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Abstract. Resonance frequencies and mode shapes of microcantilevers are of important interest
in micro-mechanical systems for enhancing the functionality and applicable range of the can-
tilevers in vibration transducing, energy harvesting, and highly sensitive measurement. In this
study, using the Euler-Bernoulli theory for beam, we figured out the exact mode shapes of can-
tilevers of varying widths such as the overhang- or T-shaped cantilevers. The obtained mode
shapes have been shown to significantly deviate from the approximate forms of a rectangular can-
tilever that are commonly used in mechanics and physics. They were then used to figure out the
resonance frequencies of the cantilever. The analytical solutions have been confirmed by using the
finite element method simulations with very low deviation. This study suggested a method for cor-
rectly obtaining the resonance frequency of microcantilevers with complicated dimensions, such
as the doubly clamped cantilever with the undercut, with the overhangs at the clamped positions,
or with an attached mass in the middle.
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I. INTRODUCTION

Micromechanical cantilever is a branch of sensor classes which is based on the response
of the cantilever via changing its frequency and vibration amplitude with external effects. The
commonly used structure of these sensors is a microbeam (or microcantilever) which can partly
move or deflect when the surface stress is changed. Among them, the singly and doubly clamped
cantilevers are widely adopted in experiments and also in industry due to the simplicity in fabrica-
tion and high adaptability in using. The cantilever-based sensors were in the heart of experiments
in fundamental physics [1–4] and in detecting of bio-objects [5–8], chemical substances [9, 10],
and physical properties [11,12]. In mass spectroscopy, to detect a mass ∆m that is adsorbed on the
microcantilever surface, one usually examines the resonance frequency shift, which is related to
∆m via the formula [13],

∆m =
K

4π2

( 1
f 2 −

1
f 2
0

)
, (1)

where K is the mechanical rigidity (stiffness) of the cantilever and f0 and f are the frequencies
before and after the adsorption occurs, respectively. In case without adsorption, the frequency f0
is,

f0 =
1

2π

(
αn

L

)2
√

EI
ρA

, (2)

where αn = 1.875, 4.694, 7.854, etc ... are the roots of the characteristic equation 1 + cosα coshα =
0. E and I are the Young’s modulus and the second moment of inertia, respectively. A = wctc is the
cross-section, where wc is the width and tc is the thickness of the cantilever. ρ is the mass density
and L is the cantilever length. Therefore, correctly determining the frequency before and after an
adsorption is crucial to analyze the quantity and distribution of adsorbed mass. Theoretically, the
frequencies of a cantilever can be determined from the Euler-Bernoulli theory of beam and the
formula (2) is used. Nevertheless, in the fabrication, the cantilevers are usually of varying width
or thickness with undercut effects or with an overhanging part at the clamped position. These parts
could strongly alter the frequency from the frequency of an ideal rectangular-shaped beam [14].
The dynamics of these cantilevers are usually examined assuming the ideal mode shapes obtained
from a rectangular cantilever. However, the results are correct if only the mode shapes are correct.
Therefore, correctly figuring out the mode shapes is of important interest for the cantilever from
both the theoretical and experimental viewpoint.

Furthermore, in recent studies the beams with various shapes such as T- [15,16] or V-shaped
cantilevers [17, 18] have attracted many researchers due to their wide application. However, it is
challenging to theoretically obtain the frequency and deflection. Zhang et al. [19] explored the
deflection and resonance frequency when the microcantilever dimensions were modified. In that
work, the width of the microbeam was not constant and was dependent on the variable x along
the length; hence, finding the exact solution of the Euler-Bernoulli equation was a challenge. To
overcome this difficulty, the solution was assumed as a function of polynomials. The calculated
frequency revealed an involved dependence on the geometrical parameters. Furthermore, the so-
lutions were lengthy in analytical form and strongly dependent on the polynomial approximation.
In another study, Plaza et al. [15] considered the microcantilevers in an array to reduce the initial
deflection; however, the frequency was known by only the experimental method. Therefore, the
analytical formula for frequency of cantilevers with varying width is still of important interest.
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Fig. 1. Model of cantilevers with varying widths used in the calculation, (a) overhang-
and (b) T-shaped cantilever. The thickness (tc) is assumed to be uniform.

