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Abstract. We investigate an extension of the standard model with vector-like fermions and an ex-
tra Abelian gauge symmetry. The particle mass spectrum is calculated explicitly. The Lagrangian
terms for all the gauge interactions of leptons and quarks in the model are derived. We observe
that while there is no new mixing in the lepton sector, the quark mixing plays an important role
in the magnitudes of gauge interactions for quarks, particularly the interactions with massive W,
Z and Z′ bosons. We calculate the contributions of the new vector-like leptons and quarks to the
Peskin-Takeuchi parameters as well as the ρ parameter of the electroweak precision tests, and
show that the model is realistic.
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I. INTRODUCTION

The standard model (SM) has been continuously tested since it was born. Although many
experiment results have shown good agreements with the SM predictions, there are evidences that
new physics might exist. Examples of those include the neutrino oscillation, rare decay processes
of B-mesons, the dark matter observation, and the muon anomalous magnetic moment. There are
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various possibilities to extend the SM. New physics might come from additional symmetries, or
new particles and interactions, see Refs. [1, 2] for examples.

In this paper, we are interested in a class of models with vector-like fermions and an addi-
tional Abelian symmetry. In particular, we consider the model proposed in Refs. [3,4]. Vector-like
fermions are particles whose left-handed and right-handed components transform in the same way
under the symmetry group of the model [5]. Due to this property, vector-like fermions do not inter-
act with the W and Z bosons as V −A currents like the SM chiral fermions, but as pure vector (V )
currents. These fermions can play an important role to realize the gauge coupling unification [6,7].
They also help to stabilize the electroweak vacuum [8], or explain observed discrepancies between
experimental data and SM predictions [9]. Beside the SM gauge group SU(3)C×SU(2)L×U(1)Y ,
the considered model include an additional Abelian symmetry U(1)X under which only new par-
tices are charged. Such symmetry was also investigated in many other scenarios resulting in
interesting phenomenology [10,11]. Recently, Belle-II Collaboration has published new results in
the search for the gauge boson Z′ of this new Abelian symmetry [12]. In this context, we explicitly
derive the analytic formulas for the new particle masses in the model. Refs. [3, 4] considered a
simple version of the mixing for left-handed quarks. In particular, Ref. [3] only considered the
mass mixing for the second and third generations of SM quarks in the calculation, and the mixing
for first generation was neglected. In this paper, the full mixings between the SM fermions and
the vector-like fermions are taken into account in our calculation leading to their modified gauge
interactions.

Structure of the paper is as follows. In Section II, we briefly describe all the ingredients of
the model. In Section III, the formulas for new particle masses are derived. The modified gauge
interactions for fermions are investigated in Section IV. In Section V, we briefly discuss a few
phenomenological aspects of the model and show that the model is realistic. Finally, Section VI is
devoted to conclusions.

II. THE MODEL

Beside the ordinary SM particles which have been observed experimentally, the model
we consider consists of heavy vector-like leptons (LL,LR) and quarks (QL,QR) that transform as
SU(2)L doublets:

LL,R =

(
NL,R
EL,R

)
, QL,R =

(
UL,R
DL,R

)
. (1)

In this model, two complex scalars χ and φ are also introduced. They are singlets under the
SM gauge groups. The SM symmetry is extended in this model by introducing an extra Abelian
symmetry denoted as U(1)X . These above new particles are charged under U(1)X , while the
SM particles are neutral under this symmetry. This is essential to ensure that the SM sector is
consistent with experimental data. The properties of these new particles are given in Table 1.

The Lagrangian of the model consists of two parts:

L = LSM +LNP, (2)

where the first part is the usual Lagrangian of the SM, and the second one describes new physics
beyond the SM. Since the vector-like fermions transform in the same way as SM left-handed
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Table 1. Properties of new particles introduced in the model [3].

Particles Spin SU(3)C SU(2)L U(1)Y U(1)X
LL,LR 1/2 1 2 -1/2 1
QL,QR 1/2 3 2 1/6 -2

χ 0 1 1 0 -1
φ 0 1 1 0 2

fermion doublets, they can interact with the SM gauge bosons. Other interaction terms involving
the new particles are given as

LNP ⊃ − λφH |φ |2|H|2−λχH |χ|2|H|2−
[
y`LLRχ +wqLQRφ +h.c.

