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I. INTRODUCTION

It is well known that the Higgs mechanism plays a very important role for production of
particle masses. In general, the Higgs potential has to be bounded from below to ensure its stability
[1]. In the Standard Model (SM) it is enough to have a positive Higgs boson quartic coupling
λ > 0. In the extended models with more scalar fields, the potential should be bounded from
below in all directions in the field space as the field strength approaches infinity. It is interesting
to note that the square scalar mass matrix is associated with the Hessian matrix Hi j determined at
the vacuum

(H0)i j =
∂ 2V

∂φi∂φ j

∣∣∣∣
φ=min

. (1)
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The condition for the potential to be bounded from below also leads to positivity of the above
matrix [2]. The mentioned condition practically is the positivity of the principal minors. In this
paper we focus our attention on positivity of scalar mass spectra and intend to get the constraints
from it.

Let us remind the useful definition. A symmetric matrix M2 of quadric form xT M2x for all
vector x in Rn with the following properties{

xT M2x≥ 0, M2 is called positive semidefinite,
xT M2x > 0, M2 is called positive definite .

(2)

If M2 is 2×2 matrix with elements being M2
i j, i, j = 1,2 then Eq.(2) leads to the following

conditions

M2
11 > 0, M2

22 > 0, (3)

M2
12 +

√
M2

11M2
22 > 0 . (4)

For 3×3 matrix we have [1]

M2
11 > 0 , M2

22 > 0 , M2
33 > 0 , (5)

M2
12 +

√
M2

11M2
22 > 0 , (6)

M2
13 +

√
M2

11M2
33 > 0 , (7)

M2
23 +

√
M2

22M2
33 > 0 , (8)

and √
M2

11M2
22M2

33 +M2
12

√
M2

33 +M2
13

√
M2

22 +M2
23

√
M2

11 > 0 , (9)

detM2 = M2
11M2

22M2
33− (M4

12M2
33 +M4

13M2
22 +M4

23M2
11)+2M2

12M2
13M2

23 > 0 . (10)

For the matrices of rank 4 or 5. the reader is referred to Refs. [3, 4].
One of the main purposes of the models based on the gauge group SU(3)C × SU(3)L×

U(1)X (for short, 3-3-1 model) [5, 6] is concerned with the search of an explanation for the num-
ber of generations of fermions. Combined with the QCD asymptotic freedom, the 3-3-1 models
provide an explanation for the number of fermion generations. To provide an explanation for the
observed pattern of SM fermion masses and mixings, various 3-3-1 models with flavor symme-
tries [7–9]and radiative seesaw mechanisms [7,12] have been proposed in the literature. However,
some of them involve non-renormalizable interactions [10], others are renormalizable but do not
address the observed pattern of fermion masses and mixings due to the unexplained huge hi-
erarchy among the Yukawa couplings [8] and others are only focused either in the quark mass
hierarchy [8, 11], or in the study of the neutrino sector [12, 13], or only include the description of
SM fermion mass hierarchy, without addressing the mixings in the fermion sector [14].

It is interesting to find an alternative explanation for the observed SM fermion mass and
mixing pattern. The first renormalizable extension of the 3-3-1 model with β = − 1√

3
, which ex-

plains the SM fermion mass hierarchy by a sequential loop suppression has been done in Ref. [15].
This model is called by the 3-3-1 model with Carcamo-Kovalenko-Schmidt (CKS) mechanism.
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The aim of this paper is to apply the procedure in (2) for the recently proposed 3-3-1 model with
CKS mechanism.

The further content of this paper is as follows. In Sect. II, we briefly present particle content
of scalar sector and spontaneous symmetry breaking (SSB) of the model. The Higgs sector is
considered in Sect. III. The Higgs sector consists of two parts: the first part contains lepton
number conserving terms and the second one is lepton number violating. We study in details the
first part and show that the Higgs sector has all necessary ingredients. We make conclusions in
Sect. IV.

