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Abstract. We present the microcanonical statistical model to study fragmentation of small neutral
carbon clusters Cn (n ≤ 9). This model describes, at a given energy, the phase space associated
with all the degrees of freedom accessible to the system (partition of the mass, translation and ro-
tation, spin and angular momentum of the fragments). The basic ingredients of the model (cluster
geometries, dissociation energies, harmonic frequencies) are obtained, for both the parent cluster
and the fragments, by an ab initio calculation. The fragmentation channels probabilities obtained
as a function of the excitation energy, were compared with the experimental data at the Orsay
Tandem. The deposited energy distributions were adjusted so that the experimental measure-
ments were optimally reproduced. Two algorithms were used: Non-Negative Least Squares and
Bayesian backtracing. The comparison of the theoretical and experimental probabilities shows a
good global agreement. Both algorithms result in deposited energy distributions showing peaks.
These peaks could be the signatures of specific molecular states which may play a role in the clus-
ter fragmentation.
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I. INTRODUCTION

The small neutral carbon clusters Cn (n ≤ 9) are the subject of intense researches in both
theory and experiment. They play an important role in the chemistry of the universe. The small
neutral carbon clusters are observed in planetary environments, interstellar and circumstellar me-
dia [1] as well as in the comets [2]. They also present in flames. Their role is dominating in cold
plasmas at low pressure used for decontamination of smoke. Fragmentation is the dominant dis-
sociation process of excited carbon clusters [3, 4]. Therefore, the knowledge of fragmentation of
carbon clusters can provide information on the stability of these clusters as well as on the dynamic
of the excitation process [5]. In addition, understanding of physico-chemical characteristics of
these clusters is an important issue especially for the protection of the environment. Presently,
there is a lack of fragmentation data in astrochemical codes for most of the introduced species,
including carbon clusters. Indeed, although numerous works have been devoted to carbon clus-
ters [6,7], they mostly rely on spectroscopic studies and very few on fragmentation, especially for
neutral and multi-charged clusters.

Experimentally, the information of fragmentation of neutral carbon clusters is scarce. The
Tandem accelerator in Orsay (France) and the detector AGAT have a leading role in the world for
the experimental study of the fragmentation of the carbon clusters. Very recently, fragmentation
of neutral carbon clusters Cn has been performed by Chabot et al. [8] at the Tandem accelerator. In
these experiments, the neutral clusters Cn were produced by high velocity collision on helium gas.
Clusters are accelerated by the Tandem accelerator and their fragmentation is analyzed by the 4π ,
100% efficient detector, AGAT. Thanks to a shape analysis of the current signal from the silicon
detector, branching ratios for all possible fragmentation channels have been measured.

Theoretically, the most studies concerning the fragmentation of carbon clusters have been
conducted within a statistical framework. In this one, it is assumed that the energy of the cluster
is concentrated on the electronic ground state and is shared between vibrational and rotational
excitations. Amongst statistical approaches the Phase Space Theory (PST) was used for extracting,
from metastable dissociation of Cn

+, dissociation energies in these species [9]. The simulation of
kinetic energy distributions of fragments in the photodissociation of Cn clusters was obtained in
a satisfactory way using the PST theory by Choi et al. [10]. Nevertheless, the most complete
statistical fragmentation study of neutral carbon clusters was carried out by Diaz-Tendero et al.
[11] within the Weisskopf and MMMC (Microcanocical Metropolis Monte Carlo) [12,13] models
through many aspects: consideration of all possible dissociative channels, introduction of a large
number of isomers, inclusion of rotational energy, examination of kinetics. The MMMC model
has been compared to experiment [11].