]
−V0(φ ,χ), (3)

where H is the SM Higgs doublet, and lL and qL are the SM left-handed leptons and quarks:

`i
L =

(
νe

L
eL

)
i
, qi

L =

(
uL
dL

)
i
, (i = 1,2,3). (4)

V0 is the scalar potential related to the new scalar fields φ and χ . Its explicit form is as follows

V0(χ,φ) = λφ |φ |4 +m2
φ |φ |2 +λχ |χ|4 +m2

χ |χ|2 +λφ χ |φ |2|χ|2 +
(
rφ χ

2 +h.c.
)
. (5)

The SM fermion mass terms are forbidden at the beginning due to the SU(2)L gauge symmetry.
They obtain their masses only after the spontaneously breaking of the gauge group SU(2)L ×
U(1)Y . The situation for vector-like fermions is different because of the symmetry between their
left-handed and right-handed components. Therefore, their mass terms can be introduced directly
in the original Lagrangian:

LNP ⊃ − (MLLLLR +MQQLQR +h.c.) , (6)

where ML and MQ are the vector-like fermion masses supposed to be large.
In a model with two Abelian symmetries, the kinetic mixing term is allowed in general,

LNP ⊃ kBµνX µν , (7)

where k is the kinetic mixing coefficient. Here, we assume k = 0 for simplicity. For the treatment
of the non-zero kinetic mixing, we refer the readers to Ref. [13] where it was studied in details.

III. NEW PARTICLE MASSES

III.1. Scalar bosons
The SM Higgs’ vacuum expectation value (VEV), 〈H〉 = 174 GeV, plays a central role in

generating the SM fermion and weak gauge boson masses. In our considered model, it induces
two new quadratic terms in addition to the scalar potential (5):

λφH〈H〉2|φ |2 +λχH〈H〉2|χ|2. (8)

The new scalar potential for φ and χ can be written as

V (χ,φ) = λφ |φ |4 +m′2φ |φ |2 +λχ |χ|4 +m′2χ |χ|2 +λφ χ |φ |2|χ|2 +
(
rφ χ

2 +h.c.
)
, (9)
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where

m′2φ = m2
φ +λφH〈H〉2, (10)

m′2χ = m2
χ +λχH〈H〉2. (11)

We assume that m′2
φ
< 0 and m′2χ > 0. Hence, only the scalar field φ can develops a VEV,

〈φ〉 =

√
−m′2

φ

2λφ

, (12)

leading to the spontaneous breaking of the U(1)X group. Substituting1

φ = 〈φ〉+ 1√
2
(ϕr + iϕi) (13)

into Eq. (9), where ϕr and ϕi are real scalar fields, we find the masses of these scalar fields as

mϕr = 2
√

λφ 〈φ〉, (14)

mϕi = 0. (15)

While ϕr is a massive scalar boson, ϕi is a massless Nambu-Goldstone boson that can be absorbed
by the U(1)X gauge field in the unitary gauge.

Similarly, after the spontaneous breaking of the U(1)X group, the induced potential for the
other scalar field χ now reads:

V (χ) = λχ |χ|4 +m′′2χ |χ|2 +
(
r〈φ〉χ2 +h.c.

)
, (16)

where

m′′2χ = m′2χ +λφ χ〈φ〉2 = m2
χ +λχH〈H〉2 +λφ χ〈φ〉2. (17)

The coefficients of this potential are assumed such that they do not result in a non-zero VEV for
χ . Substituting

χ =
1√
2
(χr + iχi) (18)

into Eq. (16), we obtain the mass terms relating to these field components as

1
2
(
χr χi

)
M2

χ

(
χr
χi

)
=

1
2
(
χr χi

)(m′′2 +(r+ r∗)〈φ〉 i(r− r∗)〈φ〉
i(r− r∗)〈φ〉 m′′2− (r+ r∗)〈φ〉

)(
χr
χi

)
. (19)

The matrix M2
χ is symmetric, and can be diagonalized by an orthogonal matrix. In the case where

the coupling r is real, the squared mass matrix Mχ is diagonal. The masses of χr and χi are
respectively

mχr = m′′2 +2r〈φ〉, (20)

mχi = m′′2−2r〈φ〉. (21)

We see that the mass splitting between these real scalar fields is proportional to the VEV of φ .

