. Bergmann and Frishman [16] first observed this duality connection between
two problems. They found that if we put

r = ρ
2, E =−ω

8
, Z =

E

4
, n =

N +2
2

, `=
L
2
, (50)

the radial part of Schrödinger equation (45) of the ND-HO problem is identical to the one (48) of
the nD-KC problem. Hence, there should be a dual map between the HO problem in the N-space
and the KC problem in the n-space, where N = 2,4,6, . . . and n = (N +2)/2 = 2,3,4, . . .. For this
duality, the question now is about the angular parts of the wavefunctions?

Looking back at the dual transform (50) connecting ND-HO and nD-KC problems, the
variable transformation r = ρ2 is actually the Euler identity (21) mentioned before. Thus, one
possible solution for the angular part of wavefunctions should be from the Hurwitz transformation
(31). As this transformation connects space Rn to space R2n−2, the dimensionality of the latter
space N = 2n−2 agrees with the dual transform between n and N in (50). Therefore, the Hurwitz
transformations should be good candidates to connect ND-HO and nD-KC problems. According
to the four generations of the Hurwitz transformations, or precisely the four generations of the
normed division algebras, the duality between ND-HO and nD-KC problems should occur in four
cases of (N,n): (2,2),(4,3),(8,5) and (16,9).

Except for the trivial case (2,2), the other three cases exhibit the inequality of the dimen-
sionality between HO and KC problems. This circumstance suggests that the dual mapping from
the ND-HO problem to the nD-KC problem must contain (N−n) extra variables. To understand
the influences of the extra variables on the duality, we should look for the inverse map of the
Hurwitz transformation (31). In the language of the Hopf map Sn−2 ↪→ S2n−3 → Sn−1, the ex-
tra variables belong to bundle Sn−2. The action of extra variables on the nD-KC problems can
be interpreted as the monopole arising from bundle Sn−2 and, consequently, the presence of the
magnetic monopole in the KC problem. It means that besides the scalar potential −Z/r, there is
a gauge field from the monopole corresponding to the Lie group of the bundle Sn−2, e.g., U(1),
SU(2), or SO(8) gauge fields for n = 3,5,9. We will revisit this interpretation in the next Section
on the MICZ-Kepler problems.

Before ending this section, we note another approach for the HO-KC duality, called two-
time physics; see [20] and references therein for more details. The basic idea of two-time physics
is investigating the hidden dynamical symmetry of the problem and utilizing the corresponding
two-time spacetime of this dynamical symmetry. Particularly, the hidden dynamical symmetries
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for the ND-HO and nD-KC problems are Sp(2N,R) and SO(n+1,2) [20]. Apart from four cases
of the Hurwitz transformation (the normed division algebras), there are some other cases of (N,n)
such as (4,1) or (6,4). However, the gauge fields arising from the extra variables in these cases
are not fundamental. For example, when (N,n) = (6,4), the gauge field is not pure fundamental
U(1)×U(1) that why the case of (6,4) can split into two maps (3,2) with one constraint [20].
Henceforth, we only focus on four cases where the gauge fields are fundamental and correspond
to the algebras R,C,H,O.

V. MICZ-KEPLER PROBLEMS

In the nonrelativistic quantum mechanics regime, Zwanziger [17] and McIntosh and Cis-
neros [18] had independently investigated how a Dirac magnetic monopole [1] influencing the Ke-
pler problem, consequently, first established the so-called McIntosh-Cisneros-Zwanziger Kepler
(Coulomb) problem, named after their works in 1969-1970. The McIntosh-Cisneros-Zwanziger
Kepler problem is often called the MICZ-Kepler problem (MICZ KP) for short.

Following the Kepler problem generalization to multidimensional spacetime [37–40],
the MICZ-Kepler problem has also been generalized from the (3 + 1)-spacetime to the
(n + 1)-spacetime by Meng [41–44]. Among these nD MICZ-Kepler problems, only three-,
five-, and nine-dimensional MICZ-Kepler problems are of our interest because of their duality
with four-, eight-, and sixteen-dimensional isotropic harmonic oscillators via the Kustaanheimo-
Stiefel [22, 45], Hurwitz [23, 30, 31], and generalized Hurwitz transformations [11, 12, 24]. In the
latter two MICZ-Kepler problems, 5D and 9D, the electron interacts with a dyon via the gauge
fields belonging to the SU(2) Yang monopole [6] and SO(8) monopole [8, 46] instead of the
U(1) Dirac monopole [1] in the original three-dimensional MICZ-Kepler problem. The general
Schrödinger equation for the n-dimensional MICZ-Kepler problem is as follows:{