In this paper, we have improved and developed MMMC method to investigate fragmenta-
tion of small neutral carbon clusters. Instead of using the Metropolis algorithm towards the region
of maximum weight in phase space of the MMMC method, all possible microcanonical states in
phase space are taken into account in our calculations. Several improvements have been done in
our calculations of microcanonical weight of fragmentation channels. We have compared our cal-
culated branching ratios for all possible fragmentation channels with the experimental results. The
agreement between theory and experiments is reasonably good. This combination of experimen-
tal mesurements with simulation allowed us to extract the deposited energy distributions of the
neutral cluster just after the collision that would be extremely difficult to obtain from experiments.
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II. MICROCANONICAL STATISTICAL MODEL FOR FRAGMENTATION

In this paper, we investigate only the small neutral carbon clusters. All fragments are neu-
tral, the Coulomb interaction energy between the fragments is thus zero. This model treats the
system in internal thermodynamic equilibrium and, therefore, it allows to explore all possible
microcanonical states of phase space. In our simulation, for a given excitation energy of parent
cluster containing NC carbon atoms, each phase space point X (also called a fragmentation con-
figuration or a microcanonical state) is characterized by the physical parameters of the fragments
which is composed by

X =
{

N f ; {nC j,Se j,Oe j,G j}
N f
j=1; {r j}

N f
j=1; {p j}

N f
j=1; {Φ j}

N f
j=1; {L j}

N f
j=1; {E∗v j}

N f
j=1

}
,

where N f is the number of fragments; {nC j,Se j,Oe j,G j} is the mass, the electronic spin, the elec-
tronic orbital degeneracy and geometry (atomic, linear or cyclic); r j is the position (chosen such
that fragments do not overlap each other); p j is the linear momentum; Φ j are the rotational angles
that determine the space orientation (2 for a linear molecule and 3 for non-linear fragments); L j is
the angular momentum and E∗v j is the internal vibrational excitation energy of the fragment labeled
j. All accessible configurations of phase space must satisfy the constraints of conservation of mass
(∑

N f
j=1 nC j =NC), total energy (E0), total linear momentum (P0), and total angular momentum (L0).

The total energy of the system is fixed which is equal to the sum of the fundamental electronic
energy Egs and the deposited excitation energy E∗ of parent cluster. This energy E∗ is distributed
between fragments under the form:

E∗ =Eb +E∗v +Kt +Kr,

Eb =
N f

∑
j=1

Egs j−Egs,

E∗v =
N f

∑
j=1

E∗v j,

Kt =
N f

∑
j=1

p2
j

2m j
,

Kr =
N f

∑
j=1

(
fr j

∑
ν=1

L2
ν j

2Iν j

)
,

(1)

where Eb is the total electronic energy, E∗v is the total internal vibrational excitation energy, Kt the
total translational energy , Kr the total rotational kinetic energy, m j the mass, fr j the number of
rotational degrees of freedom and Iν j the principal moment of inertia of fragment j.
Each phase space point X is associated with a microcanonical weight given by [13]:

w(X)dX = δ (E−E0)δ (P−P0)δ (L−L0)δ (N−NC)dX. (2)

Following the definition of X, the volume element of the phase space is expressed as

dX =

(
N f

∏
j=1

dr j dp j

(2π h̄)3

)(
N f

∏
j=1

d fr j φ j d fr j L j

(2π h̄) fr j σr j

)(
N f

∏
j=1

ρv j(E∗v j)dE∗v j

)
, (3)
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where σr j is the symmetry number of the fragment j and ρv j(E∗v j) is the density of vibrational
states of fragment j at energy E∗v j.

To be able to make these calculations, our model needs informations of physical character-
istics of all possible fragments in their ground states and for all their possible isomers, that is the
various multiplicities of spin and the various possible geometries.