1The factor 1√
2

is crucial for the canonical kinetic terms of the real scalar fields, ϕr and ϕi.
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III.2. U(1)X gauge boson
Due to the U(1)X gauge symmetry, the mass term of the corresponding gauge field Z′ is

forbidden in the original Lagrangian. After the scalar field φ develops a non-zero VEV, 〈φ〉,
the group U(1)X is spontaneously broken. Because the field φ is invariant under the SM gauge
symmetry, the covariant derivative of this scalar field is

Dµ
φ =

(
∂

µ − igX Xφ Z′µ
)

φ , (22)

where Xφ = 2 is the U(1)X charge of φ given in Table 1. Using Eq. (13) in the kinetic term with
the above covariant derivative, we can extract the mass term for Z′:

(Dµ
φ)†Dµφ =

(
∂

µ +2igX Z′µ
)[
〈φ〉+ 1√

2
(ϕr− iϕi)

](
∂µ −2igX Z′µ

)[
〈φ〉+ 1√

2
(ϕr + iϕi)

]
⊃ 4g2

X〈φ〉2Z′µZ′µ ≡
1
2

m2
Z′Z
′µZ′µ . (23)

From the last identity, we obtain the mass of the Z′ boson as

mZ′ = 2
√

2gX〈φ〉. (24)

III.3. Vector-like fermions
Since the scalar field χ does not develop a VEV, the vector-like lepton mass only comes

from ML, and there is no mass mixing with the SM leptons. In general, ML is a 2× 2 diagonal
matrix:

ML =

(
mN 0
0 mE

)
, (25)

where mN and mE are the masses of the upper and lower components (N,E) of the vector-like
lepton doublet L. The off-diagonal elements are forbidden by the charge conservation.

The vector-like quark masses are more involved because the scalar field φ acquires a non-
zero VEV, leading to their mixing with the SM quarks. The pure vector-like quark mass has a
form similar to Eq. (25):

MQ =

(
mU 0
0 mD

)
, (26)

where mU and mD are the masses of the upper and lower components (U,D) of the vector-like
quark doublet Q. The mass mixing between the vector-like quarks and the SM ones is controlled
by the new Yukawa interaction shown in Eq. (3):

−LYukawa ⊃ wqLQRφ = wuLURφ +wdLDRφ . (27)

After the gauge group U(1)X is spontaneously broken, the quark mass terms in the Lagrangian are
given by

−L quark
mass = Y u

i j〈H〉ui
Lu j

R +Y d
i j〈H〉di

Ld j
R +wi〈φ〉ui

LUR +wi〈φ〉di
LDR +MUULUR +MDDLDR

=
(

u1
L u2

L u3
L UL

)
Mu

4×4


u1

R
u2

R
u3

R
UR

+
(

d1
L d2

L d3
L DL

)
Md

4×4


d1

R
d2

R
d3

R
DR

 , (28)
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where, Y u and Y d are the up-type and down-type Yukawa coupling matrices in the SM. The two
4×4 mass matrices, Mu and Md , are written in the basis of quark gauge eigenstates as follows

Mu =


Y u

11〈H〉 Y u
12〈H〉 Y u

13〈H〉 w1〈φ〉
Y u

21〈H〉 Y u
22〈H〉 Y u

23〈H〉 w2〈φ〉
Y u

31〈H〉 Y u
32〈H〉 Y u

33〈H〉 w3〈φ〉
0 0 0 mU

 , (29)

Md =


Y d

11〈H〉 Y d
12〈H〉 Y d

13〈H〉 w1〈φ〉
Y d

21〈H〉 Y d
22〈H〉 Y d

23〈H〉 w2〈φ〉
Y d

31〈H〉 Y d
32〈H〉 Y d

33〈H〉 w3〈φ〉
0 0 0 mD

 . (30)

We observe that there are three distinct scales exist in each mass matrices, i.e. (〈H〉,〈φ〉,mU) for
Mu, and (〈H〉,〈φ〉,mD) for Md .

Each of these matrices can be diagonalized by a pair of unitary matrices:

Mu
diag = V u

L Mu(V u
R )

†, (31)

Mu
diag = V d

L Md(V d
R )

†. (32)

These unitary matrices act as rotations of the basis transforming the quark gauge eigenstates,
(u1,u2,u3,U) and (d1,d2,d3,D), into the mass eigenstates, (u,c, t,U ) and (d,s,b,D):

uL,R
cL,R
tL,R
UL,R

=
(
V u

L,R
)

4×4


u1

L,R
u2

L,R
u3

L,R
UL,R

 ,


dL,R
sL,R
bL,R
DL,R

=
(

V d
L,R

)
4×4


d1

L,R
d2

L,R
d3

L,R
DL,R

 . (33)

IV. GAUGE INTERACTIONS

IV.1. Gauge interactions for leptons
Since the SM leptons do not mix with the vector-like leptons, their interactions with the

gauge bosons (W±, Z-bosons, and photon) remain the same as in the SM. Because the SM leptons
have no charge under U(1)X , they do not interact with the new gauge boson Z′.

