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Abstract. The bubble nucleation in the framework of 3-3-1-1 model is studied. Previous studies
show that first order electroweak phase transition occurs in two periods. In this paper we evaluate
the bubble nucleation temperature throughout the parameter space. Using the stringent condition
for bubble nucleation formation we find that in the first period, symmetry breaking from SU(3)→
SU(2), the bubble is formed at the nucleation temperature T = 150 GeV and the lower bound of
the scalar mass is 600 GeV. In the second period, symmetry breaking from SU(2)→U(1), only
subcritical bubbles are formed therefore eliminates the electroweak baryon genesis in this period
of the model.
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I. INTRODUCTION

The electroweak phase transition (EWPT) plays an important role at early stage of expand-
ing universe. In the early stage of the universe, if the temperature is equal to zero then the Higgs
field can minimize its energy at nonzero value of the vacuum expectation value 〈φ〉 = σ . When
the temperature is high enough, the free energy required to give mass to the thermal distribution of
particles exceeds the vacuum energy liberated by displacing the Higgs field vacuum expectation
value from the origin. At critical temperature Tc, the Higgs potential has minimum at the value
of Higgs field 〈φ〉 = 0. At the temperature larger than the electroweak scale the minimum of the
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effective Higgs potential is at the origin meaning the symmetry is restored. As the temperature
drops lower to Tc, a new minimum appears, separated from the origin by a hump. When the barrier
separating the two minimums is small enough, bubbles of true vacuum are nucleated and grow.

At the temperature T2 where the second derivative of the potential at the origin vanishes
(metastable state), fluctuations can classically roll toward the global minimum without surmount-
ing an energy barrier. If the phase transition has not yet completed by the time the temperature
drops to T2, the transition is no longer occurs through bubble nucleation. The more stringent
condition for a first order phase transition is that it proceeds by bubble nucleation.

Phase transition driven by scalar fields plays an important role in the very early evolution
of the Universe. In most inflationary models, the dynamics are driven by the evolution of a scalar
inflaton field. In the Standard Model (SM), the EWPT is an addibatic cross over transition [1–4].

One of the simple extension of the SM in which a first order EWPT is possible is the 3-3-1-1
model [5]. This model has some intriguing phenomena such as Dark Matter, inflation, leptogene-
sis, neutrino mass and B−L asymmetry and has been studied in [6–10]. Besides these interesting
features, this model can give the first order phase transition in some region of parameters. The
multi-period structure of the EWPT in this model has been studied in [11] at TeV and electroweak
scale. In their study, the EWPTs are of the first order when the new bosons are triggers and their
masses are within range of some TeVs. One important feature of EWPT is the dynamics of bubble
nucleation during transition which has not been studied in this model. In this paper we will study
this feature. We will impose more stringent condition of the first order phase transition. We will
evaluate the bubble nucleation temperature,TN , thoughtout the parameter space of the model.

II. BRIEF REVIEW OF THE 3-3-1-1 MODEL

There are many new particles in the model 3-3-1-1. These new particles are inserted in the
multiplet of the gauge group SU(3)C ⊗SU(3)L ⊗U(1)X ⊗U(1)N , where U(1)X is the gauge group
associated with the electromagnetic interaction and U(1)N is the gauge group associated with the
conservation of B−L number when combining with SU(3)L charges [5–9].

The fermion content of the model has to have equal number of the SU(3)L triplets and
anti-triplets to keep the model being anomaly free [5]
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where a = 1,2,3 and α = 1,2 are family indices. NaR is neutral fermions playing a role of can-
didates for DM. In (1), the numbers in bracket associated with multiplet correspond to number of
members in the SU(3)C, SU(3)L assignment, its X and N charges, respectively.

The Higgs sector of the model contains three scalar triplets and one singlet
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From the lepton structure in (1), the lepton and anti-lepton lie in the same triplet. Hence,
lepton number is not conserved and it should be replaced with new conserved one L [12]. As-
suming the bottom element in lepton triplet (NaR) without lepton number, ones have [5]

B−L =− 2√
3

T8 +N . (4)

Note that in this model, not only leptons but also some scalar fields carry lepton number as seen
in Table 1

Table 1. Non-zero lepton number L of fields in the 3-3-1-1 model.

Particle ν e N U D η3 ρ3 χ1 χ2 φ

L 1 1 0 −1 1 −1 −1 1 1 −2

From Table 1, we see that elements at the bottom of η and ρ triplets carry lepton number
−1, while the elements standing in two first rows of χ triplet have the opposite one +1.