II. SCALAR FIELDS OF THE MODEL

In the model under consideration, the Higgs sector contains three scalar triplets: χ , η and
ρ and seven singlets ϕ0

1 , ϕ0
2 , ξ 0, φ

+
1 , φ

+
2 , φ

+
3 and φ

+
4 . Hence, the scalar spectrum of the model is

composed of the following fields

χ = 〈χ〉+χ
′ ∼
(

1,3,−1
3

)
, (11)

〈χ〉 =

(
0 ,0 ,

vχ√
2

)T

, χ
′ =

(
χ

0
1 ,χ

−
2 ,

1√
2
(R

χ0
3
− iI

χ0
3
)

)T

,

ρ =

(
ρ
+
1 ,

1√
2
(Rρ − iIρ) ,ρ

+
3

)T

∼
(

1,3,
2
3

)
,

η = 〈η〉+η
′ ∼
(

1,3,−1
3

)
,

〈η〉 =

(
vη√

2
,0 ,0

)T

, η
′ =

(
1√
2
(R

η0
1
− iI

η0
1
) ,η−2 ,η0

3

)T

,

ϕ
0
1 ∼ (1,1,0), ϕ

0
2 ∼ (1,1,0),

φ
+
1 ∼ (1,1,1), φ

+
2 ∼ (1,1,1), φ

+
3 ∼ (1,1,1), φ

+
4 ∼ (1,1,1),

ξ
0 = 〈ξ 0〉+ξ

0′ ,〈ξ 0〉=
vξ√

2
,ξ 0′ =

1√
2
(Rξ 0− iIξ 0)∼ (1,1,0) . (12)

The Z4×Z2 assignments of the scalar fields are shown in Table 1.

Table 1. Scalar assignments under Z4×Z2

χ η ρ ϕ0
1 ϕ0

2 φ
+
1 φ

+
2 φ

+
3 φ

+
4 ξ 0

Z4 1 1 −1 −1 i i −1 −1 1 1

Z2 −1 −1 1 1 1 1 1 −1 −1 1

The fields with nonzero lepton number are presented in Table 2. Note that the three gauge
singlet neutral leptons NiR as well as the elements in the third component of the lepton triplets,
namely νc

iL have lepton number equal to −1.
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Table 2. Nonzero lepton number L of fields

TL,R J1L,R J2L,R νc
iL eiL,R EiL,R NiR ΨR χ0

1 χ
+
2 η0

3 ρ
+
3 φ

+
2 φ

+
3 φ

+
4 ξ 0 i = 1,2,3

L −2 2 2 −1 1 1 −1 1 2 2 −2 −2 −2 −2 −2 −2

III. THE SCALAR POTENTIAL

The renormalizable potential contains three parts [16]. The first part is given by

VLNC = µ
2
χ χ

†
χ +µ

2
ρρ

†
ρ +µ

2
ηη

†
η +

4

∑
i=1

µ
2
φ
+
i

φ
+
i φ
−
i +

2

∑
i=1

µ
2
ϕi

ϕ
0
i ϕ

0∗
i +µ

2
ξ
ξ

0∗
ξ

0

+ χ
†
χ(λ13χ

†
χ +λ18ρ

†
ρ +λ5η

†
η)+ρ

†
ρ(λ14ρ

†
ρ +λ6η

†
η)+λ17(η

†
η)2

+ λ7(χ
†
ρ)(ρ†

χ)+λ8(χ
†
η)(η†

χ)+λ9(ρ
†
η)(η†

ρ)

+ χ
†
χ

(
4

∑
i=1

λ
χφ

i φ
+
i φ
−
i +

2

∑
i=1

λ
χϕ

i ϕ
0
i ϕ

0∗
i +λχξ ξ

0∗
ξ

0

)

+ ρ
†
ρ

(
4

∑
i=1

λ
ρφ

i φ
+
i φ
−
i +

2

∑
i=1

λ
ρϕ

i ϕ
0
i ϕ

0∗
i +λρξ ξ

0∗
ξ

0

)

+ η
†
η

(
4

∑
i=1

λ
ηφ

i φ
+
i φ
−
i +

2

∑
i=1

λ
ηϕ

i ϕ
0
i ϕ

0∗
i +ληξ ξ

0∗
ξ

0

)

+
4

∑
i=1

φ
+
i φ
−
i

(
4

∑
j=1

λ
φφ

i j φ
+
j φ
−
j +

2

∑
j=1

λ
φϕ

i j ϕ
0
j ϕ

0∗
j +λ

φξ

i ξ
0∗

ξ
0

)

