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Abstract. In this paper, based on the vector model for gravitational field we deduce an equation to
determinate the metric of space-time. This equation is similar to equation of Einstein. The metric
of space-time outside a static spherically symmetric body is also determined. It gives a small
supplementation to the Schwarzschild metric in General theory of relativity but the singularity
does not exist. Especially, this model predicts the existence of a new universal body after a black
hole.

I. INTRODUCTION

From the assumption of the Lorentz invariance of gravitational mass, we have used
the vector model to describe gravitational field [1]. From this model, we have obtained
densities of Universe energy and vacuum energy equal to observed densities[2]. we have
also deduced a united description to dark matter and dark energy[3].

In this paper, we deduce an equation to describe the relation between gravitational
field, a vector field, with the metric of space-time. This equation is similar to the equation
of Einstein. We say it as the equation of Einstein in the Vector model for gravitational
field.

This equation is deduced from a Lagrangian which is similar to the Lagrangians
in the vector-tensor models for gravitational field [4,5,6,7]. Nevertheless in those models
the vector field takes only a supplemental role beside the gravitational field which is a
tensor field. The tensor field is just the metric tensor of space- time. In this model the
gravitational field is the vector field and its resource is gravitational mass of bodies. This
vector field and the energy- momentum tensor of gravitational matter determine the metric
of space-time. The second part is an essential idea of Einstein and it is required so that
this model has the classical limit.

In this paper, we also deduce a solution of this equation for a static spherically
symmetric body. The obtained metric is different to the Schwarzschild metric with a
small supplementation. The especial feature of this metric is that black hole exits but has
not singularity.

II. LAGRANGIAN AND FIELD EQUATION

We choose the following action

S = SH−E + SMg + Sg (1)
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with

SH−E =

∫ √
−g(R+ Λ)d4x

is the classical Hilbert-Einstein action, SMg is the gravitational matter action,

Sg =
c2

16Gπ
ω

∫ √
−g(EgµνE

µν
g )d4x

is the gravitational action. Where Egµν is tensor of strength of gravitational field, ω is a
parameter in this model.

Variation of the action (1) with respect to the metric tensor leads to the following
modified equation of Einstein

Rµν −
1

2
gµνR− gµνΛ = −8Gπ

c4
TMg.µν + ωTg.µν (2)

Note that

• Variation of the Hilbert−Einstein action leads to the left−hand side of equation
(2) as in General theory of relativity.
• Variation of the gravitational matter action SMg leads to the energy- momentum

tensor of the gravitational matter

TMg,µν =
−2√
−g

δSMg

δgµν

• Variation of the gravitational action Sg leads to the energy- momentum tensor of
gravitational field

Tg,µν =
−2

ω
√
−g

δSg
δgµν

Let us discuss more to two tensors in the right-hand side of equation (2). We recall
that the original equation of Einstein is

Rµν −
1

2
gµνR− gµνΛ = −8Gπ

c4
Tµν , (3)

where Tµν is the energy- momentum tensor of the matter. For example, for a fluid matter
of non−interacting particles with a proper inertial mass density ρ(x), with a field of 4−
velocity uµ(x) and a field of pressure p(x), the energy-momentum tensor of the matter
is [8, 9]

Tµν = ρ0c
2uµuν + p(uµuν − gµν) (4)

If we say ρg0 as the gravitational mass density of this fluid matter, the energy−momentum
tensor of the gravitational matter is

Tµν = ρg0c
2uµuν + p(uµuν − gµν) (5)

For a fluid matter of electrically charged particles with the gravitational mass ρg0 , a field
of 4− velocity uµ(x) , and a the electrical charge density σ0(x), the energy-momentum
tensor of the gravitational matter is

TµνMg = ρg0c
2uµuν +

1

4π

(
− FµαFαν +

1

4
gµνFαβF

αβ
)
g

(6)
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The word ”g” in the second term group indicates that we choose the density of gravitational
mass which is equivalent to the energy density of the electromagnetic field. Where Fαβ is
the electromagnetic field tensor.

Note that because of the close equality between the inertial mass and the gravita-
tional mass, the tensor Tµν is closely equivalent to the tensor TMg,µν . The only distinct
character is that the inertial mass depends on inertial frame of reference while the grav-
itational mass does not depend one. However the value of ρ0 in the equation (4) is just
the proper density of inertial mass, therefore it also does not depend on inertial frame of
reference. Thus, the modified equation of Einstein(2) is principally different with the orig-
inal equation of Einstein(3) in the present of the gravitational energy- momentum tensor
in the right-hand side.