The vector-like lepton interactions with gauge bosons can be derived from the kinetic terms:

L ⊃ iLLγ
µDµLL + iLRγ

µDµLR, (34)

where the covariant derivatives of the vector-like leptons are given as

DµLL,R =

[
∂µ −

ig2√
2

(
τ
+W+

µ + τ
−W−µ

)
− ig2

cosθW

(
I3− sin2

θW Q
)

Zµ − ieQAµ

− igX XZ′µ
]

LL,R, (35)

where the 2×2 matrices τ± are defined as

τ
+ =

(
0 1
0 0

)
, τ

− =

(
0 0
1 0

)
, (36)
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θW is the Weinberg angle, and the electric charge Q is determined by the Gell-Mann−Nishijima
formula:

Q = I3 +Y. (37)

The U(1)X charges of the vector-like leptons are given in Table 1 as XLL,R = 1.
As a result, the interaction terms between the vector-like leptons and the model’s gauge

bosons are

L gauge
interaction ⊃ LLLW +LLLZ +LLLA +LLLZ′ , (38)

where

LLLW =
g2√

2
Nγ

µEW+
µ +

g2√
2

Eγ
µNW−µ , (39)

LLLZ =
g2

2cosθW
Nγ

µNZµ +
g2

cosθW

(
−1

2
+ sin2

θW

)
Eγ

µEZµ , (40)

LLLA = − eEγ
µEAµ , (41)

describe the interaction with the ordinary SM gauge bosons, and

LLLZ′ = gX Nγ
µNZ′µ +gX Eγ

µEZ′µ , (42)

describes the interaction with the new massive gauge boson Z′. Here, we denote

N = NL +NR, E = EL +ER, (43)

as Dirac spinors for the upper and lower components of the vector-like lepton doublet L = LL+LR.

IV.2. Gauge interactions for quarks
Due to the mixing among the SM and the vector-like quarks (see Eq. (33)), the gauge

interactions of the SM quarks are modified in comparison to those in the SM. Noting that the SM
quarks are neutral under the U(1)X group, their covariant derivatives are

Dµqi
L =

[
∂µ − ig3

λa

2
Ga

µ −
ig2√

2

(
τ
+W+

µ + τ
−W−µ

)
− ig2

cosθW

(
I3− sin2

θW Q
)

Zµ − ieQAµ

]
qi

L,

Dµ(u,d)i
R =

[
∂µ − ig3

λa

2
Ga

µ −
ig2

cosθW

(
−sin2

θW Q
)

Zµ − ieQAµ

]
(u,d)i

R. (44)

In the meanwhile, the vector-like quarks have non-zero U(1)X charges. Therefore, their covariant
derivatives are

DµQL,R =

[
∂µ − ig3

λa

2
Ga

µ −
ig2√

2

(
τ
+W+

µ + τ
−W−µ

)
− ig2

cosθW

(
I3− sin2

θW Q
)

Zµ − ieQAµ

− igX XZ′µ
]

QL,R. (45)

Substituting these equations into the Dirac Lagrangian:

L ⊃ iqi
Lγ

µDµqi
L + iui

Rγ
µDµui

R + idi
Rγ

µDµdi
R + iQLγ

µDµQL + iQRγ
µDµQR, (46)

we obtain the various gauge interaction terms for the model’s quarks:

L gauge
interaction ⊃ LqqG +LqqW +LqqZ +LqqA +LqqZ′ . (47)
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Decomposing the quark doublets into different charged states, the interactions between
these quarks and gluons are described by

LqqG = g3ui
L

λa

2
γ

µui
LGa

µ +g3di
L

λa

2
γ

µdi
LGa

µ +g3UL
λa

2
γ

µULGa
µ +g3DL

λa

2
γ

µDLGa
µ

+ g3ui
R

λa

2
γ

µui
RGa

µ +g3di
R

λa

2
γ

µdi
RGa

µ +g3UR
λa

2
γ

µURGa
µ +g3DR

λa

2
γ

µDRGa
µ

= g3Fu
L

λa

2
γ

µFu
L Ga

µ +g3Fu
R

λa

2
γ

µFu
R Ga

µ +g3Fd
L

λa

2
γ

µFu
L Ga

µ +g3Fd
R

λa

2
γ

µFu
R Ga

µ , (48)

where Fu,d
L,R are used to denote the quark gauge eigenstates:

Fu
L,R =


u1

L,R
u2

L,R
u3

L,R
UL,R

 , Fd
L,R =


d1

L,R
d2

L,R
d3

L,R
DL,R

 . (49)

The interactions between quarks and W -bosons are found to be

LqqW =
ig2√

2
ui

Lγ
µdi

LW+
µ +

ig2√
2

di
Lγ

µui
LW−µ

+
ig2√

2
ULγ

µDLW+
µ +

ig2√
2

DLγ
µULW−µ +

ig2√
2

URγ
µDRW+

µ +
ig2√

2
DRγ

µURW−µ

=
ig2√

2
Fu

L γ
µ
(
CW

L
)

4×4 Fd
L W+

µ +
ig2√

2
Fu

R γ
µ
(
CW

R
)

4×4 Fd
R W+

µ +h.c., (50)

where

CW
L = Diag(1,1,1,1), CW

R = Diag(0,0,0,1), (51)

are 4×4 diagonal matrices acting on the generation space.
The interaction terms of quarks and Z-bosons are

LqqZ =
g2

cosθW
ui

Lγ
µ

(
1
2
− 2

3
sin2

θW

)
ui

LZµ +
g2

cosθW
di

Lγ
µ

(
−1

2
+

1
3

sin2
θW

)
di

LZµ

+
g2

cosθW
ui

Rγ
µ

(
−2

3
sin2

θW

)
ui

RZµ +
g2

cosθW
di

Rγ
µ

(
1
3

sin2
θW

)
di

RZµ

+
g2

cosθW
ULγ

µ

(
1
2
− 2

3
sin2

θW

)
ULZµ +

g2

cosθW
DLγ

µ

(
−1

2
+

1
3

sin2
θW

)
DLZµ

+
g2

cosθW
URγ

µ

(
1
2
− 2

3
sin2

θW

)
URZµ +

g2

cosθW
DRγ

µ

(
−1

2
+

1
3

sin2
θW

)
DRZµ

=
g2

cosθW
Fu

L γ
µ
(
CZ

uL
)

4×4 Fu
L Zµ +

g2

cosθW
Fd

L γ
µ
(
CZ

dL
)

4×4 Fd
L Zµ

+
g2

cosθW
Fu

R γ
µ
(
CZ

uR
)

4×4 Fu
R Zµ +

g2

cosθW
Fd

R γ
µ
(
CZ

dR
)

4×4 Fd
R Zµ , (52)
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where

CZ
uL =

(
1
2
− 2

3
sin2

θW

)
·Diag(1,1,1,1), (53)

CZ
dL =

(
−1

2
+

1
3

sin2
θW

)
·Diag(1,1,1,1), (54)

CZ
uR =


−2

3 sin2
θW 0 0 0

0 −2
3 sin2

θW 0 0
0 0 −2

3 sin2
θW 0

0 0 0 1
2 −

2
3 sin2

θW

 , (55)

CZ
dR =


1
3 sin2

θW 0 0 0
0 1

3 sin2
θW 0 0

0 0 1
3 sin2

θW 0
0 0 0 −1

2 +
1
3 sin2

θW

 , (56)

are 4×4 diagonal matrices acting on the generation space. From Eqs. (50) and (52), we can see
that the SM quark weak currents are V −A type, while the vector-like quark weak currents are
purely V type.

The interaction terms between quarks and photons are written as

LqqA =
2
3

eui
Lγ

µui
LAµ −

1
3

edi
Lγ

µdi
LAµ +

2
3

eui
Rγ

µui
RAµ −

1
3

edi
Rγ

µdi
RAµ

+
2
3

eULγ
µULAµ −

1
3

eDLγ
µDLAµ +

2
3

eURγ
µURAµ −

1
3

eDRγ
µDRAµ

=
2
3

eFu
L γ

µFu
L Aµ −

1
3

eFd
L γ

µFd
L Aµ +

2
3

eFu
R γ

µFu
R Aµ −

1
3

eFd
R γ

µFd
R Aµ . (57)

Note that XQL,R = −2 as given in Table 1, the interaction terms between quarks and the
Z′-boson are