1
2

(
−ı

∂

∂x j
+Aa

j (r) Îa (φs)

)(
−ı

∂

∂x j
+Aa

j (r) Îa (φs)

)
− 1

2
∂ 2

∂x2
n

+
Îa (φs) Îa (φs)

2r2 − Z
r

}
Ψ(r,φs) = EΨ(r,φs) , (51)

where the Einstein summation is used for convenience. From here now, the Latin indices i, j,k, . . .
run from 1 to n−1 while the Greek indices run from 1 to n. (n−2) angles φs (s = 1,2, . . .(n−2)
describe the internal space belonging to the monopole actions while (n−2) differential operators
Ia(φs) are the monopole generators.

These generators Ia(φs) have a similar form to the angular momentum operators and act
on the extra variables φs only. Aa

j (r) are components of the vector potential belonging to the
monopole. The explicit expressions of Aa

j (r) and Ia(φs) for n = 3,5 and 9 can be found in Refs.
[11,17,19]. Notably, in the last MICZ-KP, the nine-dimensional one, seven generators Ia(φs) found
for the first time in Ref. [11] do not form a closed algebra. Thus, actions Aa

j (r) Ia(φs) have been
rewritten as Aab

j (r)Qab(φs) in Ref. [12], where 56 generators Qab(φs) form an SO(8) algebra. As
a consequence, the term Îa (φs) Îa (φs)/(2r2) in the 9D-MICZ KP becomes Q̂ab (φs) Q̂ab (φs)/(8r2)
[12]. As mentioned in the previous Section, we will revisit the duality between the ND-HO and
nD-MICZ KP problems under the Hurwitz transformation. This duality allows us to deeply un-
derstand the influence of the magnetic monopole on the nD-KC problem.
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V.1. Inverse mapping from the isotropic harmonic oscillator to the Kepler Coulomb
problems

Interestingly, investigating the duality between the ND-HO and nD-KC problems and estab-
lishing the nD-MICZ KP problems relate to the history of finding the Hurwitz transformations. In
1904, Levi-Civita built a transformation for regularizing the classical two-dimensional Kepler mo-
tion to a two-dimensional classical isotropic harmonic oscillator [21]. Later, in 1959, Cisneros and
McIntosh showed the relation between the two-dimensional Kepler and two-dimensional isotropic
harmonic oscillator problems by the Levi-Civita transformation [47]. The Levi-Civita transfor-
mation has recently been used to construct a family of quantum mechanics problems that exhibits
quasi-exact solutions [48–50].

After being built in 1965, the (3− 4) Hurwitz transformation had been used by Kustaan-
heimo and Stiefel to examine the three-dimensional classical Kepler problem, then by J. Moser to
regularize the Kepler motion in celestial mechanics in 1970 [22, 51]. Two years later, Boiteaux
applied Kustaanheimo – Stiefel transformation to connect the three-dimensional quantum Kepler
problem and the four-dimensional quantum isotropic harmonic oscillator [52, 53]. This connec-
tion requires a constraint which has later been interpreted as the U(1) gauge field of Dirac mono-
pole [54,55]. Thus, the four-dimensional quantum isotropic harmonic oscillator actually connects
to the three-dimensional MICZ-Kepler established by McIntosh, Cisneros, and Zwanziger in 1969
and 1970 [17, 18].

From 1986 to 1991, the (5− 8) Hurwitz transformation was built, represented and used
to connect the five-dimensional quantum Kepler problem and the eight-dimensional quantum
isotropic harmonic oscillator problem in several papers by Kibler et al., Davtyan et al. and Van-
Hoang Le et al. [23, 30–32]. These studies led Mardoyan et al. to determine the relationship
between the Schrödinger equation for the five-dimensional MICZ-Kepler problem, which con-
tains Yang SU(2) monopole, and that for the eight-dimensional harmonic oscillator problem [19].

In 1993, the (9− 16) Hurwitz transformation was constructed in a simple graphic way
by Le and Komarov [24]. The generalized Hurwitz transformation has recently been used to
build a relationship between the nine-dimensional Kepler problem and 16-dimensional isotropic
harmonic oscillator problem in quantum mechanics. This achievement led Le, Nguyen, and Phan
to rediscover a non-Abelian monopole in 9D-space, the SO(8) monopole, which was first found
by Grossman et al. and re-constructed by Bernevig et al. [8, 10–12].