From the above gravitational action, the gravitational energy-momentum tensor is

Tg.µν =
−2

ω
√
−g

δSg
δgµν

=
c2

4Gπ

(
Eαg.µEg.να −

1

4
gµνE

αβ
g Eg.αβ

)
(7)

Where Eg.αβ is the tensor of strength of gravitational field [1]. The expression of (7) is
obtained in the same way with the energy- momentum tensor of electromagnetic field.

Let us now consider the equation (2) for the space−time outside a body with the
gravitational mass Mg (this case is similar to the case of the original equation of Einstein
for the empty space). However in this case, the space is not empty although it is outside
the field resource, the gravitational field exists everywhere. We always have the present
of the gravitational energy-momentum tensor in the right-hand side of the equation (2).
When we reject the cosmological constant Λ, the equation (2) leads to the following form

Rµν −
1

2
gµνR = ωTg.µν (8)

or

Rµν −
1

2
gµνR =

c2ω

4Gπ

(
Eαg.µEg.αν −

1

4
gµνE

αβ
g Eg.αβ

)
(9)

III. THE EQUATIONS OF GRAVITATIONAL FIELD IN CURVATURE
SPACE−TIME

We have known the equations of gravitational field in flat space−time [1]

∂kEg.mn + ∂mEg.nk + ∂nEg.km = 0 (10)

and

∂iD
ik
g = Jkg (11)

The metric tensor is flat in these equations.
When the gravitational field exists, because of its influence to the metric tensor of

space−time, we replace the ordinary derivative by the covariant derivative. The above
equations become

Eg.mn;k + Eg.nk;m + Eg.km;n = 0 (12)

and
1√
−g

∂i

(√
−gDik

g

)
= Jkg (13)
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IV. MakeUppercaseThe Metric Tensor of Space-Time outside A Static
Spherically Symmetrical Body

We resolve the equations (9,12,13) outside a resource to find the metric tensor of
space− time. Thus we have the following equations

Rµν −
1

2
gµνR =

c2ω

4Gπ

(
Eαg.µEg.αν −

1

4
gµνE

αβ
g Eg.αβ

)
(14)

Eg.mn;k + Eg.nk;m + Eg.km;n = 0 (15)

and

∂i

(√
−gEikg

)
= 0 (16)

Because the resource is static spherically symmetrical body, we also have the metric tensor
in the Schwarzschild form as follows [8]

gµα =


eν 0 0 0
0 −eλ 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 (17)

and

gµα =


e−ν 0 0 0
0 −e−λ 0 0
0 0 −r−2 0
0 0 0 − 1

r2 sin2 θ

 (18)

The left−hand side of (14) is the tensor of Einstein, it has only the non−zero components
as follows [8, 9, 10]

R00 −
1

2
g00R = eν−λ

(
− λ′

r
+

1

r2

)
− 1

r2
eν (19)

R11 −
1

2
g11R = −ν

′

r
− 1

r2
+

1

r2
eλ (20)

R22 −
1

2
g22R = e−λ

[r2
4
ν ′λ′ − r2

4
(ν ′)2 − r2

2
ν ′′ − r

2
(ν ′ − λ′)

]
(21)

R33 −
1

2
g33R =

(
R22 −

1

2
g22R

)
sin2 θ (22)

Rµν = 0, gµν = 0 with µ 6= ν

The tensor of strength of gravitational field Eg,µν when it is corrected the metric tensor
needs corresponding to a static spherically symmetrical gravitational Eg(r) field. From
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the form of Eg,µν in flat space−time [1]

Eg,µν =



0 −Egx

c −Egy

c −Egz

c

Egx

c 0 Hgz −Hgy

Egy

c −Hgz 0 Hgx

Egz

c Hgy −Hgx 0


(23)

For static spherically symmetrical gravitational field, the magneto-gravitational compo-
nents Hg = 0. We consider only in the x− direction, therefore the components Egy, Egz =
0. We find a solution of Eg,µν in the following form

Eg,µν =
1

c
Eg(r)


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (24)

Note that because Eg,µν is a function of only r, it satisfies the equation (15) regardless of
function Eg(r).The function is found at the same time with µ and ν from the equations