II.1. The microcanonical weights of fragmentation partition
In our model, a fragmentation partition (fragmentation channel) of neutral carbon cluster

of NC atoms [14] is represented by a vector n of NC components, whose component ni is the num-
ber of fragments with i carbon atoms. The sum of components ni is the number of fragments
N f = ∑

NC
i=1 ni, and the mass conservation: ∑i ini = NC. Each fragmentation partition can exist un-

der several configurations because it is necessary to consider all isomeric forms (linear and cyclic
geometries and singlet and triplet multiplicities) for Cn (n = 2−9). The microcanonical weight of
a partition n for a given excitation energy E∗, is the sum of the weights of all the possible config-
urations. If the partition n possesses NCF possible configurations, the microcanonical weights are
calculated by the following expression:

w(n,E∗) =
NCF

∑
i=1

w(Xi,E∗) = wcomb(n)
NCF

∑
i=1

wei wφ i wri wqpli. (4)

To obtain the microcanonical weight of each partition as a function of deposited excita-
tion energy of parent cluster, the first step of our calculation is the generation of all the possible
fragmentation channels n. Then for a given partition, our program generates all the possible dis-
tributions of isomers of the fragments. For each distribution, the program calculates the various
weights of Eq. (4). These weights then will be served to calculate the probability of fragmentation
partition as a function of excitation energy. We present the calculations of the reduced weights
corresponding to a configuration and properties related to each weight used in our model.

II.1.1. The combinatorial factor wcomb

The combinatorial factor accounts for the number of ways to allocate NC carbon atoms to
the fragments. There are NC! ways to arrange the atoms. However, the permutation of atoms inside
a fragment does not change the partition nor does the permutation of equal size fragments. Thus
this factor is given by

wcomb(n) =
NC!

∏
NC
i=1 i!ni ni!

. (5)

We remark that this factor depends on the partition while that only depends on the number
of fragments in the MMMC model [11].

II.1.2. The weight we

This weight factor is related to the degeneracy of the electronic ground state. It is deter-
mined by the electronic spin and the electronic orbital degeneracy of fragments. This weight can
be expressed as

we =
N f

∏
j=1

(2Se j +1)Oe j, (6)
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where Se j is the electronic spin and Oe j = (2 le j +1) is the electronic orbital multiplicity of frag-
ment j.

II.1.3. The weight wφ

This weight counts the possible orientations due to the eigen-rotation of the fragments in
the space. It depends on the symmetry group to which they belong and their geometry. This factor
is determined via the rotation angles of fragments by the following expression:

wφ =
N f

∏
j=1

∫ d fr j φ j

(2π h̄) fr j σr j
, (7)

where fr j is the number of rotational degrees of freedom of fragment j. In this calculation, the
monomers (single atomic fragments) are not included because the atoms are considered as a parti-
cle without intenal rotational structure. We consider fragments with linear ( fr j = 2) and non-linear
geometry( fr j = 3) that can be of cyclic geometry or another geometry. We have

wφ =
Nl

∏
j=1

∫ d2φ j

(2π h̄)2 σr j

Nnl

∏
i=1

∫ d3φi

(2π h̄)3 σri
, (8)

where Nl is the number of linear fragments and Nnl is the number of non-linear fragments, σr j is
the symmetry number of fragment j. The integration of equation (8) leads to

wφ =

(
1
σ l

r

)Nl
{

Nnl

∏
i=1

(
1

σri

)}(
1
π

)Nl+Nnl
(

1
h̄

)2Nl+3Nnl

. (9)

The symmetry number for non-linear fragments σri is obtained by quantum chemical calculations.
For the linear fragments of D∞h symmetry, the symmetry number σ l

r = 2 because they are invariant
by rotation of 180 degrees.

II.1.4. The weight wr

The weight wr represents the spatial part of the volume of the phase space occupied by
fragments. It is calculated so that there is no overlapping between fragments. It is defined as the
accessible volume for each fragment and can be expressed as

wr =
N f

∏
j=1

∫
Vj

η(r1,r2, · · · ,rN f )
1

(2π h̄)3 dr j, (10)

where

η(r1,r2, · · · ,rN f ) =

{
1, rlk = |rl− rk| ≥ Rl +Rk, l 6= k, (non overlapping)
0, otherwise. (11)

The factor η is introduced in order to avoid the overlapping between two fragments. The frag-
ment’s occupation radius Rk is defined as half the largest distance between two carbon atoms for
the linear fragment and the smallest radius of the sphere which includes all cluster atoms for the
cyclic fragments.