In this work, we figured out the exact mode shapes for cantilever structures such as T-shaped
and overhang-shaped microcantilevers which are usually used in atomic force microscopes. The
role of the length and width of the transition part, which is located between the anchor (the clamped
position) and the cantilever part, was examined. Based on the exact mode shapes, the frequency
can be obtained and corrected in comparison to the approximate values which were empirically
used in literature. The analytical formula obtained from this work helped to correctly figure out the
frequency of cantilever of similar structure, such as the douply clamped cantilever with overhangs
of with an attached mass in the middle [20]. The obtained results can contribute to the exact
measurement for these structures with many advantages such as determining the frequency of a
cantilever in a array, a cantilever with undercut, or the T-shaped cantilevers that use the in-plan
vibrational modes.

II. CALCULATION MODEL AND METHOD

We consider a cantilever with a transition part of width wt which connects the clamped
position to the cantilever of width wc, as shown in Fig. 1. The lengths of the transition and
the cantilever are Lt and Lc, respectively. For convenience, the reduced dimensions are used,
κ = wt/wc and η = Lt/L with L = Lt + Lc is the total length. To figure out the frequency and
mode shape, we use the Euler-Bernoulli theory of beam

ρA(x)
∂ 2u(x, t)

∂ t2 +
∂ 2

∂x2

[
EI(x)

∂ 2u(x, t)
∂x2

]
= 0, (3)

where u(x, t) is the deflection at a position x along the cantilever length at time t. The solution
of Eq. (3) could be presented in the form u(x, t) = u(x)eiωt . Inserting this form into the above
equation, one obtains,

d2

dx2

[
EI(x)

d2u(x)
dx2

]
−ω

2
ρA(x)u(x) = 0, (4)

where A(x) = w(x)tc. The varying width of beam is,

w(x) =
{

wt (0 < x≤ Lt), (5a)
wc (Lt < x≤ L). (5b)
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From Eq. (4) and using relation in Eqs. (5a) and (5b), the frequency has been rewritten as

ω
2 =

Et2
c

12ρ

∫ L
0 u(x) d2

dx2

[
w(x)d2u(x)

dx2

]
dx∫ L

0 w(x)u2(x)dx
=

Et2
c

12ρ

∫ Lt
0 wtut(x)

d4ut(x)
dx4 dx+

∫ L
Lt

wcuc(x)
d4uc(x)

dx4 dx∫ L
0 wtu2

t (x)dx+
∫ L

Lt
wcu2

c(x)dx

=
Et2

c

12ρ

ψt +
1
κ

ψc

ϕt +
1
κ

ϕc
.

So we obtain

ω =

√
Et2

c

12ρ

ψt +
1
κ

ψc

ϕt +
1
κ

ϕc
, (6)

where ψ[t,c] =
∫

u[t,c](x)u
(4)
[t,c](x)dx and ϕ[t,c] =

∫
u2
[t,c](x)dx. Here, I(x) = 1

12 w(x)t3
c . The density of

the beam is ρ and the cross-section is A(x) = w(x)tc. To figure out the frequency in Eq. (6), the
explicit form of the mode shapes is required. The mode shapes of every part in the entire cantilever
are derived by,

u(4)t (x)−β
4
t ut(x) = 0, (7)

u(4)c (x)−β
4
c uc(x) = 0, (8)

where, β 4
t = ω2ρAt

EIt
and β 4

c = ω2ρAc
EIc

. Noting that βt = βc = β , the general solutions are

ut(x) = A1 sinβx+B1 cosβx+C1 sinhβx+D1 coshβx (9)

uc(x) = A2 sinβx+B2 cosβx+C2 sinhβx+D2 coshβx. (10)

Table 1. Boundary and continuous conditions

Boundary Continuous

At x = 0 At x = L At x = Lt

ut(0) = 0 ut(L0) = uc(L0)

ut(0) = 0 u′t(L0) = u′c(L0)

u(2)c (L) = 0 κu(2)t (L0) = u(2)c (L0)

u(3)c (L) = 0 κu(3)t (Lt) = u(3)c (Lt)

To find out the eight coefficients of Eqs. (9) and (10), the boundary and continuity condi-
tions are used (see more in Table 1). As a result, we obtained a matrix equation,

K ·X = 0, (11)
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where K is written as

K =



0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 −sinα −cosα sinhα coshα

0 0 0 0 −cosα sinα coshα sinhα

sinηα cosηα sinhηα coshηα −sinηα −cosηα −sinhηα −coshηα

cosηα −sinηα coshηα sinhηα −cosηα sinηα −coshηα −sinhηα

−κ sinηα −κ cosηα κ sinhηα κ coshηα sinηα cosηα −sinhηα −coshηα

−κ cosηα κ sinηα κ coshηα κ sinhηα cosηα −sinηα −coshηα −sinhηα


,

(12)

where, α = βL and X = [A1 B1 C1 D1 A2 B2 C2 D2]
T . K is a singular matrix; there-

fore, by solving detK = 0, one can obtain α (see, for example, Table 2),

det[K] =
(
κ

2−1
){

cos[(1−η)α]cosh[(1−η)α]+ cosηα coshηα

}
+

+(1−κ)2
{

cos[(1−η)α]cosηα cosh[(1−η)α]coshηα +1
}

(13)

