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Abstract. As the quantum analog of the classical one-time pad, the private quantum channel
(PQC) plays a fundamental role in the construction of the maximally mixed state (from any input
quantum state), which is very useful for studying secure quantum communications and quantum
channel capacity problems. However, the undoubted existence of a relation between the geometric
shape of regular polytopes and private quantum channels in the higher dimension has not yet
been reported. Recently, it was shown that a one-to-one correspondence exists between single-
qubit PQCs and three-dimensional regular polytopes (i.e., regular polyhedra). In this paper, we
highlight these connections by exploiting two strategies known as a generalized Gell-Mann matrix
and modified quantum Fourier transform. More precisely, we explore the explicit relationship
between PQCs over a qutrit system (i.e., a three-level quantum state) and regular 4-polytopes.
Finally, we attempt to devise a formula for such connections on higher dimensional cases.

Keywords: private quantum channel; quantum key distribution.

Classification numbers: 03.67.Hk; 03.67.Ac.

I. INTRODUCTION

Modern cryptographic systems essentially rely on the computational-complexity assump-
tion for their security, whereas a quantum communication primitive known as a private quantum
channel (PQC) achieves its safety under information-theoretic conditions. The PQC, first proposed
by Ambainis et al. [1], provides a fundamental and perfectly secure way to transmit a quantum
state from a sender, Alice, to a receiver, Bob, by using pre-shared classical secret keys which can
be generated, say, by a quantum key distribution (QKD) scheme. As a kind of completely positive
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and trace preserving map (i.e., quantum channels) [2, 3], the PQC transforms any quantum state
into a maximally mixed state (MMS) in a given Hilbert space.

Because the output of PQCs always fulfills the genuine maximally mixed state, which is
a quantum state with a maximal von Neumann entropy (i.e., strong against any type of attack),
PQCs can be used to construct a secure quantum network or quantum internet [4–7] with the help
of quantum teleportation [8] as well as QKD protocols [9–11] for emerging quantum communica-
tion technologies. Another main feature of the PQC at the purely theoretical level is related to a
phenomenon known as superadditivity on quantum channel capacity problems [12–14]. In partic-
ular, a PQC and its dual (i.e., its complementary PQC) reportedly form a subtle counter-example
to the additivity, especially on the classical capacity [13] on quantum channels (the PQCs), owing
to quantum entanglement [15].

In traditional geometry, it is well known that an infinite number of regular polygons exists
in a two-dimensional plane and five regular polyhedra exist in three-dimensional space [16]. Few
recent efforts to relate the regular polytopes to quantum information theory, for example, a con-
struction on Bell’s inequalities [17, 18] have been reported. Classifying or proving the existence
of a higher dimensional (d > 3) regular d-polytope is not a trivial problem. However, the regular
4-polytope (with a cell) was well classified by several mathematicians many years ago.

Here, we attempt to devise an approach to connect the structure of PQCs to higher dimen-
sional regular polytopes, under the constraint of preserving the maximal output entropy. To this
end, we need to exploit the notion of an isotropic (or unitarily invariant) measure on the unitary
group, and two modifications of the Gell-Mann matrix [19] and quantum Fourier transform [20].
In this study, we highlight a new connection between qutrit-based PQCs and the regular 4-polytope
by generalizing our previous research on qubit-based PQCs and regular polyhedra [21] equipped
with an isotropic measure.

The remainder of this paper is organized as follows. In Sec. II, we describe the basic
concept of the PQC, and provide definitions for several relevant and meaningful quantities, such
as the isotropic measure and the regular polytopes, especially for the convex regular 4-polytope.
To relate the PQCs and polytopes, we introduce a new notion of a hypervector in Sec. III. In
Sec. IV, we derive our main results (using two methods) on the relationship between qutrit-based
PQCs and the regular 4-polytope, which is a generalization of qubit-based PQCs. Especially, in
Sec. IV.2, we briefly argue a universal strategy for the connection over higher dimensional cases.
Finally, discussions and remarks are presented in Sec. V, and a few intriguing questions are raised
for future work.