To determine this factor, we simulate the fragmentation in the finite spatial volume. This
volume must be large enough to contain all isomeric forms of the parent cluster and all its frag-
ments and mutual interaction (van der Waals forces and exchange of atoms) is negligible. This
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volume is called the freeze-out volume. Thus we assimilate it to a spherical volume of radius
Rsys = r f NC, where r f is an adjustable parameter. It was shown that as from one certain value
(2 Å per carbon) the freeze-out radius does not have influence anymore on the probability of the
partitions. Vj is the volume that the jth fragment can occupy without exceeding freeze-out volume,
Vj =

4
3 π(Rsys−R j)

3, R j is the occupation radius of fragment j.
This weight factor measures the number of ways to distribute fragments inside the sphere without
covering between them. In order to do this, we make a fixed number of attempts of distributions
of fragments in the sphere. The probability of not covering is then given by Pnr =

nnr
ntot

where nnr is
the number of attemps not giving covering.

II.1.5. The weight wqpl

If the excitation energy E∗ of the parent cluster is strictly superior to the dissociation energy
of the partition, the remaining energy is distributed between fragments or by excited vibrational
states of the fragments or kinetic energy of rotation and translation. The weights allow to represent
the distribution of the available energy among the fragments of a configuration of the partition
under shape respectively of vibrational excitation energy and of kinetic energy of rotation and
translation. This weight represents the energy part of phase space, which is the dominant part for
the fragmentation.

The volume of phase space concerning the energies of fragments is given by a convolution
corresponding to density of states, which is determined by the following expression:

wqpl =
∫ min(D1,E ′)

E∗v1=0

∫ min(D2,E ′−E∗v1)

E∗v2=0

∫ min(D3,E ′−E∗v1−E∗v2)

E∗v3=0
· · ·
∫ min(DNf ,E

′−∑
Nf−1
i=1 E∗vi)

E∗vNf
=0

N f

∏
j=1

ρv j(E∗v j)

×
N f−1

∏
k=1

frk+3

∏
µ=1

(
2

λµk

)1/2 f (E∗v)πα

Γ(α)
dE∗v1 dE∗v2 · · ·dE∗vN f

, (12)

where E ′ is the available energy for fragments resulting from the deposited excitation energy in
the parent cluster decreased in the dissociation energy corresponding to the given configuration.
The energies {D1,D2, · · · ,DN f } are the lowest dissociation energy of fragments, they are obtained
from the energy data of the ab initio quantum calculations. In this work, for each fragment, we
consider only levels of excited vibration which are lower than the lowest dissociation energy. The
repartition of the vibrational excitation energy of fragments is represented by a vector E∗v of N f
dimensions : E∗v = (E∗v1,E

∗
v2, · · · ,E∗vN f

) and f (E∗v) is determined by:

f (E∗v) =

 0 if
(

E ′−∑
N f
j=1 E∗v j

)
< 0(

E ′−∑
N f
j=1 E∗v j

)α−1
if
(

E ′−∑
N f
j=1 E∗v j

)
> 0

(13)

In the harmonic approximation, the vibrational level density of each fragment ρv j(E∗v j) is given by
the density of states of a fv j-dimensional harmonic oscillator

ρv j(E∗v j) =
(E∗v j)

fv j−1

Γ( fv j)∏
fv j
i=1(hνi j)

, (14)
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where fv j is the number of vibrational degrees of freedom of fragment j, Γ is Euler’s gamma
function and νi j is the frequency of its ith vibrational mode of fragment j. In the case of monomer
(atom), the vibrational density of states does not exist. Thus vibrational density of states is equal to
unit. In practice, the factor ∏

fv j
i=1(hνi j)= ν̄

fv j
j where ν̄ j is the geometrical average of the vibrational

frequencies of fragment j which is calculated from the vibrational frequencies obtained from ab
initio quantum chemistry calculations. The factors λµk and α are given by

λµ j =

 m−1
j +

(
mN f +∑

j−1
l=1 ml

)−1
, µ = 1,2,3

I−1
µ−3, j +

(
Iµ−3,N f +∑

j−1
l=1 Iµ−3,l

)−1
, µ = 4, ..., fr j +3

(15)

α =
1
2

(
3N f −3+

N f

∑
i=1

fr j−max( fr1, · · · , frN f )
)
. (16)

In this paper, to calculate the weight wqpl , we created an algorithm which convolves in an exact
way the available energy E ′ for fragments on all the degrees of freedom (vibration, rotation and
translation), the remaining energy being the kinetic energy of fragments.