LqqZ′ = − 2gXULγ
µULZ′µ −2gX DLγ

µDLZ′µ −2gXURγ
µURZ′µ −2gX DRγ

µDRZ′µ

= − 2gX Fu
L γ

µ (CZ′)4×4 Fu
L Z′µ −2gX Fd

L γ
µ (CZ′)4×4 Fd

L Z′µ

− 2gX Fu
R γ

µ (CZ′)4×4 Fu
R Z′µ −2gX Fd

R γ
µ (CZ′)4×4 Fd

R Z′µ , (58)

where

CZ′ = Diag(0,0,0,1). (59)

is a 4×4 diagonal matrix acting on the generation space.
Next, we rewrite these above interaction terms in the basis of quark mass eigenstates (33),

F u
L,R =


uL,R
cL,R
tL,R
UL,R

=V u
L,RFu

L,R , F d
L,R =


dL,R
sL,R
bL,R
DL,R

=V d
L,RFd

L,R, (60)

that are physical states to be observed experimentally. In the calculation, we use the fact that the

rotation matrices are unitary, namely
(

V u,d
L,R

)†
V u,d

L,R = 14×4 = Diag(1,1,1,1), in places where it can



240 T. M. HIEU, D. Q. SANG AND T. Q. TRANG

be applied. To translate the Lagrangian from Weyl spinors for chiral states to Dirac spinor, we use
the following relations:

F u,d
L,R = PL,RF u,d , PL,R =

1∓ γ5

2
, (61)

F u,d = F u,d
L +F u,d

R . (62)

i. Quark−quark−gluon interaction

LqqG = g3F u
L

λa

2
γ

µV u
L V u†

L F u
L Ga

µ +g3F u
R

λa

2
γ

µV u
RV u†

R F u
RGa

µ

+ g3F d
L

λa

2
γ

µV d
L V d†

L F d
L Ga

µ +g3F d
R

λa

2
γ

µV d
R V d†

R F d
R Ga

µ

= g3F u
L

λa

2
γ

µF u
L Ga

µ +g3F u
R

λa

2
γ

µF u
RGa

µ +g3F d
L

λa

2
γ

µF d
L Ga

µ +g3F d
R

λa

2
γ

µF d
R Ga

µ

= g3F u λa

2
γ

µPLF
uGa

µ +g3F u λa

2
γ

µPRF uGa
µ

+ g3F d λa

2
γ

µPLF
dGa

µ +g3F d λa

2
γ

µPRF dGa
µ

= g3F u λa

2
γ

µF uGa
µ +g3F d λa

2
γ

µF dGa
µ . (63)

From this equation, we see that, due to the unitarity of the rotation matrices V u,d
L,R , the strong inter-

action for quarks in this model is the same as that in the SM.

ii. Quark−quark−W interaction

LqqW =
ig2√

2
F u

L γ
µV u

L CW
L V d†

L F d
L W+

µ +
ig2√

2
F u

Rγ
µV u

RCW
R V d†

R F d
RW+

µ +h.c.. (64)

Noting that CW
L is the identity matrix (see Eq. (51)), the relevant term becomes simpler:

LqqW
(51)
=

ig2√
2
F u

L γ
µV u

L V d†
L F d

L W+
µ +

ig2√
2
F u

Rγ
µV u

RCW
R V d†

R F d
RW+

µ +h.c.

=
ig2√

2
F uγ

µ

(
V u

L V d†
L PL +V u

RCW
R V d†

R PR

)
F dW+

µ +h.c.

=
ig2

2
√

2
F u
[(

V u
L V d†

L +V u
RCW

R V d†
R

)
4×4

γ
µ

−
(

V u
L V d†

L −V u
RCW

R V d†
R

)
4×4

γ
µ

γ
5
]
F dW+

µ +h.c. . (65)

In the SM, only left-handed quarks involve in the charged current. Due to the existence of the
vector-like quarks and their mixing with SM quarks in this model, both left-handed and right-
handed quarks take parts in the charged current.
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iii. Quark−quark−Z interaction

LqqZ =
g2

cosθW
F u

L γ
µV u

L CZ
uLV u†

L F u
L Zµ +

g2

cosθW
F d

L γ
µV d

L CZ
dLV d†

L F d
L Zµ

+
g2

cosθW
F u

Rγ
µV u

RCZ
uRV u†

R F u
RZµ +

g2

cosθW
F d

R γ
µV d

R CZ
dRV d†

R F d
R Zµ . (66)