II. PRELIMINARIES

II.1. Concept of a private quantum channel
Here, we briefly review the mathematical definition and related results of private quantum

channels. Before providing the details, we explain our notations. Let B(Cd) denote the set of
linear operators from the Hilbert space Cd to itself, and let U(d) ⊂ B(Cd) be the unit group
on Cd . Let us define a quantum channel as Λ : B(Cd)→B(Cd), which is a linear, completely
positive, and trace-preserving map. For any quantum state ρ ∈B(Cd), the quantum channel is
conveniently denoted as Λ : ρ 7→ Λ(ρ) in B(Cd).
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Fig. 1. Schematic diagram of a PQC. We assume that Alice and Bob shared a secret key
K = [k j] via quantum key distribution (QKD) protocols. Should Alice wish to encode a
quantum state ρ through the PQC Λ, she applies unitary operations, U[k j ], on the input
state depending on the key set [k j]. Thus, Λ(ρ) is equivalent to the maximally mixed state
1
d . At the end of the PQC, the receiver Bob can recover the original quantum state ρ by
exploiting the inverse units over Λ(ρ).

Generally, we consider a quantum channel Λ : B(Cd)→ B(Cd) to be a ε-PQC (or an
approximate PQC) [22] if it satisfies the constraint∥∥∥∥Λ(ρ)− 1

d

∥∥∥∥
p
≤ ε

d
p−1

p

, (1)

where ε is a small (but non-negative) real number, and 1 denotes the d× d identity matrix. The

Schatten p-norm or matrix norm, ‖ · ‖p, is defined by ‖M‖p =
p
√

Tr(M†M)p/2 =
(

∑ j sp
j (M)

)1/p
,

where s j(M) denotes the singular values of any matrix M. If the parameter ε = 0, that is, Λ(ρ) =
1
d , we say that the map Λ(·) is a complete PQC. To obtain Eq. (1), we can straightforwardly
combine the definitions over the operator norm [23] and the trace norm [24] by using McDiarmid’s
inequality.

The advantage of ε-PQC is that it is possible to reduce its cardinality in terms of the uni-
tary operations required, from the optimal case (d2) to the approximate regimes of O(d logd) [23]
or O(d) [25]. Here, we notice that the dependence of the optimality of PQCs on the input di-
mension of the quantum state was determined by several groups [26–28]. However, in this paper,
we only consider the optimal schemes for matching regular polytopes. In addition, several con-
siderations are known to exist on continuous-variable PQCs [29–32] as well as on a sequential
version [33]. However, the main purpose of this work is to contribute to the construction of (se-
cure) key-dependent PQCs (but satisfying a maximal entropy condition) over a set of unitaries
provided by the key set K = [k j] := {k1,k2, . . .} for all j. For a given key set K, we can create a
private quantum channel in the form

ΛK(ρ) =
1
|K|

|K|
∑
j=1

Uk j ρU†
k j
, (2)
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where Uk j are unitary operators induced from each component k j ∈ K. For an example of the
optimal case (i.e., |K| = 4), the key set K can be constructed from Pauli matrices, that is, K =

{1,X ,Y,Z} with X =

(
0 1
1 0

)
,Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
. Then, for every ρ ∈B(C2), we

have

ΛK(ρ) =
1
4
(1ρ1† +XρX† +Y ρY † +ZρZ†) =

1
2
.

Here, we can observe that the channel output ΛK(ρ) is the exact two-dimensional maximally
mixed state. As mentioned above, key set K can be obtained from QKD protocols. (See the
scheme in Fig. 1).

In our previous study [21], we found a five key set {KP = 4,KH = 6,KO = 8,KD = 12,KI =
20} corresponding to PQCs in terms of {NP,NH ,NO,ND,NI}, where the subscripts denote Pauli
(or tetrahedron), hexahedron, octahedron, dodecahedron, and icosahedron, respectively. The main
requirement these constructions need to meet is that they always preserve the maximal von Neu-
mann entropy because all outputs of each of the PQCs are exactly the maximally mixed state in
the Hilbert space C2. These constructions are followed by the extension of the Pauli matrices via
a complex rotation matrix of the form

Rc(θ) =

(
cosθ −isinθ

isinθ cosθ

)
, (3)

where the angle θ ∈ [0,2π] is a real number. The main objective of this research is to generalize
the qubit-based PQCs above to a qutrit-based PQC as well as to find a formulation on the higher
dimensional cases.

II.2. Isotropic measure
To intuitively obtain the relationship between PQCs and regular polytopes, we need to

review the notion of an isotropic measure on the unitary group U(d). The isotropic measure
for quantum states is formally defined as follows [25]: For any quantum state ρ ∈ B(Cd), a
probability measure µ on the unitary group U(d) is said to be isotropic, if it holds that∫

U(d)
UρU†dµ =

1
d
. (4)

In addition, a random vector~v generated by U ∈U(d) is known to be isotropic if its law is isotropic.
Conceptually, this implies that the integration over all random vectors (generated by U) equates to
zero (i.e., the center of mass).