+
2

∑
i=1

ϕ
0
i ϕ

0∗
i

(
2

∑
j=1

λ
ϕϕ

i j ϕ
0
j ϕ

0∗
j +λ

ϕξ

i ξ
0∗

ξ
0

)
+λξ (ξ

0∗
ξ

0)2

+
{

λ10
(
φ
+
2

)2 (
φ
−
3

)2
+λ11

(
φ
+
2

)2 (
φ
−
4

)2
+λ12

(
φ
+
3

)2 (
φ
−
4

)2

+ w1
(
ϕ

0
2
)2

ϕ
0
1 +w2χ

†
ρφ
−
3 +w3η

†
χξ

0 +w4
(
ϕ

0
2
)2

ϕ
0∗
1 +w5φ

+
3 φ
−
4 ϕ

0
1 +w6φ

+
3 φ
−
4 ϕ

0∗
1

+ χρη(λ1ϕ
0
1 +λ2ϕ

0∗
1 )+χ

†
ρφ
−
4

(
λ15ϕ

0
1 +λ16ϕ

0∗
1
)
+λ3η

†
ρφ
−
3 ξ

0 +λ4φ
+
1 φ
−
2 ϕ

0
2 ξ

0

+
(
λ19φ

−
3 φ

+
4 +λ20φ

+
3 φ
−
4

)(
ϕ

0
2
)2

+λ21
(
ϕ

0
1
)3

ϕ
0∗
1

+

(
λ22χ

†
χ +λ23ρ

†
ρ +λ24η

†
η +

4

∑
i=1

λ61iφ
+
i φ
−
i +

2

∑
i=1

λ62iϕ
0
i ϕ

0∗
i

+ λ25ξ
0∗

ξ
0)(ϕ0

1 )
2 +h.c.

}
(13)

The second part is a lepton number violating one (the subgroup U(1)Lg is violated) and the third
breaking softly Z4×Z2 are given in Ref. [16].
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Expanding the Higgs potential around VEVs, ones get the constraint conditions at the tree
levels as follows

w3 = 0 , (14)

−µ
2
χ = v2

χλ13 +
1
2

v2
ηλ5 +

1
2

λχξ v2
ξ
,

−µ
2
η = v2

ηλ17 +
1
2

v2
χλ5 +

1
2

ληξ v2
ξ
, (15)

−µ
2
ξ

=
1
2

λχξ v2
χ +

1
2

ληξ v2
η .

Applying the constraint conditions in (14), the charged scalar sector contains two massless fields:
η
+
2 and χ

+
2 which are Goldstone bosons eaten by the W+ and Y+ gauge bosons, respectively. The

other massive fields are φ
+
1 ,φ+

2 and φ
+
4 with respective masses

m2
φ
+
1

= µ
2
φ
+
1
+

1
2

[
v2

χλ
χφ

1 + v2
ηλ

ηφ

1 + v2
ξ
λ

φξ

1

]
,

m2
φ
+
2

= µ
2
φ
+
2
+

1
2

[
v2

χλ
χφ

2 + v2
ηλ

ηφ

2 + v2
ξ
λ

φξ

2

]
, (16)

m2
φ
+
4

= µ
2
φ
+
4
+

1
2

[
v2

χλ
χφ

4 + v2
ηλ

ηφ

4 + v2
ξ
λ

φξ

4

]
.

In addition, in the basis (ρ+
1 , ρ

+
3 , φ

+
3 ), there is the mass mixing matrix

M2
charged =

A+ 1
2 v2

η (λ6+λ9) 0 1
2 vηvξ λ3

0 A+ 1
2

(
v2

χλ7 + v2
ηλ6

)
1√
2
vχw2

1
2 vηvξ λ3

1√
2
vχw2 µ2

φ
+
3
+B3

 , (17)

where we have used the following notations

A ≡ µ
2
ρ +

1
2

[
v2

χλ18 +λρξ v2
ξ

]
,

Bi ≡
1
2

(
v2

χλ
χφ

i + v2
ηλ

ηφ

i + v2
ξ
λ

φξ

i

)
, i = 1,2,3,4 . (18)