Using the mapping (50) and the inverse Hurwitz transformations, the Schrödinger equation
(51) of the nD-MICZ-KP was shown to be completely equivalent to the one of the (2n−2)D-HO
problem (44). For n = 3,5, and 9, the details of calculations were given in Refs. [11, 19, 55].
What we emphasize here is the influence of the magnetic monopole in the nD-MICZ-KP. The
normed division algebras with the Hopf maps, the Hurwitz transformation, the 2T physics, and
the monopole physics provide some ingredients:

• The normed division algebras, Hopf maps, and Hurwitz transformations show that the
extra variables arising from the inverse Hurwitz transformations between R2n−2 and
Rn belong to the bundle Sn−2;
• The Hopf map Sn−2 ↪→ S2n−3 −→ Sn−1 states that the sphere S2n−3 is locally Sn−1×

Sn−2 [33, 34];



250 DAI-NAM LE AND VAN-HOANG LE

• Monopole physics shows that the connection between the bundle Sn−2 and the sym-
metry group Gn of the monopole in the nD-space must be Gn ∼= Sn−2 [33, 34];
• The 2T physics suggests that the dynamical symmetry of the (2n+ 2)D-HO and the

nD-MICZ-KP should relate to each other as follows [20]:

Sp(2n−2,R)⊃ SO(n+1,2)⊗Gn, (52)

where Gn is a gauge symmetry group induced from this duality;
• When applying the inverse Hurwitz transformation to the (2n− 2)D-HO to obtain

the nD MICZ-KP, appear some differential operators that are generators of the gauge
symmetry group Gn. These operators only act on the extra variables or the angular
part of wavefunctions and come with the gauge vector potential of the monopole.
Notably, these generators have a similar form to the angular momentum in Sn−2 sphere
[12, 19, 55].

Meanwhile, at every point in Rn space, the electron in the Kepler Coulomb problem ”feels”
a locally abstract space Sn−2. The magnetic monopole can act on the phase or the angular part (φs)
of the electron’s wavefunction via the angular-momentum-like generators Îa(φs) of this abstract
space. Combining with the generators Îa(φs) of the symmetry group Gn∼= Sn−2, the presence of the
monopole also exhibits by the gauge vector potential Aa

j(r) in the term Aa
j(r)Îa(φs). It interprets

how the Gn magnetic monopole influences the Kepler Coulomb problem. To summarize, Table 3
below shows the duality between the ND-HO and the nD MICZ-KP in the context of the normed
division algebras, Hopf maps, and 2T physics.

Table 3. The duality between the ND-HO and the nD MICZ-KP in the context of the
normed division algebras, Hopf maps, and 2T physics.

Algebra HO MICZ-KP Hopf bundle Gn Monopole Dynamical symmetry

Real numbers R 2D 2D S0 Z2 – Sp(2,R)⊃ SO(2,2)⊗Z2

Complex numbers C 4D 3D S1 U(1) Dirac monopole Sp(4,R)⊃ SO(4,2)⊗U(1)

Quaternions H 8D 5D S3 SU(2) Yang monopole Sp(8,R)⊃ SO(6,2)⊗SU(2)

Octonions O 16D 9D S7 SO(8) SO(8) monopole Sp(16,R)⊃ SO(10,2)⊗SO(8)

V.2. Three-dimensional MICZ-Kepler problem
The three-dimensional MICZ-Kepler problem was independently established by McIntosh,

Cisneros, and Zwanziger in 1968 and 1970 when adding Dirac monopole on the conventional
Kepler-Coulomb problem. The Schrödinger of this 3D-MICZ-KP [17, 18]{

1
2
(
p̂+A(r)Ŝ

)2
+

Ŝ2

2r
− Z

r

}
Ψ(r,φ) = EΨ(r,φ) , (53)

was shown to be transformed into that of the four-dimensional isotropic harmonic oscillator [54]{
−1

8

(
∂ 2

∂u2
s
+

∂ 2

∂v2
s

)
+

ω2

2
(
u2

s + v2
s
)}

Ψ(us,vs) = EΨ(us,vs) , (54)
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through the Kustaanheimo-Stiefel transformation [22]

x1 =2(u1v1 +u2v2),

x2 =2(u1v2−u2v1),

x3 =u2
1 +u2

2− v2
1− v2

2.