In the case of a discrete measure, the structure of PQC in Eq. (2) corresponds to that of the
exact isotropic measure. As an example, the set of Pauli matrices {1,X ,Y,Z} is isotropic and the
set of corresponding random vectors, namely, {~v1,~vX ,~vY ,~vZ} is also isotropic. Thus, by definition,
the sums of the actions of the Pauli matrices and random vectors are 1

2 and 0, respectively. We
notice that the Haar measure on U(d) is also an isotropic measure.

In this study, we connect the private quantum channels with a key set K to the regular
polytopes beyond the low-dimensional cases through Eq. (4). However, not only is the extension
quite complex, even in the case of four dimensions, but the higher dimensional polytopes are also
not well defined.
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Before discussing the relationship, we briefly review the regular polytopes in four-dimensional
(Euclidean) space.

II.3. Regular 4-polytope
All the classifications and proofs of existence of the regular d-polytope are very difficult

problems in geometry [16]. Here, we only take into account the regular convex 4-polytope as a
natural matching for the three-level quantum state (i.e., qutrit) because the geometric shape (in
terms of the Bloch sphere) of any quantum state satisfies the convex set and a unit sphere of a
given dimension.

The regular convex 4-polytope was first introduced by Schläfli. Six types of convex-type
polytopes that are four-dimensional analogues of the three-dimensional regular polyhedra (i.e.,
Platonic solids) exist. The existence of the regular convex 4-polytope, which is generally denoted
by a Schläfli symbol [α,β ,γ], is constrained by cells (i.e., three-dimensional regular polyhedra)
and dihedral angles (see Table 1 below). In addition, each polytope in geometry can be classified
by intrinsic symmetric groups as in Table 1, and is generally known as a Coxeter group [16, 34].

Table 1. Summary of regular 4-polytopes versus qutrit-based PQCs.

- Simplex (S) Hypercube (H) Tesseract (T1) Octaplex (O) Dodecaplex (D) Tetraplex (T2)

Orthographics Conj.

Cell - 5 8 16 24 120 600

Symmetric group - A4 = [3,3,3] B4 = [4,3,3] B4 = [3,3,4] F4 = [3,4,3] H4 =[5,3,3] H4 = [3,3,5]

PQC Λ ΛL ΛS ΛH ΛT1 ΛO ΛD ΛT2

Hypervector V - 5 8 16 24 120 600

Basis vector~v 9 20 48 96 192 1440 12000

Cardinality |K| 9 20 48 96 192 1440 12000

Optimality © × × × × × ×
Security © © © © © © ©

III. HYPERVECTOR AND REGULAR CONVEX 4-POLYTOPE

Let V be a set of vectors, that is, Vt =(~v1,~v2, . . . ,~vt), and we term it a hypervector. It exactly
corresponds to a j-component set of a regular polyhedron. We notice that a hypervector is a vector
in four-dimensional space, but~v j’s are three-dimensional. As an example, V4 = (~v1,~v2,~v3,~v4) can
be interpreted as a schematic in the form

O

V4

≡

O

!v1

!v2

!v3
!v4

, (5)

where ~vt’s are four vectors in the tetrahedron (i.e., one of the regular 3-polytopes). Interestingly,
our hypervector V4 corresponds with the Pauli matrices in a one-to-one manner. In this context,
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we can naturally define five kinds of hypervectors, as there are only five kinds of regular polyhedra
in the three-dimensional space, namely, V = {V4,V6,V8,V12,V20}.

By using the definition of the hypervector above, we can easily classify the regular convex
4-polytope in terms of V[s]

t as follows: (The index s indicates the s-cell in the regular 4-polytope.)

V[s]
t =

{
V[5]

t ,V[8]
t ,V[16]

t ,V[24]
t ,V[120]

t ,V[600]
t

}
. (6)

It is useful to note that, fortunately, each cell index ` is intimately concerned with the
symbol j in the regular convex 3-polytope. This observation offers the possibility for us to count
the number of unitary sets for PQCs in secure quantum communication.