The conditions in Eqs. (4 - 7) yield

A+
1
2

v2
η (λ6+λ9)> 0 ,A+

1
2

(
v2

χλ7 + v2
ηλ6

)
> 0 ,µ2

φ
+
3
+B3 > 0 , (19)√(

A+
1
2

v2
η (λ6+λ9)

)(
A+

1
2

(
v2

χλ7 + v2
ηλ6

))
> 0 ,

1
2

vηvξ λ3 +

√(
A+

1
2

v2
η (λ6+λ9)

)(
µ2

φ
+
3
+B3

)
> 0 , (20)

1√
2

vχw2 +

√(
A+

1
2

(
v2

χλ7 + v2
ηλ6

))(
µ2

φ
+
3
+B3

)
> 0 .
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Note that in this case the constraints in (19) are just enough or other word speaking, if the con-
ditions of semi-definition for diagonal elements are fulfilled then other ones are automatically
satisfied.

Now we turn into CP-odd Higgs sector. There are three massless fields: Iχ , Iη and Iξ 0 . The
field Iϕ2 has the following squared mass

m2
Iϕ2

= µ
2
ϕ2
+B′2 , (21)

where

B′n ≡
1
2

(
v2

χλ
χϕ
n + v2

ηλ
ηϕ

2 + v2
ξ
λ

ϕξ
n

)
, n = 1,2 . (22)

There are other two mass matrices as follows: Firstly, in the basis (I
χ0

1
, I

η0
3
), the matrix is

m2
CPodd1 =

λ8

2

(
v2

η −vχvη

−vχvη v2
χ

)
. (23)

The matrix in (23) provides two physical states

G1 = cosθaI
χ0

1
+ sinθaI

η0
3
,

A1 = −sinθaI
χ0

1
+ cosθaI

η0
3
, (24)

where
tanθa =

vη

vχ

. (25)

The field G1 is massless while the field A1 has mass as follows

m2
A1

=
λ8v2

χ

2cos2 θa
. (26)

Secondly, in the basis (Iϕ1 , Iρ), the matrix is

m2
CPodd2 =

(
µ2

ϕ1
−C+B1

1
2 vχvη(λ1−λ2)

1
2 vχvη(λ1−λ2) A+ λ6

2 v2
η

)
, (27)

where we have denoted

C ≡ v2
χλ22 + v2

ηλ24 + v2
ξ
λ25 (28)

The conditions in (4) yield

µ
2
ϕ1
−C+B1 > 0 , A+

λ6

2
v2

η > 0 , (29)

1
2

vχvη(λ1−λ2)+

√(
µ2

ϕ1
−C+B1

)(
A+

λ6

2
v2

η

)
> 0 . (30)

The above conditions provide the following constraints:
i) If λ1 < λ2, then(

µ
2
ϕ1
−C+B1

)(
A+

λ6

2
v2

η

)
>

v2
χv2

η

4
(λ1−λ2)

2 .

ii) If λ1 > λ2, there are only conditions given in (30).
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Generally, physical states of matrix (27) are(
A2
A3

)
=

(
cosθρ sinθρ

−sinθρ cosθρ

)(
Iϕ1

Iρ

)
, (31)

where the mixing angle is given by

tan2θρ =
vχvη(λ1−λ2)(

µ2
ϕ1
−C+B1−A− λ6

2 v2
η

) , (32)

and their squared masses as follows

m2
A2

=
1
2

{
A+D1−

√
(A−D1)2 + v2

η

[
2(A−D1)λ6 + v2

ηλ 2
6 + v2

χ(λ13−λ14)2
]}

,

m2
A3

=
1
2

{
A+D1 +

√
(A−D1)2 + v2

η

[
2(A−D1)λ6 + v2

ηλ 2
6 + v2

χ(λ13−λ14)2
]}

, (33)

where
D1 = µ

2
ϕ1
+B1−C+

1
2

v2
ηλ6 . (34)

Next, the CP-even scalar sector is our task. Ones have one massive field, namely Rϕ2 with
mass

m2
Rϕ2

= m2
Iϕ2

= µ
2
ϕ2
+B′2

= µ
2
ϕ2
+

1
2

(
v2

χλ
χϕ

2 + v2
ηλ

ηϕ

2 + v2
ξ
λ

ϕξ

2

)
. (35)