The convolution method
In this method, the integration (12) is effectuated in an exact following way:

wqpl =

min(D1 ,E
′)

4E

∑
i1=1

min(D2 ,E
′−(i1−1/2)4E)
4E

∑
i2=1

· · ·

min
(

DNf
,E′−∑

Nf−1
s=1 (is−1/2)4E

)
4E

∑
iNf =1

N f

∏
j=1

ρv j

(
(i j−

1
2
)4E

)

×
N f−1

∏
k=1

frk+3

∏
µ=1

(
2

λµk

)1/2 f (E∗v)πα

Γ(α)
(4E)N f . (17)

The integration step4E has to be much smaller than all the characteristic energies of the system.
We showed that the results become stable, when the4E is smaller than 1/20 times of the smallest
of the dissociation energies. When the number of fragments is large and the difference between
the smallest and the biggest of the dissociation energies are large too, this calculation can be very
long.

II.2. Partition probabilities
For a given excitation energy E∗ of the carbon cluster, a possible fragmentation partition

n possesses a microcanonical weight calculated by Eq.(4). Especially, Eq.(4) allows to determine
the partition probabilities as a function of the initial excitation energy. It is calculated by:

P(n|E∗) = w(n,E∗)
∑n w(n,E∗)

, (18)

where the sum is over all the possible partitions.
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III. RESULTS

We present the results for partition probabilities as a function of the excitation energy ob-
tained from our simulations based on quantum chemistry calculations by using the density func-
tional theory (DFT) with hybrid B3LYP functional for exchange and correlation [11]. In our
simulations, all isomeric forms for Cn are taken into account. Thus all fragments can play an
important role in fragmentation.

Excitation Energy (eV)

Pr
ob

ab
ili

ty

Fig. 1. Fragmentation channel probabilities as functions of excitation energy for neutral
carbon cluster C5.

Figures 1 and 2 present the diagram for fragmentation channel probabilities of C5 and
C9 clusters, respectively. These figures show the thresholds of appearance of the fragmentation
channels as well as the dominant partition corresponding to a domain of excitation energy. The
highly excited C5 cluster can break up according to seven fragmentation channels (partitions): C5,
C4/C, C3/C2, C3/C/C, C2/C2/C, C2/C/C/C and C/C/C/C/C. The C5 cluster does not dissociate up
to 6 eV. We observe that appearance of fragmentation is sudden. In the range of excitation energy
6-14 eV, the C3/C2 partition is dominant, while the other competing channel leading two fragment
C4/C is at very low level. Because of that, the dissociation energy of C3/C2 is smaller than that
of C4/C channel. The channels leading to three fragments play a significant role in the region of
excitation energy 14-21 eV. The channel of four fragments C2/C/C/C appears in the domain of
energy 20-25 eV. The C5 is completely broken up from 26 eV. We note that the partitions having
the same number of fragments cover approximately the same range of excitation energy. In the
case of C9 cluster, the excited C9 can follow thirty fragmentation channels. The fragmentation of
C9 begins from 6 eV. The C9 is completely dissociated from 51 eV in our calculations but from 57
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eV in MMMC model [11]. This can be explained by the phase space being expanded faster in our
calculations.
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ty

Fig. 2. Fragmentation channel probabilities as functions of excitation energy for neutral
carbon cluster C9.