IV. RELATIONSHIP BETWEEN QUTRIT-BASED PQCS AND REGULAR
4-POLYTOPE

In this section, we show that the qutrit-based PQCs can be related to the regular 4-polytope
by using two strategies known from the Gell-Mann matrix (λ j with j ∈ {1, . . . ,8}) expansion and
by applying quantum Fourier transform. The Gell-Mann matrix is a fundamental aspect of high-
energy physics, and quantum Fourier transform is a core process in quantum algorithms. Although
the Gell-Mann matrices are traceless and Hermitian in the SU(3) group, the modified Gell-Mann
matrices have one exception in terms of the identity matrix (i.e., they are non-traceless). We also
notice that one of the elements of the original Gell-Mann matrix (formally, λ8) does not form a
unitary matrix; however, our matrices all have unitary matrices. Therefore, our modified version
could be more naturally considered as a generalization of the well-known Pauli matrix in SU(2).

IV.1. Generalized Gell-Mann matrices and qutrit-based PQCs
As mentioned above, the PQCs over a single-qubit system are naturally constructed by a

2×2 unitary matrix Rc(θ)∈ SU(2) in Eq. (3), thus we can imagine a 3×3 unitary matrix in SU(3)
for generating qutrit-based PQCs. To do this, we first consider the 3×3 orthogonal rotation matrix
in SO(3) in the standard form as

R(φ ,θ ,ϕ) =

 cosφ cosθ cosϕ + sinφ sinϕ −cosφ cosθ sinϕ + sinφ cosϕ sinθ cosφ

−sinφ cosθ cosϕ + cosφ sinϕ sinφ cosθ sinϕ + cosφ cosϕ −sinϕ sinθ

−sinθ cosϕ sinθ sinϕ cosθ

 ,

(7)

where each angle parameter is bounded by 0≤ ϕ < π , −π

2
≤ θ ≤ π

2
, and −π < φ ≤ π . Similar to

the case of the two-dimensional complex rotation matrix Rc(θ) in Eq. (3), we can find a complex
rotation matrix (or unitary matrix) Řc(φ ,θ ,ϕ) by extending the real rotation matrix in Eq. (7)
with some complex numbers. However, this is not a simple task, and thus we have to change
our intention of finding the complex rotation matrix to generalizing the well-known Gell-Mann
matrices.

Here, we define a set of nine components in the SU(3) group, which can be modified from
the original Gell-Mann matrix [19], and we call it the generalized Gell-Mann matrix. All matrices
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are unitaries and Hermitian, and are explicitly given by

L1 =

0 1 0
1 0 0
0 0 1

 ,L2 =

0 −i 0
i 0 0
0 0 1

 ,L3 =

 0 i 0
−i 0 0
0 0 1

 ,

L4 =

1 0 0
0 0 1
0 1 0

 ,L5 =

1 0 0
0 0 i
0 −i 0

 ,L6 =

1 0 0
0 0 −i
0 i 0

 , (8)

L7 =

0 0 1
0 1 0
1 0 0

 ,L8 =

 0 0 i
0 1 0
−i 0 0

 ,L9 =

0 0 −i
0 1 0
i 0 0

 .

By exploiting the generalized Gell-Mann matrix (L), we can construct an exact private
quantum channel on the qutrit system. Formally, it is given by (∀ρ ∈B(Cd))

ΛL(ρ) =
1
9

9

∑
j=1

L jρL†
j =

1
3
, (9)

where L j’s are elements of the generalized Gell-Mann matrix. As mentioned above (see Sec.
III), this construction is optimal for the qutrit-based PQC [26–28]. (Here, we notice that the
matrix L j is equivalent to the key set component k j.) The output of the channel ΛL is the exact
maximally mixed state (i.e., 1

3 ), thus preserving its perfect secrecy. As an example, we can check
that the resulting state of a qutrit, via ΛL in Eq. (9), is the maximally mixed state (see details in
Appendix). Thus, we conjecture that there exists another regular convex 4-polytope corresponding
to the optimal PQC on the 3-level quantum system (see Table 1).

Now, we need to consider the way to construct the PQCs for non-optimal cases (but pre-
serving their security). We believe that other types of generalized Gell-Mann matrices exist that
correspond to the PQCs of ΛS, ΛH , ΛT1 , ΛO, ΛD, and ΛT2 with 20, 48, 96, 192, 1440, and 12
000-component basis vectors, respectively. (Note that the number of basis vectors is equivalent to
the cardinality of the corresponding key set K.) To do this, we use the quantum Fourier transform
strategy.