+2κ(cosα coshα +1). (14)

It is worth to noting that, in a rectangular cantilever, we have κ = 1 and the above equation returns
to the characteristic equation cosα coshα +1 = 0, which is well known in mechanics [21]. Now,
solving the above equation with respect to α , the following coefficients are obtained,

B1 = Γ(κ,η ,α)A1,

C1 =−A1,

D1 =−Γ(κ,η ,α)A1,

(15)

A2 = H(κ,η ,α)A1,

B2 = E(κ,η ,α)A1,

C2 = Ω(κ,η ,α)A1,

D2 = K(κ,η ,α)A1,

(16)

where A1 can be figured out from the initial condition (t = 0). Other functions, which depends on
κ,η , and α are written in the Appendix. To visualize the mode shapes, A1 = 1 is usually used.

III. RESULTS

The mode shapes of T-shaped (κ < 1) and overhang-shaped (κ > 1) cantilevers are shown
in Fig. 2. For T-shaped cantilevers (κ = 0.5), the first (a) and second (c) modes show a smoother
deflection, see red dashed line of η = 0.1, blue dotted line of η = 0.3, and green dash-dotted line of
η = 0.5 in comparison to the deflection of a uniform (rectangular) cantilever (black solid line). It’s
worth to noting that we are fixing the deflection at the transition position, x = Lt/L = ηL, of the T-
and overhanged-shaped cantilever to be the same as that of the uniform cantilever. Therefore, if we
normalize all mode shapes using a maximal deflection at x = L as a referenced scale, the T-shaped
cantilever will present flatter lines. These lines will be too close and it is difficult to distinguish
them from each other. Hence, we choose the deflection at the transition points (for example, η =
0.1 presented by red dashed line and red dashed arrows) as the normalized scale. As a result, the
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Fig. 2. Correct mode shapes of the first [(a) and (b)] and second [(c) and (d)] modes of
T- and overhang-shaped cantilevers in comparison to the mode shapes (black solid lines)
of a uniform cantilever. The arrows pointed out the position the two modeshapes start
deviating each other corresponding to the overhang length, η = 0.1 (red dashed), 0.3
(blue dotted), and 0.5 (green dash-dotted lines).

maximal points of the mode shapes are different. This is because the smaller width of the clamped
position has soften the T-shaped cantilever, i.e. reduce the inertia moment I in Eq. (1).

Having the correct solutions of Eq. (13), we obtained the corresponding frequencies ( f ) of
several modes. Using η = 0.1 (= Lt/L) as an example, the results from the solution of Eq. (13) is
confirmed by that from FEM (finite element method, COMSOL Multiphysics) simulations and the
two results are shown in Fig. 3 where frequencies of the first two modes are presented. Comparing
the frequencies from the two calculation methods, we saw that the greatest deviation is not greater
than 3% (similar behavior of the third and fouth modes are seen and not shown here). In general,
change in frequency was seen when κ 6= 1, i.e., f increases with κ . This is because the T-shaped
cantilever is “softer” and the ovehang-shaped cantilever is “harder” than the uniform cantilever.
Analytically, T-shaped cantilever with smaller width has been elongated to an “effective” length;
therefore, reduced the frequency (see Eq. (2)).

As a result, the approximate mode shapes commonly used in previous studies from a uni-
form cantilever, could be used in a very limited case. When the width of the undercut (or overhang)
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Table 2. The solution α from Eq. (13).

First four roots

η = Lt/Lc mode 1 mode 2 mode 3 mode 4

0.1 1.739 4.503 7.656 10.814

T-shaped cantilever, 0.2 1.666 4.506 7.698 10.877

κ = 0.5 0.3 1.625 4.526 7.752 11.016

0.4 1.604 4.532 7.861 11.038

Uniform beam, κ = 1 0 or 1 1.875 4.694 7.854 10.995

0.1 1.933 4.804 7.992 11.126

Overhang-shaped cantilever, 0.2 1.982 4.829 7.939 11.012

κ = 1.5 0.3 2.019 4.794 7.86 10.999

0.4 2.042 4.748 7.851 11.003

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
1 6 5
1 7 0
1 7 5
1 8 0
1 8 5
1 9 0

f (k
Hz

)