(55)

The 3D-MICZ-KP has the symmetry of SO(4) and the dynamical symmetry of SO(4,2).
This problem is also maximally superintegrable. Its integrals of motion are the Poincare vector, the
Laplace-Runge-Lenz vector, and the Hamiltonian as its cousin 3D-KC problem [45, 56–58]. The
exact analytical solution of this problem was found in 1970, and the 3D-MICZ-KP is shown to be
separable in spherical, parabolic, and prolate spheroidal coordinates [18, 59]. The Green function
of the 3D-MICZ-KP was also constructed as applying the Kustaanheimo-Stiefel transformation on
Feynmann path integrals of 4D-HO problem [24]. Furthermore, some algebraic approaches also
provided the solution for the 3D-MICZ-KP, for example, separating its symmetry group SO(4)∼
SO(3)⊕SO(3) or using the Casimir invariance of its symmetry group SO(4) [17, 56].

V.3. Five-dimensional MICZ-Kepler problem
The 5D-MICZ-Kepler problem was first introduced and examined by Mardoyan et al. in

1997 when generalizing the 5D-Kepler Coulomb problem by adding the Yang monopole [19]. The
Schrödinger equation of the 5D-MICZ-KP{

1
2

(
p̂+Aλ (r)T̂λ

)2
+

T̂ 2

2r
− Z

r

}
Ψ(r,φ1,φ2,φ3) = EΨ(r,φ1,φ2,φ3) , (56)

is connected to the 8D isotropic harmonic oscillator [19, 60]{
−1

8

(
∂ 2

∂u2
s
+

∂ 2

∂v2
s

)
+

ω2

2
(
u2

s + v2
s
)}

Ψ(us,vs) = EΨ(us,vs) , (57)

via the Hurwitz transformation obtained by Kibler et al. [23, 31, 61]

x1 =2(u1v4−u2v3 +u3v2−u4v1) ,

x2 =2(−u1v3−u2v4 +u3v1 +u4v2) ,

x3 =2(u1v2−u2v1−u3v4 +u4v3) ,

x4 =2(u1v1 +u2v2 +u3v3 +u4v4) ,

x5 =u2
1 +u2

2 +u2
3 +u2

4− v2
1− v2

2− v2
3− v2

4.

(58)

The 5D-MICZ-KP symmetry and dynamical symmetry are SO(6) and SO(6,2) respec-
tively. It is also a maximally superintegrable system with the constants of motion, the Poincare
vector, the Laplace-Runge-Lenz vector, and the Hamiltonian [62–65]. From 1997 to 2000, the
exact analytical solutions of the 5D MICZ-KP were found in spherical, parabolic, and prolate
spheroidal coordinates [19, 66]. Its Green function was also constructed using the quaternion al-
gebra [67]. The Casimir invariance of its SO(6) symmetry was also used to obtain its energy
spectrum [62]. Table 4 summarizes notable results in the investigation of the 3D and 5D MICZ-
Kepler problems.
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Table 4. Notable results in the investigation of the 3D and 5D MICZ-Kepler problems.

MICZ-KP 3D 5D

Monopole Dirac U(1) Yang SU(2)

Symmetry SO(4) SO(6)

Dynamical symmetry SO(4,2) SO(6,2)

Superintegrability maximal

Algebraic solution Casimir invariance

Analytical solution spherical, parabolic, spheroidal

Green function obtained? yes

VI. NINE-DIMENSIONAL MICZ-KEPLER PROBLEMS

The nine-dimensional MICZ-Kepler problem (9D MICZ-KP) was first introduced a decade
ago by Van-Hoang Leet al. when using their (9−16) Hurwitz transformation to convert the 16D
HO problem [11, 12]. The time-independent wavefunction Ψ(rrr,φ) describing the bound state
(E < 0) of an electric charge in the 9D Euclidean space under the interaction of the self-dual
SO(8) monopole field is governed by the following dimensionless Schrödinger equation 1:{

1
2

π̂ππ · π̂ππ +
Q̂2

8r2 −
Z
r

}
Ψ(rrr,φ) = EΨ(rrr,φ) . (59)

Here, Z is the electric charge, and Q̂i j are operators describing the SO(8) monopole charges.
Q̂2 = Q̂i jQ̂i j (1 ≤ i < j ≤ 8) is the Casimir operator of the SO(8) monopole generators. The
generalized momentum operators are defined as

π̂ππ =
(
−ı∂ j +Ak(rrr)Q̂k j,−ı∂9

)
, j,k = 1,2, . . . ,8, (60)

where
Ak(rrr) =

xk

r(r+ x9)
(61)

is the SO(8) monopole vector potential.
It is noted that Q̂i j are differential operators in terms of variables φs (s = 0,1, . . . ,6). Hence,

the wavefunction Ψ(rrr,φ) depends not only on coordinates of the real space (r ∈ R9) but also
on seven additional angles (φ6,φ5, . . . ,φ0) ∈ [0,π]6× [0,2π] of a unit sphere S7 arisen from the
generalized (9,16) Hurwitz transformation R16→ R9× S7, connecting the 16D HO with the 9D
KC problem.