As mentioned in Ref. [15], the lightest scalar ϕ0
2 is possible DM candidate. Therefore from (35),

the following condition is reasonable

µ
2
ϕ2

=−1
2

(
v2

χλ
χϕ

2 + v2
ξ
λ

ϕξ

2

)
. (36)

In this case, the model contains the complex scalar DM ϕ0
2 with mass

m2
Rϕ2

= m2
Iϕ2

=
1
2

v2
ηλ

ηϕ

2 . (37)

Other three mass matrices are
iii) In the basis (R

χ0
1
,R

η0
3
), the matrix is

m2
CPeven1 =

λ8

2

(
v2

η vχvη

vχvη v2
χ

)
. (38)

This matrix is completely similar to that in (23). Thus, two physical states are

RG1 = cosθaR
χ0

1
+ sinθaR

η0
3
,

H1 = −sinθaR
χ0

1
+ cosθaR

η0
3
, (39)

where RG1 is massless while the field H2 has mass as follows

m2
H1

= m2
A1

=
λ8v2

χ

2cos2 θa
. (40)
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iV) In the basis (Rρ ,Rϕ1), the matrix is

m2
CPeven2 =

(
A+ λ6

2 v2
η −1

2 vχvη(λ1 +λ2)

−1
2 vχvη(λ1 +λ2) µ2

ϕ1
+C+B1

)
. (41)

As before, ones get

A+
λ6

2
v2

η > 0 , µ
2
ϕ1
+C+B1 > 0 , (42)

−1
2

vχvη(λ1 +λ2)+

√(
A+

λ6

2
v2

η

)(
µ2

ϕ1
+C+B1

)
> 0 . (43)

Thus, if λ1 +λ2 > 0, then(
A+

λ6

2
v2

η

)(
µ

2
ϕ1
+C+B1

)
>

v2
χv2

η

4
(λ6 +λ2)

2 . (44)

If λ1 +λ2 ≤ 0, there are only conditions in (42).
The physical states of matrix (41) are(

H2
H3

)
=

(
cosθr sinθr
−sinθr cosθr

)(
Rρ

Rϕ1

)
, (45)

where the mixing angle is given by

tan2θr =
vχvη(λ1 +λ2)(

µ2
ϕ1
+C+B1−A− λ6

2 v2
η

) , (46)

and their squared masses are identified by

m2
H2

=
1
2

{
A+D2−

√
(A−D2)2 + v2

η

[
2(A−D2)λ6 + v2

ηλ 2
6 + v2

χ(λ13 +λ14)2
]}

,

m2
H3

=
1
2

{
A+D2 +

√
(A−D2)2 + v2

η

[
2(A−D2)λ6 + v2

ηλ 2
6 + v2

χ(λ13 +λ14)2
]}

,

(47)

where

D2 = µ
2
ϕ1
+B1 +C+

1
2

v2
ηλ6 . (48)

v) In the basis (Rχ ,Rη ,Rξ 0), the matrix is

m2
CPeven3 =

 2v2
χλ13 vχvηλ5 λχξ vχvξ

vχvηλ5 2v2
ηλ17 ληξ vηvξ

λχξ vχvξ ληξ vηvξ 2λξ v2
ξ

 . (49)
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Again, in this case the constraints in Eqs (4 - 9) are given by

λ13 > 0 ,λ17 > 0 ,λξ > 0 , (50)

vχvηλ5 +

√(
2v2

χλ13

)(
2v2

ηλ17
)
> 0⇒ λ5 >−2

√
(λ13λ17) , (51)

λχξ vχvξ +

√(
2v2

χλ13

)(
2λξ v2

ξ

)
> 0⇒ λχξ >−2

√(
λ13λξ

)
, (52)

ληξ vηvξ +

√(
2v2

ηλ17
)(

2λξ v2
ξ

)
> 0⇒ ληξ >−2

√(
λ17λξ

)
, (53)√(

2v2
χλ13

)(
2v2

ηλ17
)(

2λξ v2
ξ

)
+ vχvηλ5

√(
2λξ v2

ξ

)
+λχξ vχvξ

√(
2v2

ηλ17
)

+ληξ vηvξ

√(
2v2

χλ13

)
> 0

⇒ 2
√

λ13λ17λξ +λ5

√
λξ +λχξ

√
λ17 +ληξ

√
λ13 > 0 , (54)(

2v2
χλ13

)(
2v2

ηλ17
)(

2λξ v2
ξ

)
− [(vχvηλ5)