IV.2. Quantum Fourier transform and PQCs
The quantum Fourier transform (QFT), which is a linear transformation over quantum

states, was first discovered by Coppersmith [20], and it was employed for many efficient calcu-
lations on quantum algorithms (e.g., Shor’s algorithm [35]). The Walsh–Hadamard or Hadamard
transform is a special case of QFT on two-level quantum systems. Generally, the d-dimensional
QFT, QFTd , is defined as follows: For any quantum state | j〉 ∈ Cd , the QFT is a map in the form

QFTd : | j〉 7→ 1√
d

d−1

∑
k=0

ω
jk |k〉 , (10)

where ω = e
2πi
d . In principle, it is possible to expand the sum of k with d elements to ` with

D(≥ d), and we call it an extended QFT in the D-dimension (QFTD), that is,

QFTD : | j〉 7→ 1√
D

D−1

∑
`=0

ω
j` |`〉 ≡ | ˜̀〉. (11)
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QFTD 1 to 1

O
O

|j〉 |ℓ̃〉
V

[5]
4

Fig. 2. One-to-one corresponding strategy as a result of extending the quantum Fourier
transform to the hypervector. More precisely, a quantum state | j〉 can be transformed into
a 20-component superposed state via QFT20, after which it is possible to match these to
the hypervector V[5]

4 on the regular convex 4-polytope.

Here, we notice that the total probability is conserved as 1, and each quantum state has a uniform
probability distribution 1

D . This extension enables us to find hypervectors as mentioned above (see
subsec. II.1). If we choose D = 20, then QFTD performs the following action, that is, for any j

QFT20 : | j〉 7→ 1√
20

19

∑
`=0

ω
j` |`〉 ,

where |`〉 forms a basis vector over the Hilbert space of the output. After this QFT, we can
easily convert each basis vector (by using clustering) into a hypervector in Eq. (5). We depict this
situation in Fig. 2, and we define this PQC as ΛS (see also Table 1). We notice that the reason why
the one-to-one correspondence is possible originates from the condition of the isotropic measure
in Subsec. II.2.

Conceptually, this approach allows us to obtain further generalizations for ΛH , ΛT1 , ΛO,
ΛD, and ΛT2 as well as for high-dimensional PQC cases on any d-dimensional quantum state (i.e.,
qudit).

V. CONCLUSIONS

In this study, we constructed and analyzed a private quantum channel (PQC) involving a
three-level quantum system (i.e., qutrit) to the maximally mixed state, by exploiting two methods:
the generalized Gell-Mann matrix and the modified quantum Fourier transform (QFT). For these
constructions, we newly defined the notion of a hypervector on the regular convex 4-polytope, and
found nine components of the generalized Gell-Mann matrix L in the optimal case. Furthermore,
we provided an expansion technique on QFT for non-optimal qutrit-based PQCs with the new
notion of the hypervector. Here, a total of seven kinds of PQCs were presented, and each of the
PQCs satisfied the security condition, that is, it produced the maximal von Neumann entropy in
terms of 1

3 . In fact, we can conclude that the power of the isotropic measure induces our results.
A few intriguing open questions still remain with regard to the private quantum channel

itself or beyond. The first one is that the optimal case of the qutrit-based PQC exactly predicts the
component of unitary operations; however, we do not know what it is in the class of the regular
convex 4-polytope. The second question relates to the way in which we can apply our results
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to the PQCs to highlight the research on higher dimensional geometry or quantum databases.
Finally, our work is expected to contribute to establishing contact with mathematicians who are
well acquainted with the quantum information sciences.
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APPENDIX

We describe the optimal private quantum channel with nine key-sets K in Eq. (8) of the

qutrit system. As a representative and exact example, if we choose ρ̌ = 1
2

1 0 0
0 1 0
0 0 0

, then we

can easily calculate the output (i.e., the maximally mixed state 1
3 ) of the private quantum channel

ΛL as follows:

ΛL(ρ) =
1
9

9

∑
j=1

L jρ̌L†
j

=
1
18

[1 0 0
0 1 0
0 0 0

+

1 0 0
0 1 0
0 0 0

+

1 0 0
0 1 0
0 0 0

+

1 0 0
0 0 0
0 0 1


+

1 0 0
0 0 0
0 0 1

+

1 0 0
0 0 0
0 0 1

+

0 0 0
0 1 0
0 0 1

+

0 0 0
0 1 0
0 0 1

+

0 0 0
0 1 0
0 0 1

]

=
1
3

1 0 0
0 1 0
0 0 1

=
13

3
.

In addition, it is possible to straightforwardly calculate the output for another input state of the
qutrit ρ . We omit the results.

http://dx.doi.org/10.1007/s11128-015-1054-5
http://dx.doi.org/10.1137/S0097539795293172
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