To generate masses for fermions, it is enough that only neutral scalars without lepton num-
ber develop VEV as follows

〈η〉 =

(
u√
2
,0 ,0

)T

, χ =

(
0 ,0 ,

ω√
2

)T

, ρ =

(
0 ,

v√
2
,0
)T

. (5)

For the future presentation, let us remind that in the model under consideration, the covariant
derivative is defined as

Dµ = ∂µ − igstiGiµ − igTiAiµ − igX XBµ − igNNCµ , (6)

where Giµν ,Aiµν ,Bµν ,Cµν and gs,g,gX ,gN correspond to gauge fields and couplings of SU(3)C,
SU(3)L, U(1)X and U(1)N groups, respectively.

The Yukawa couplings are given as

LYukawa = he
abψ̄aLρebR +hν

abψ̄aLηνbR +h′νabν̄
c
aRνbRφ +hU Q̄3LχUR +hD

αβ
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+hu
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abQ̄aLρ

∗ubR +H.c.. (7)

From Eq. (7), it follows masses of the top and bottom quarks as follows

mt =
htu√

2
, mb =

hbv√
2
,

while masses of the exotic quarks are determined as

mU =
ω√

2
hU ; mD1 =

ω√
2

hD
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ω√
2

hD
22.
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The Higgs fields are expanded around the VEVs as follows
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It is mentioned that the values u and v provide masses for all fermions and gauge bosons in the
SM, while ω gives masses for the extra heavy quarks and gauge bosons. The value Λ plays the
role for the U(1)N breaking at high scale; and in some cases, it is larger than ω .

The scalar potential for Higgs fields is a function of eighteen parameters
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Hence, the potential minimization conditions [11] are obtained by
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III. EFFECTIVE POTENTIAL

The Higgs potential is given as follows [5],
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from which, ones obtain V0 depending on VEVs :
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Here V0 has quartic form like in the SM, but it depends on four variables φΛ,φω ,φu, φv,
and has the mixing terms between them. With four minimum equations (10-13), we can transform
the mixing between four variables to the form depending only on φΛ,φω ,φu and φv. On the other
hand, the mixing terms can be small (having a strong first-order phase transition [11]). We can
approximate V0(φΛ,φω ,φu,φv)≈V0(φΛ)+V0(φω)+V0(φu)+V0(φv).

From the mass spectra, we can split masses of particles into four parts as follows

m2(φΛ,φω ,φu,φv) = m2(φΛ)+m2(φω)+m2(φu)+m2(φv). (16)

Taking into account Eqs. (15) and (16), we can also split the effective potential into four
parts

Ve f f (φΛ,φω ,φu,φv) =Ve f f (φΛ)+Ve f f (φω)+Ve f f (φu)+Ve f f (φv).

It is difficult to study the electroweak phase transition with four VEVs, so we assume φΛ ≈
φω ,φu ≈ φv over space-times. Then, the effective potential becomes

Ve f f (φΛ,φω ,φu,φv) =Ve f f (φω)+Ve f f (φu).

At one loop order the SU(3)−→ SU(2) effective potential is given as [11]
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The effective potential of EWPT SU(2)→U(1) is given as
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IV. DYNAMICS OF ELECTROWEAK PHASE TRANSITION

Below the critical temperature, spherical bubbles of the broken-symmetry phase nucleate
with a rate [13, 14]

Γ(T )' A(T )e−S3(T )/T , (24)

with A(T ) = [S3(T )/(2πT )]3/2 T 4, where S3 is the three-dimensional instanton action

S3 = 4π

∫
∞

0
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[
1
2

(
dφ

dr

)2

+VT (φ(r))

]
, (25)

where VT (φ) = Ve f f (Φ) given as in (17). The configuration of the nucleated bubble is a solution
of the equations

d2φ
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2
r

dφ
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dVT

dφ
,

dφ

dr
(0) = 0, lim

r→∞
φ(r) = 0. (26)

The function S3(T ) diverges at T = Tc and, hence, we have Γ(Tc) = 0. As T decreases below Tc,
S3 decreases and Γ grows.