2
(

2λξ v2
ξ

)
+(λχξ vχvξ )

2 (2v2
ηλ17

)
+
(

2v2
χλ13

)
(ληξ vηvξ )

2]+2vχvηλ5.λχξ vχvξ .ληξ vηvξ > 0

⇒ 4λ13λ17λξ − [(λ5)
2
λξ +(λχξ )

2
λ17 +(ληξ )

2
λ13]+λ5.λχξ .ληξ > 0 . (55)

III.1. Special cases
To find solutions in Higgs sector, we should make some simplifications.

III.1.1. The SM-like Higgs boson
We consider now the matrix (49): with the basis (Rχ ,Rη ,Rξ 0)

m2
CPeven3 =

 2v2
χλ13 vχvηλ5 λχξ vχvξ

vχvηλ5 2v2
ηλ17 ληξ vηvξ

λχξ vχvξ ληξ vηvξ 2λξ v2
ξ

 . (56)

Let us assume a simplified worth to be considered scenario which is characterized by the
following relations:

λ5 = λ13 = λ17 = λξ = λχξ = ληξ = λ , vξ = vχ . (57)

The system of Eqs.(48 - 53) leads to another constraint, namely
√

λ > 0 . (58)

In this scenario, the squared matrix (49) for the electrically neutral CP even scalars in the basis
(Rη ,Rχ ,Rξ 0) takes the simple form:

m2
CPeven3 = λ

 2x2 x x
x 2 1
x 1 2

v2
χ , x =

vη

vχ

. (59)
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In this scenario, we find the that the physical scalars included in the matrix m2
CPeven3 are: h

H4
H5

'

−1+ x2

9
x
3

x
3

0 −
√

1
2

√
1
2√

2
3 x

√
1
2

√
1
2


 Rη

Rχ

Rξ 0

 , (60)

where h is the 126 GeV SM like Higgs boson. Thus, we find that the SM-like Higgs boson h has

couplings very close to SM expectation with small deviations of the order of v2
η

v2
χ

. In addition, the

squared masses of the physical scalars included in the matrix m2
CPeven3 take the form:

m2
h '

4
3

λv2
η , m2

H4
' λv2

χ , m2
H5
' 3λv2

χ . (61)

Taking into account the fact that mass of the SM Higgs boson is equal to 126 GeV, from (61) we
obtain

λ ≈ 0.187 . (62)
Combining with the limit from the rho parameter in Ref. [16]

3.57TeV≤ vχ ≤ 6.9TeV

yields

1.5TeV≤ mH4 ≤ 2.61TeV , (63)
2.6TeV≤ mH5 ≤ 4.5TeV .

III.1.2. The charged Higgs bosons
The charged scalar sector contains two massless fields: GW+ and GY+ which are Goldstone

bosons eaten by the longitudinal components of the W+ and Y+ gauge bosons, respectively. The
other massive fields are φ

+
1 ,φ+

2 and φ
+
4 with respective masses given in (18).

In the basis (ρ+
1 , ρ

+
3 , φ

+
3 ), the squared mass matrix is given in (17). Let us make effort to

simplify this matrix. Note that µ2
χ ,µ

2
η , and µ2

ξ
can be derived using relations (14) and (57). In

addition, it is reasonable to assume

µ
2
ρ =−

v2
χ

2
(λ18 +λρξ )≈ µ

2
η , µ

2
φ
+
3
=−

v2
χ

2
(λ

χφ

2 +λ
φξ

2 ) , (64)

we obtain the simple form of the squared mass matrix of the charged Higgs bosons,

M2
chargeds =


A+ 1

2 v2
η (λ6+λ9) 0 λ3

2 vηvχ

0 1
2

(
v2

χλ7 +λ6v2
η

)
1√
2
vχw2

λ3
2 vηvχ

1√
2
vχw2

1
2 v2

ηλ
ηφ

2

 . (65)

The matrix (65) predicts that there may exist two light charged Higgs bosons H+
1,2 with masses at

the electroweak scale and the mass of H+
3 which is mainly composed of ρ

+
3 is around 3.5 TeV. In

addition, the Higgs boson H+
1 almost does not carry lepton number, whereas the others two do.