Because CZ
uL and CZ

dL are proportional to the identity matrix, they commute with V u
L and V d

L . How-
ever, CZ

uR and CZ
dR do not commute with V u

R and V d
R . Using the unitarity of V u,d

L , we have

LqqZ
(53)
=
(54)

g2

cosθW
F u

L γ
µCZ

uLF
u
L Zµ +

g2

cosθW
F d

L γ
µCZ

dLF
d
L Zµ

+
g2

cosθW
F u

Rγ
µV u

RCZ
uRV u†

R F u
RZµ +

g2

cosθW
F d

R γ
µV d

R CZ
dRV d†

R F d
R Zµ

=
g2

cosθW
F uγ

µ

(
CZ

uLPL +V u
RCZ

uRV u†
R PR

)
F uZµ

+
g2

cosθW
F dγ

µ

(
CZ

dLPL +V d
R CZ

dRV d†
R PR

)
F dZµ

=
g2

2cosθW
F u
[(

CZ
uL +V u

RCZ
uRV u†

R

)
4×4

γ
µ −
(

CZ
uL−V u

RCZ
uRV u†

R

)
4×4

γ
µ

γ
5
]
F uZµ

+
g2

2cosθW
F d

[(
CZ

dL +V d
R CZ

dRV d†
R

)
4×4

γ
µ −
(

CZ
dL−V d

R CZ
dRV d†

R

)
4×4

γ
µ

γ
5
]
F dZµ .

(67)

In the SM, since the Z-boson can only interact with quarks of a same generation, there is no flavor
changing neutral current at the tree level. The situation in the considered model is different. We
observe that, although the interaction of left-handed quarks with the Z-boson is similar to that
in the SM, the right-handed quarks contribute to the flavor changing neutral current at tree level.
Therefore, the mixing matrices V u,d

R must be suppressed.

iv. Quark−quark−photon interaction

LqqA =
2
3

eF u
L γ

µV u
L V u†

L F u
L Aµ −

1
3

eF d
L γ

µV d
L V d†

L F d
L Aµ

+
2
3

eF u
Rγ

µV u
RV u†

R F u
RAµ −

1
3

eF d
R γ

µV d
R V d†

R F d
R Aµ

=
2
3

eF u
L γ

µF u
L Aµ −

1
3

eF d
L γ

µF d
L Aµ +

2
3

eF u
Rγ

µF u
RAµ −

1
3

eF d
R γ

µF d
R Aµ

=
2
3

eF uγ
µPLF

uAµ +
2
3

eF uγ
µPRF uAµ −

1
3

eF dγ
µPLF

dAµ −
1
3

eF dγ
µPRF dAµ

=
2
3

eF uγ
µF uAµ −

1
3

eF dγ
µF dAµ . (68)

Due to the unitarity of the rotation matrices V u,d
L,R , the electromagnetic interaction of quarks is the

same as that in the SM.
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v. Quark−quark−Z’ interaction

LqqZ′ = − 2gXF u
L γ

µV u
L CZ′V

u†
L F u

L Z′µ −2gXF d
L γ

µV d
L CZ′V

d†
L F d

L Z′µ

− 2gXF u
Rγ

µV u
RCZ′V

u†
R F u

RZ′µ −2gXF d
R γ

µV d
R CZ′V

d†
R F d

R Z′µ

= − 2gXF uγ
µV u

L CZ′V
u†
L PLF

uZ′µ −2gXF dγ
µV d

L CZ′V
d†
L PLF

dZ′µ

− 2gXF uγ
µV u

RCZ′V
u†
R PRF uZ′µ −2gXF dγ

µV d
R CZ′V

d†
R PRF dZ′µ

= − gXF u
[(

V u
L CZ′V

u†
L +V u

RCZ′V
u†
R

)
4×4

γ
µ

−
(

V u
L CZ′V

u†
L −V u

RCZ′V
u†
R

)
4×4

γ
µ

γ
5
]
F uZ′µ

− gXF d
[(

V d
L CZ′V

d†
L +V d

R CZ′V
d†
R

)
4×4

γ
µ

−
(

V d
L CZ′V

d†
L −V d

R CZ′V
d†
R

)
4×4

γ
µ

γ
5
]
F dZ′µ . (69)

At the beginning, the Z′-boson only interacts with vector-like quarks, but not with SM quarks. Be-
cause CZ′ does not commute with the rotation matrices V u,d

L,R , after changing to the mass eigenstate
representation, quarks of all flavors can interact with Z′-bosons due to the quark mixing.

V. PHENOMENOLOGICAL DISCUSSIONS

It is worth noting that the SM model can be recovered in the limit where the new couplings
in Eqs. (3) and (22) tend to zero, and the new mass scales in Eqs. (6) and (24) tend to infinity in
the model’s Lagrangian. Therefore, in principle, all the experimental results consistent with the
SM predictions can be explained in the considered model when these new parameters are close
enough to such limits. Here, we briefly discuss several important phenomenological points.