(14) and (16). Raising indices in (24) with gαβ in (18), we obtain

Eµαg =
1

c
e−(ν+λ)Eg(r)


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (25)

and

√
−gEµαg =

1

c
e−

1
2
(ν+λ)Eg(r)r

2 sin θ


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (26)

Substituting (26) into (16), we obtain an only nontrivial equation[
e−

1
2
(ν+λ)Eg(r)r

2 sin θ
]′

= 0 (27)

We obtain a solution of (27)

e−
1
2
(ν+λ)Eg(r)r

2 sin θ = constant

or

Eg(r) = e
1
2
(ν+λ) constant

r2
(28)

We require that space−time is Euclidian one at infinity, it leads to that both ν −→ 0 and
λ −→ 0 when r −→ ∞, therefore the solution (28) has the normal classical form when r
is large, i.e.

Eg(r) −→ −
GMg

r2
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Therefore

constant = −GMg (29)

To solve the equation (14), we have to calculate the energy−momentum tensor in the
right−hand side of it. We use (28) to rewrite the tensor of strength of gravitational field
in three forms as follows

Eg,µα =
1

c
e

1
2
(ν+λ)

(
− GMg

r2

)
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (30)

and

Eµαg =
1

c
e−

1
2
(ν+λ)

(
− GMg

r2

)
0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (31)

and

Eαgµ =
1

c

(
− GMg

r2

)
0 e

1
2
(ν−λ) 0 0

e
1
2
(λ−ν) 0 0 0
0 0 0 0
0 0 0 0

 (32)

we obtain the following result

Tg.µα =
c2

4Gπ

[
Eg.µβE

β
g.α −

1

4
gµαEg.klE

kl
g

]

= −
GM2

g

8πr4


eν 0 0 0
0 −eλ 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (33)

From the equations(14),(19,20,21,22) and(33), we have the following equations

eν−λ
(λ′
r

+
1

r2

)
− 1

r2
= ω

GM2
g

8πr4
eν (34)

−ν
′

r
− 1

r2
+

1

r2
eλ = −ω

GM2
g

8πr4
eλ (35)

e−λ
[r2

4
ν ′λ′ − r2

4
(ν ′)2 − r2

2
ν ′′ − r

2
(ν ′ − λ′)

]
= ω

GM2
g

8πr4
r2 (36)

Multiplying two members of (34) with e−(ν−λ) then add it with (35), we obtain

ν ′ + λ′ = 0 =⇒ ν + λ = constant (37)

Because both ν and λ lead to zero at infinity, the constant in (37) has to be zero. Therefore,
we have

ν = −λ (38)
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Using (37), we rewrite (36) as follows

eν
[
− r2

4
ν ′2 − r2

4
(ν ′)2 − r2

2
(ν ′′)− r

2
(ν ′ + ν ′)

]
= ω

GM2
g

8πr4
r2

or

eν
[
(ν ′)2 + ν ′′ +

2

r
ν ′
]

= −ω
GM2

g

8πr4
(39)

eν
[
(ν ′)2 + ν ′′

]
+

2

r
ν ′eν = −ω

GM2
g

8πr4
(40)

We rewrite (40) in the following form

(eν ν ′)′ +
2

r
(ν ′)eν = −ω

GM2
g

8πr4
(41)

Putting y = eν ν ′, (41) becomes

y′ +
2

r
y = −ω

G2M2
g

8πc2r4
(42)

The differential equation (42) has the standard form as follows

y′ + p(r)y = q(r) (43)

The solution y(r) is as follows [10]. Putting

η(r) = e
∫
p(r)dr = e

∫
2
r
dr = e2ln(r) = r2 (44)

We have

y(r) =
1

η(r)

(∫
q(r)η(r)dr +A

)
dr

=
1

r2

[ ∫ (
− ω

GM2
g

4πr4

)
r2dr +A

]
=

1

r2

[
ω
GM2

g

4πr
+A

]
= ω

GM2
g

4πr3
+
A

r2
, (45)

where A is an integral constant.
Substituting y= eνν ′, we have

eνν ′ = (eν)′ = ω
GM2

g

4πr3
+
A

r2
(46)

or

eν =

∫ (
ω
GM2

g

4πr3
+
A

r2

)
dr

= −ω
GM2

g

8πr2
− A

r
+B (47)

where B is a new integral constant.
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We shall determine the constants A,B from the non-relativistic limit. We know that
the Lagrangian describing the motion of a particle in gravitational field with the potential
ϕg has the form [11]

L = −mc2 +
mv2

2
−mϕg (48)

The corresponding action is

S =

∫
Ldt = −mc

∫
(c− v2

2c
+
ϕg
c

)dt = −mc
∫
ds (49)

we have

ds = (c− v2

2c
+
ϕg
c

)dt (50)

that is

ds2 =
(
c2 +

v4

4c2
+
ϕg
c2
− v2 + 2ϕg −

v2ϕg
c2

)
dt2

=
(
c2 + 2ϕg

)
dt2 − v2dt2 + . . .