Generally, the Higgs potential always contains mass terms which mix VEVs. However,
these terms must be small enough to avoid high order divergences (for examples, see Refs. [17,18])
and provide baryon asymmetry of Universe by the strong electroweak phase transition (EWPT).
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Ignoring the mixing terms containing λ3 in (65) does not affect other physical aspects, since
the above mentioned terms just increase or decrease small amount of the charged Higgs bosons.
Therefore, without lose of generality, neglecting the terms with λ3 satisfies other aims such as
EWPT.

Hence, in the matrix of (65), the coefficient λ3 is reasonably assumed to be zero. Therefore
we get immediately one physical field ρ

+
1 with mass given by

m2
ρ
+
1
=

1
2

v2
η(λ6 +λ9) . (66)

The other fields mix by submatrix given at the bottom of (65). The limit ρ
+
1 = H+

1 when λ3 = 0 is
very interesting for discussion of the Higgs contribution to the ρ parameter.

Analysis of electroweak phase transition shows that the term of VEV mixing at the top-right
corner should be negligible [17, 18] or

λ3 ' 0 . (67)

Therefore, from (17), it follows that ρ
+
1 is physical field with mass

m2
ρ
+
1
= A+

1
2

v2
η (λ6 +λ9) , (68)

and two massive bilepton scalars ρ
+
3 and φ

+
3 mix each other by matrix at the right-bottom corner.

Taking into account the conditions in (4) yields

A+
1
2

(
v2

χλ7 + v2
ηλ6

)
> 0 ,µ2

φ
+
3
+B3 > 0 , (69)

1√
2

vχw2 +

√(
A+

1
2

(
v2

χλ7 + v2
ηλ6

))(
µ2

φ
+
3
+B3

)
> 0 . (70)

From (70) it follows that if w2 < 0, then(
A+

1
2

(
v2

χλ7 + v2
ηλ6

))(
µ

2
φ
+
3
+B3

)
>

v2
χw2

2

2
,

but if w2 > 0, there are only conditions in (69).
It is worth mentioning that the masses of three charged scalars φ

+
i , i = 1,2,4 are still not

fixed.
Let us deal with the charged Higgs boson sector by assuming

λ6 = λ7 = λ9 = λ18 = λ
χφ

3 = λ
ηφ

3 = λ
φξ

3 = λ
′ . (71)

With this assumption, we have

µ
2
χ = −λ

2
(3v2

χ + v2
η)'−

3
2

λv2
χ ,

µ
2
η = −λ (v2

η + v2
χ)'−λv2

χ , (72)

µ
2
ξ

= −λ

2
(v2

χ + v2
η)'−

1
2

λv2
χ .
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In the basis (ρ+
1 , ρ

+
3 , φ

+
3 ), the matrix in (17) becomes

M2
charged =


µ2

ρ +λ ′v2
χ +λ ′v2

η 0 λ ′

2 vηvχ

0 µ2
ρ +

λ ′

2

(
3v2

χ + v2
η

)
1√
2
vχw2

λ ′

2 vηvχ
1√
2
vχw2 µ2

φ
+
3
+λ ′2χ + 1

2 v2
η)

 . (73)

Next, assuming
µ

2
ρ = µ

2
φ
+
3
= µ

2
η =−λ

′v2
χ , (74)

we obtain

M2
newcharged =

λ ′2 0 λ ′

2 x
0 λ ′

2 (1+ x2) 1√
2
w2

λ ′

2 x 1√
2
w2

λ ′

2 x2

v2
χ . (75)

From (75), we get two charged Higgs bosons with masses at electoweak scale and one
massive with mass around TeV (∝ vχ ), in addition the Higgs boson composed mainly from ρ

+
1

does not carry lepton number, while the two others do.

IV. CONCLUSION

In this paper, we have applied the positivity of scalar mass spectra in the 3-3-1 model with
CKS mechanism. We show that for the Higgs squared mass matrices, the conditions for positivity
of the diagonal elements are most important since other constraints are followed from the first ones.
In the model under consideration, the above conclusion is very helpful for the fixing parameters.

Since there are a lot of Higgs fields in this model, so the vacuum stability will be considered
in the future study.
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