As the Universe cools, bubbles on broken-minimum phase are nucleated. The nucleation
probability per unit time per unit volume at temperature T is given by [14]

P≈ T 4e−S3/T (27)

where S3 is the Euclidian action of the critical bubble. Nucleation temperature TN is the tempera-
ture at which the nucleation probability per Hubble volume becomes of order one. For EWPT this
is equivalent to [14]

S3

TN
≈ 140 (28)

Following the calculation in [14], the ratio S3
T is given as following:

S3

T
=

4.85M(T )3

E2T 3 f (α) (29)

where

f (α) = 1+
α

4

[
1+

2.4
1−α

+
0.26

(1−α)2

]
(30)

and M(T )2 = 2D(T 2−T 2
0 ).

After bubbles are formed they will expand. The wall of the bubbles experiences outward
pressure due to difference in energy densities of the symmetric and broken vacua, Vvac(sym)−
Vvac(br), where Vvac =V0 +V1. The wall also experiences pressure P from the thermal plasma of
particles of the environment in which the wall moves through. The pressure of the surrounding
environment will slow down the wall. The effect of this two pressure will determine whether the
wall reach a non-relativistic velocity or accelerate to reach relativistic velocity. The electroweak
baryogenesis can only occur if the wall velocity is non-relativistic since if the wall velocity is
relativistic there is not enough time to generate baryon-antibatyon in the region in front of the
advancing bubble wall.
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V. NUMERICAL RESULT

In [11], the phase structure is studied with in three or two periods. In this section we
will investigate the bubble nucleation with corresponding to the phase transition. We will scan
the parameter space of the model. We determine the mass scale, the nucleation temperature and
condition for bubble nucleation to be formed. We calculate Electroweak Phase Transition in the
picture, Λ ≈ ω � u ≈ v. The phase transition occurs in two periods; first phase transition from
SU(3) to SU(2) then from SU(2) to U(1).

1. Phase transition SU(3)→ SU(2)

In finding the numerical constraint of the parameter of the model, we have made the follow-
ings approximations: mZ1 = mZ2 ≤ 4.3TeV and the new heavy charge vector boson other than W
boson mX = mY > 2220GeV [15]. Exotic quarks have the same mass mU = mD1 = mD2 = mH2 =
1740 GeV. From the mass in the table given in [11], the mass of scalar Higgs is approximated
to have the same mass which is proportional to the SU(3) symmetry breaking scale O(ω) and
mH2 = mA′χ = mS′χ = mH3 . Since scalar fields play important role in phase transition process, we
will investigate the mass parameter of the scalar field.

In Fig. 1 we plot the contour graph of the ratio S
T versus two parameters temperature T and

mass of scalar field mH3 . The blue line indicates the ration equal to 140 which is the condition
for the bubble to be formed. From Fig. 1 we can see that the minimum mass of the scalar field
mH3 ≥ 650 GeV and the temperature where phase transition from SU(3)→ SU(2) occurs at T =
150 GeV.
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Fig. 1. Contour plot of the ration S
T versus temperature T and the mass of the scalar

Higgs mH3 . Blue line corresponds to S
T = 140
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2. Phase transition SU(2)→U(1)

Next we will investigate the parameter space of the SU(2)→U(1) phase transition. The
ration S

T is plotted in Fig. 2 against the temperature T and mH1 , where the mass of the Stan-
dard Model has been used: mW = 80.385 GeV, mZ = 90.18 GeV, Mt = 174 GeV . The mass of
mAχ

,mSρ
,mSη

is approximated to have the same mass order with mH1 since these masses are pro-
portional to the SU(2) symmetry breaking scale u. Using the above constraint for the mass of mH3

we approximated mH2 ≈ mH3 = 650 GeV. From Fig. 2 we can see that the ration S
T is very small.

Multiply this ration with the temperature range of investigation we find that value of the action S
is not much greater than 1 which indicate very weakly first order phase transition resulting in the
formation of small (subcritical ) bubbles. These bubbles are formed then collapse.
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Fig. 2. Contour plot of the ration S
T versus temperature T and the mass of the scalar Higgs mH1 .
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VI. CONCLUSION AND OUTLOOKS

We have studied the bubble formation the 3-3-1-1 model. By studying the bubble nucleation
rate and imposing more strict condition we went to conclusion that phase transition only occurs
in the period when symmetry breaking from SU(3)L to SU(2)L happens. This condition is more
strict compared to previous study [11]. In our next works, we will investigate the wall velocity in
this model to have deeper analysis of the baryon genesis in this model.
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