• In Eq. (67), there are flavor changing neutral currents (FCNCs) at the tree level. They
can be suppressed by small quark mixing, which implies small coupling w1,2,3 and
large vector-like quark masses mU,D. In the limit of zero vector-like quark mixing, we
have no tree-level FCNCs.
• Regarding to the unitarity of the CKM matrix, small values of w1,2,3 result in small

quark mixings, while small U(1)X coupling and large Z′-boson mass lead to negligible
loop corrections of this new gauge boson. Therefore, we can set the unitarity violation
of the CKM matrix to stay within the experimental errors with suitable choices of these
parameters.
• The W and Z production at the LHC via gluon-gluon fusion can be within experimen-

tal limits because the additional corrections due to the new vector-like fermion loops
can be suppressed by their large mass scales, (MQ, ML).
• The Peskin-Takeuchi parameters (S, T , and U) [14, 15] and the ρ parameter [16]

are important parameters for the electroweak precision tests. The contributions of
the vector-like leptons and quarks to the Peskin-Takeuchi parameters have been cal-
culated in an approximation of small mixing and large vector-like fermion masses,
mN,E , mU,D� mW . The results read
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S ≈ − 4
3π

[(
−1

2

)
∆mL

mN
+3×

(
1
6

)
∆mQ

mU

]
=

2
3π

(
∆mL

mN
− ∆mQ

mU

)
, (70)

T ≈ 1
6π sin2

θW
×

∆m2
L +3∆m2

Q

m2
W

, (71)

U ≈ 11
30π

(
∆m2

L

m2
N

+3
∆m2

Q

m2
U

)
, (72)

where ∆mL =mN−mE and ∆mQ =mU−mD are the mass splittings between the upper
and the lower components of the vector-like lepton doublet and the vector-like quark
doublet. The contribution of the new vector-like fermion doublets to the ρ parameter
is proportional to the T parameter:

∆ρ = α ·T =
α

6π sin2
θW
×

∆m2
L +3∆m2

Q

m2
W

. (73)

We can see that these parameters depend on the mass splittings, ∆mL,Q, between the
upper and lower components of the vector-like doublets. Therefore, when vector-like
fermions are heavy enough and nearly degenerate, the constraints on these parameters
can be satisfied.
• Magnitudes of new scales mU , mD, mN , mE , 〈φ〉 in the model must be large enough

to be consistent with experimental data. From the above calculation, we find that
the scales of these parameters of O(TeV) can well satisfy the constraints from the
precision tests [16].
• The neutrino oscillation is a different aspect related to the neutrino masses and mixing.

To address this problem, new heavy right-handed neutrino states can be introduced
such that the left-handed neutrinos receive tiny masses via the see-saw mechanism.
• The new physics introduced in this model results in rich phenomenology, for example

those related to the new vector-like quark mixing that are beyond the SM. The new
effects of the model are important criteria to test the model, and therefore deserve
further investigation in the future.

VI. CONCLUSIONS

In the SM extension with vector-like fermions and additional Abelian symmetry, we have
calculated the new particles’ masses that define their mass eigenstates. After the U(1)X breaking,
the vector-like and SM quarks are mixed together, while there is no such mixing in the lepton
sector. We have extended the simple quark mixing picture in previous studies to consider the full
mixing between all the three generations of SM quarks and the vector-like quarks. This mixing
pattern results in a distinct picture of gauge interactions, especially for those involving quarks. The
gauge interaction terms of quarks and leptons have been explicitly derived for the model. We have
found that although the strong and electromagnetic interactions are the same as those in the SM,
the weak interactions with W and Z bosons are modified in comparison to those in the SM due to
the quark mixing effect. Relating to the U(1)X gauge group, the interaction terms of Z′-bosons
with leptons and quarks have been obtained. We have shown that, in the mass eigenstate basis,
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while only vector-like leptons interact with Z′-boson, quarks of all flavors can interact with this
new massive gauge boson. Since the SM is recovered in the limit where the new mass scales are
large and the new couplings are small, the model is viable. The contributions of the new vector-like
doublets to the Peskin-Takeuchi parameters as well as the ρ parameters have been calculated in the
limit of small mass mixing and large vector-like fermion masses. The results of this paper suggest
interesting phenomenology relevant to the model’s typical structure and new physics beyond the
SM. This topic is beyond the scope of this paper, and will be investigated in the near future [17].
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