Since the operator Q̂2 commutes with the Hamiltonian in equation (59), the wavefunction
Ψ also obeys the equation

Q̂2
Ψ = Q(Q+6)Ψ. (62)

1Notice that the octonion O representation of the 9D MICZ-KP has also been proposed in our talk [68].



NORMED DIVISION ALGEBRAS APPLICATION TO THE MONOPOLE PHYSICS 253

Here, the quantum number Q is an integer because it has to close the abstract monopole space S7.
Following our works [69–72], we expand the Hamiltonian of the 9D MICZ-KP into a more

specific form

Ĥ =−1
2

∆R9 +
1

2r(r+ x9)
L̂ jkQ̂ jk +

1
4r(r+ x9)

Q̂2− Z
r
, (63)

where L̂ jk = −ı(x j∂k− xk∂ j) are projectors of the angular momentum on the sphere S7,x2
1 + x2

2 +

· · ·+ x2
8 = 1, of the real space R9. This expansion helps us to observe the influences of the SO(8)

monopole on the 9D KC system. As can be seen from Equation (63), the coupling term L̂ jkQ̂ jk is
similar to the spin-orbital coupling; thus, we claim that the SO(8) monopole interacts with the 9D
KC system as an “isospin” interaction.

During the last decade, the 9D MICZ-KP has also been investigated in various aspects.
Its symmetry and dynamical symmetry are SO(10) and SO(10,2), respectively [73, 74]. The
SO(10,2) dynamical symmetry was used to obtain the algebraic solutions [73]. The analytical so-
lutions with the wavefunctions were obtained by the variable separation method in spherical [69],
parabolic, and prolate spheroidal coordinates [71]. This problem is also maximally superintegrable
as the 3D and 5D MICZ-KP [70]. Within the analytical approach in Ref. [71], the interbasis trans-
formation between the parabolic and spherical bases has been constructed. However, a similar
transformation between the prolate spheroidal and spherical bases was not built in an analytical
approach since it required a complex integration between confluent Heun [75], associated La-
guerre, and generalized Jacobi polynomials [36]. These integrations have not been analytically
calculated yet, to the best of our knowledge. This problem has been recently solved by examining
the algebraic structure of each basis of the 9D MICZ-KP in our most recent work [72].

VI.1. Hidden symmetry on the nine-dimensional MICZ-Kepler problem
The 9D MICZ-KP has been shown SO(10) symmetric in Ref. [74]. In this work, 54 ele-

ments belonging to the following antisymmetric matrix operator D̂

D̂ =

(
Λ̂µν −M̂µ

M̂µ 0

)
, µ,ν = 1,2, . . . ,9, (64)

were shown to commute with Hamiltonian (59). Here, Λ̂µν and M̂µ are generalized angular mo-
mentum and Laplace-Runge-Lenz vector operators [72, 74]

Λ̂µν = xµ π̂ν − xν π̂µ + ır2 [
π̂µ , π̂ν

]
− , (65)

M̂ν =
1√
−2Ĥ

{
1
2
[
π̂µ , Λ̂µν

]
+
+

Zxν

r

}
, (66)

where the notation [Â, B̂]± = ÂB̂± B̂Â is used for commutator/anticommutator between two oper-
ators Â and B̂.

Since D̂-matrix obeys the SO(10) algebra [70, 72, 74], the 9D MICZ-KP is SO(10) sym-
metric. This symmetry is higher than the trivial geometric symmetry SO(9); thus, the quantization
of the 9D MICZ-KP is degenerated so high that its energy solely depends on the principal quan-
tum number n only. This highest degeneracy has been observed in the energy spectrum of the 9D
MICZ-KP

En,Q =− Z2

2(n+4+Q/2)2 , n = 0,1,2, . . . , (67)
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obtained by different approaches given in Refs. [69, 71, 73, 74].

VI.2. Superintegrability and multiple separation of the nine-dimensional MICZ-Kepler
problem
To examine the superintegrability of the 9D MICZ-KP, in the study [70], we aimed to

construct at most 2× 9− 1 = 17 algebraically independent constants of motion. If we reach the
number 17, the 9D MICZ-KP is called maximally superintegrable.