κ

 A n a l y t i c a l
 F E M

( a ) m o d e  1 m o d e  2( b )

κ
Fig. 3. Frequency of the first and second mode obtained from Eq. (13) (black solid line)
and from FEM simulations (red squares). The deviation between the two method is not
greater than 3%. Here, the parameters in Table 3 are used.

is much greater than that of the cantilever, the frequency could be significantly varied, as shown
in Fig. 4. In Table 2, the frequencies of the first four modes are shown which presented the in-
crease of f with κ and these f s are significantly different from the value of the uniform cantilever
(shown by black solid lines). Changing the length of the overhanging part, η = 0–1, the first mode
(a) has one minimum if κ < 1 (black rounds) and one maximum if κ > 1 (red squares). The corre-
sponding number of minima and maxima of the second mode is two, as could be seen in Fig. 4(b).
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Table 3. Parameters for calculations.

Parameters Symbol (Unit) Si3N4

Length L (µm) 200

Thickness t (µm) 0.8

Young’s modulus E (GPa) 250

Density ρ (kg/m3) 3100

Therefore, the frequency is strongly dependent on the width and length of the overhanging part.
This suggests that, using of correct mode shapes is significantly important for obtaining the correct
frequencies of the width-varying cantilevers.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
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1 9 5

f 0  =  1 8 1 . 8 2  k H z  

κ =  1 . 5

f (k
Hz

)

η

f 0  =  2 9 . 0 1  k H z  

( a ) ( b )

η

κ =  0 . 5

Fig. 4. Frequency of the first (a) and second (b) mode in comparison to that from a
rectangular cantilever (black solid line). T-shaped[overhang-shaped] cantilevers have fre-
quency minima[maxima] and the number of minima[maxima] is corresponding to the
mode number.

IV. CONCLUSIONS

In this study, we performed a detailed calculation for the exact mode shapes and frequencies
of varying width cantilevers, the T- and overhang-shaped cantilevers. It was seen that the mode
shapes of a uniform rectangular cantilever should be carefully used when the cantilever is extended
to that of varying widths. If the width of the overhanging part is greater than 1.1 times the width of
the main cantilever, the correct mode shapes should be used. The obtained analytical results could
be used for cantilever with similar geometric widths. The analytical results have been confirmed
by the finite element method simulations with a very low deviation. This study gave important
contributions in the analysis of mode shapes and frequencies of micro-mechanical systems of
involved dimensions.
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APPENDIX

The explicit form of factors in Eqs. (15)–(16) are shown as follows,

Γ(κ,η ,α) =
Φ(κ,η ,α)

Ψ(κ,η ,α)
, (17)

where,

Φ(κ,η ,α) =−2(κ +1)cschηα(sinα + sinhα)−2(κ−1)
{

cos(α−ηα)− sinhα sin(ηα)

+ coth(ηα)[sin(α−ηα)+ sinhα cos(ηα)]
}
+

+(κ−1)coshα sec(ηα)[cos(2ηα)− sin(2ηα)coth(ηα)+1], (18)
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Ψ(κ,η ,α) =2
{
(κ +1)csch(ηα)(cosα + coshα)+

+(κ−1)
[

sin(α−ηα)− sinhα cosηα + coshα sinηα
]
+

+(κ−1)cothηα +
[

sinηα(sinα− sinhα)+ cosηα(cosα + coshα)
]}

, (19)

H(κ,η ,α) =
1
2
(−(1−κ)sinhηα(Γcosηα + sinηα)+ coshηα(Γsinηα + cosηα))+κ +1),

(20)

E(κ,η ,α) =
1
2
((κ +1)(Γ(κ,η ,α)+ tanηα)− (1−κ)(sec(ηα)coshηαΓ(κ,η ,α)+

+ sec(ηα)sinh(ηα))−2tan(ηα)H(κ,η ,α)), (21)

Ω(κ,η ,α) =
1
2
(−(κ +1)(coth(ηα)Γ(κ,η ,α)+1)− (κ−1)csch(ηα)(cos(ηα)Γ(κ,η ,α)+

+ sin(ηα))−2coth(ηα)K(κ,η ,α)) (22)

K(κ,η ,α) =
1
2
((κ−1)(sinh(ηα)(cos(ηα)− sin(ηα)Γ(κ,η ,α))− cosh(ηα)(cos(ηα)Γ(κ,η ,α)+

+ sin(ηα)))− (κ +1)Γ(κ,η ,α)) (23)
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