IV. CONFRONTATION TO EXPERIMENT

The objective of this section is to compare the experimental branching ratios with the results
obtained from our simulations. Our calculations give the probability to obtain a fragmentation
channel for a given excitation energy. The deposited energy distributions just after the collision
were adjusted so that the experimental measurements were optimally reproduced. This adjustment
is obtained by solving the system of discrete equations:

∀n, Pexp(n) =
E∗max

∑
E∗=0

D(E∗)Pmodel(n|E∗), (19)

where Pexp(n) is the experimental branching ratios of fragmentation channels n, D(E∗) is the exci-
tation energy distribution of the clusters and Pmodel(n|E∗) is the probability of fragmentation par-
tition n obtained from our calculations for a given excitation energy E∗. To solve these equations,
two algorithms were used: Non-Negative Least Squares (NNLS) [15] and Bayesian backtracing
(BKT) [16]. The objective is to study the uniqueness of the solution by comparing the excitation
energy distributions obtained by these two algorithms.

Figures 3 and 4 show the comparison between the experimental branching ratios and the
results obtained from our simulations with adjusted energy distributions obtained by NNLS and
BKT algorithms for C5 and C9 clusters, respectively. The probability distribution of the partitions
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Fig. 3. Results for C5. Top Figure: Superposition of the D(E∗) excitation energy distribu-
tions obtained by the backtracing adjustment method for 10 random initial distributions.
Middle figure: energy distribution obtained by NNLS (blue dots) and average distribution
of 10 backtracing (red dots). The integrals of distributions in the domains indicated by
the black dash are indicated for NNLS (blue values) and backtracing (red values). Bottom
figure: comparison of the branching ratios of the partitions: experiment [17] (black cir-
cles) and our simulation with the energy distributions adjusted by the BKT (red squares)
and NNLS (blue squares), respectively.

is generally well reproduced. In agreement with our theoretical findings, fragmentation channels
leading to C3 are strongly favored. The only problem is related to the prediction of C4/C channel in
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Fig. 4. Results for C9. Top Figure: Superposition of the D(E∗) excitation energy distribu-
tions obtained by the backtracing adjustment method for 10 random initial distributions.
Middle figure: energy distribution obtained by NNLS (blue dots) and average distribution
of 10 backtracing (red dots). The integrals of distributions in the domains indicated by
the black dash are indicated for NNLS (blue values) and backtracing (red values). Bottom
figure: comparison of the branching ratios of the partitions: experiment [18] (black cir-
cles) and our simulation with the energy distributions adjusted by the BKT (red squares)
and NNLS (blue squares), respectively.

the case of C5. The maximal probability of this channel obtained by our method is 1.5 10−4 while
experimentally it was about 8 10−2. For energy distribution, it is thus not possible to reproduce its
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intensity. As we see, the underestimate of the channel Cn−1/C is also present for C9. For the C9,
the important order of the partitions is well predicted by our simulation, but the global agreement
is worse than the fragmentation channels of 2 and 3 fragments. The partitions containing the
cluster C3 are overestimated by our calculation while those containing C5 are underestimated. A
particularly interesting result extracted by the theory/experience confrontation is the appearance
of the peaks of energy distributions. However, this result needs to be further studied to validate
these peaks.

V. CONCLUSIONS

In this paper, we have presented results concerning the fragmentation of small neutral car-
bon clusters Cn (n = 5 and 9) obtained by using a microcanonical statistical model. We have found
that several fragmentation channels are efficiently populated, but the most probable one always
corresponds to Cn−3/C3. Branching ratios for Cn (n = 5 and 9) fragmentation were compared to
experimental results. The agreement between theory and experiment is good. We conclude that
our statistical fragmentation simulations provide a reasonable estimation of the cluster energy dis-
tribution just after the collision. Despite the successful application of microcanonical statistical
model to understand fragmentation of small carbon clusters, several improvements can still be
done such as introduction of vibrational anharmonicities which might be important at high excita-
tion energy. Particularly, it must continue investigations to conclude the validation of the peaks of
excitation energy distributions.
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