Indeed, the first constant of motion is the Hamiltonian Ĥ ≡ D̂2
1. The next seven members

were constructed from subgroup SO(m) ⊂ SO(10) of D̂ as follows. We took the m×m block
matrices from the top left of D̂ [70]

X̂(m) =


. . .

...
...

. . . Λ̂ jk . . .
...

...
. . .


j,k=1,2,...,m

, m = 2,3, . . . ,8, (68)

and then built seven second-order Casimir operators

D̂2
m =−1

2
X jk(m)Xk j(m) = ∑

1≤ j<k≤m
Λ̂

2
jk, m = 2,3, . . . ,8. (69)

Note that in Ref. [72], the above operators are shown to be

D̂2
m = ∑

1≤ j<k≤m

(
L̂ jk + Q̂ jk

)2
. (70)

As in Ref. [70], we chose the ninth constant of motion as the total generalized angular
mometum D̂2

9 = Λ̂2. We took other seven block-matrices from the bottom right of D̂ and built their
Casimir operators:

D̂2
m =−1

2
Yjk(m)Yk j(m) = ∑

18−m≤ j<k≤9
Λ̂

2
jk, m = 10,11, . . . ,17. (71)

Collecting seventeen constants of motion D̂2
1, D̂

2
2, . . . , D̂

2
8, D̂

2
9, D̂

2
10, . . . , D̂

2
17, we have proved

that these are all second-order operators in momentum and all algebraically independent. Also,
the first nine constants of motion D̂2

1, D̂
2
2, . . . , D̂

2
8, D̂

2
9 commute with each other. Hence, the 9D

MICZ-KP should be maximally superintegrable [70].
In fact, the 9D MICZ-KP is a vector degenerated system. Therefore, the above seventeen

integrals of motion did not ensure the maximal superintegrability of our system. A remarkable
property of a maximally superintegrable system is the multiple separation via different coordinate
systems. Fortunately, this is true for the 9D MICZ-KP, and hence, the 9D MICZ-KP is a good
example that the definition of a maximally superintegrable system works for a vector degenerated
system [70]. In the series of our studies, we have variable separate the 9D MICZ-KP in spherical
[69], parabolic [70], and prolate spheroidal [71] coordinates, respectively.

VII. CONCLUSIONS AND OUTLOOK

The normed division algebras such as the real numbersR, complex numbers C, quaternions
H, and octonions O and their cousins Hopf maps in the differential topology and the Hurwitz
transformations in the quadratic algebraic form have been applied to various aspects of physics.
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Many phenomena or problems in physics require the normed division algebras to perform
simple, compact, and beautiful explanations or solutions. Under the perspective of the normed
division algebras, monopoles in the three-, five-, and nine-dimensional spaces are a direct conse-
quence of the gauge invariance of complex, quaternion, and octonion Hopf maps. Notwithstanding
some difficulties in both mathematics and physics sides, we believe that the normed division alge-
bras, e.g., the real numbers R, complex numbers C, quaternions H, and octonions O, could be the
algebra of nature.

On the other side, in mathematical physics, the duality between the two most fundamental
physics problems - harmonic oscillator and Kepler Coulomb problem - has taken the attention for
several decades. Amazingly, this duality relates to fascinating topics like the Hurwitz transfor-
mations and two-time physics. From the relationship between the Hurwitz transformations and
the normed division algebras, the duality leads to the gauge fields and generators of magnetic
monopoles in the Kepler Coulomb problem and the establishment of the nD MICZ-Kepler prob-
lem.

Three nD MICZ-Kepler problems with dimensionality 3, 5, and 9 are the direct conse-
quence of the existence of the complex numbers C, quaternions H, and octonions O. The last
case, the nine-dimensional MICZ-Kepler problem, has been established and examined for over a
decade, and some results are also aggregated in this review paper.

In this review, we do not go to the low energy regime of condensed matter physics, where
the complex numbers C can also explain the well-known 2D quantum Hall effect. According
to quaternions H and octonionsO, physicists have proposed 4D and 8D quantum Hall effects
in topological insulators. The explanation of the quantum Hall effect by the normed division
algebras and the Hopf maps opened a new era of applying mathematical objects to condensed
matter physics. This topic may be included in our other studies.

In the last two years, some studies have used the last normed division algebra - octonions O
- to explore the Standard Model structure and its extension. Some preliminary results from these
works show the great potential of explaining the Standard Model by the normed division algebras.
However, we will discuss this topic in our next work.
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