= c2
(

1 + 2
ϕg
c2

)
dt2 − dr2 + . . . (51)

Where we reject the terms which lead to zero when c approaches to infinity. Comparing
(51) with the our line element (we reject the terms in the coefficient of dr2)

ds2 = eνc2dt2 − dr2 (52)

we get

−A
r

+B ≡ 2
ϕg
c2

+ 1

≡ −2
GMg

c2r
+ 1 (53)

From (53) we have

A = 2
GMg

c2
, B = 1 (54)

The constant ω does not obtain in the non relativistic limit, we shall determine it later.
Thus, we get the following line element

ds2 = c2(1− 2
GMg

c2r
− ω

GM2
g

8πr2
)dt2 − (1− 2

GMg

c2r
− ω

GM2
g

8πr2
)−1dr2 − r2(dθ2 + sin2 θdϕ2)(55)

We put ω
8π = Gω′

c4
and rewrite the line element (55)

ds2 = c2(1− 2
GMg

c2r
− ω′

G2M2
g

c4r2
)dt2 − (1− 2

GMg

c2r
− ω′

G2M2
g

c4r2
)−1dr2 − r2(dθ2 + sin2 θdϕ2)(56)
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We determine the parameter ω′ from the experiments in the Solar system. We use the
Robertson - Eddington expansion [9] for the metric tensor in the following form

ds2 =c2
(

1− 2α
GMg

c2r
− 2(β − αγ)

G2M2
g

c4r2
+ . . .

)
dt2

− (1− 2γ
GMg

c2r
+ . . .)dr2 − r2(dθ2 + sin2 θdϕ2)

(57)

When comparing (56) with (57), we have

α = γ = 1 (58)

and

ω′ = 2(1− β) (59)

The predictions of the Einstein field equations can be neatly summarized as

α = β = γ = 1 (60)

From the experimental data in the Solar system, people [9] obtained

2− β + 2γ

3
= 1.00± 0.01 (61)

With γ = 1 in this model, we have

ω′ = 2(1− β) = 0.00± 0.06 (62)

Thus |ω′| ≤ 0.006 hence |ω| ≤ 0.48Gπ
c4

. The line element (56) gives a very small supplemen-
tation to the Schwarzschild line element. We discuss more to this term ω. We consider to
the term eν , it vanishes when

1− 2
GMg

c2r
− ω′

G2M2
g

c4r2
= 0

or

c4r2 − 2GMgc
2r − ω′G2M2

g = 0 (63)

If we choose ω′ < 0, equation (63) has two positive solutions

r1 =
GMg

c2
(1−

√
1 + ω′) ≈ −ω′GMg

2c2

r2 =
GMg

c2
(1 +

√
1 + ω′) ≈ 2GMg

c2
+ ω′

GMg

2c2
(64)

We calculate radii r1,r2 for a body whose mass equals to Solar mass and for a galaxy
whose mass equals to the mass of our galaxy with ω′ ≈ −0.06

• with Mg = 2× 1030kg: r1 ≈ 30m, r2 ≈ 3km.
• with Mg = 1011 × 2× 1030kg: r1 ≈ 3× 109km, r2 ≈ 3× 1011km.

Thus, because of gravitational collapse, firstly at the radius r2 a body becomes a black hole
but then at the radius r1 it becomes visible. Therefore, this model predicts the existence
of a new universal body after a black hole.

The graph of eν is showed in figure 1
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Fig. 1. The graphic of function eν

V. CONCLUSION

In conclusion, based on the vector model for gravitational field we have deduced
a modified Einstein’s equation. For a static spherically symmetric body, this equation
gives a Schwarzschild metric with a black hole without singularity. Especially, this model
predicts the existence of a new universal body after a black hole.
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