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Abstract. In this paper, we show a unifying description to the dark matter and dark energy.
This description does not demand dark energy with the anti-gravitational property. It also points
out a lower limit of the average mass of the particles of cosmological energy (ordinary matter,
dark matter and dark energy particles) m � 54eV. The coincident problem between the density
of dark energy and one of matter is a clear fact.

I. INTRODUCTION

Recent astro-physical observations show that the Universe consists of 4 % ordinary
matter, 23 % dark matter, 73 % dark energy [1].

The existence of dark matter has pointed out firstly by Jan Oort (1930) and Frizt
Zwicky (1933) [2] based on the studies of the rotation curves of galaxies and galactic
clusters. The main candidates for dark matter are MACHOs (Massive Astrophysical
Compact Halo Objects) and WIMPs (Weakly Interacting Massive Particles).

Dark energy is an unknown form of energy with negative pressure. Nowadays it
causes the accelerating expansion of the Universe.

The existence of dark energy has been pointed out directly by two independent
groups based on Supernovae (SNe) type Ia observations [3, 4] and also indirectly been
suggested by independent studies based on fluctuations of the 3K relic radiation [5], large
scale structure [6], age estimates of globular clusters, old high red-shift objects [7], as well
as by the X-ray data from galaxy clusters [8].

Nowadays, there are many other candidates for the dark energy [9]:
1. A cosmological constant Λ;
2. A Λ(t) - term, or a decaying vacuum energy density;
3. A relic scalar field (SF) slowly rolling down its potential;
4. X-matter, an extra component characterized by an equation of state pX =

ωρX , −1 ≤ ω < 0;
5. A Chaplygin - type gas whose equation of state is given by p = A/ρα, 0 ≤ α ≤ 1

where A is a positive constant.
It is widely known that the main distinction between the pressure-less CDM and

dark energy is that the former agglomerates at small scales whereas the dark energy is
a smooth component in the Universe. Such properties seems to be directly linked to
the equation of state of both components. Recently, the idea of a unified description for
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CDM and dark energy scenarios has received much attention. For example, Wetterich [10]
suggested that dark matter might consist of quintessence lumps, Kasuya [11] showed that
spintessence type scenarios are generally unstable to formation of Q balls which behave as
pressure-less matter. More recently, Padmanabhan and Choudhury [12] investigated such
a possibility trough a string theory motivated tachyonic field. Kamenshchik et al [13],
Billic et al [14], Beto et al also suggested the unification which refers to an exotic fluid,
the Chaplygin type gas, whose equation of state is: p = A/ρα. For α < 1, this equation
constitutes a generalization of the original Chaplygin gas equation of state [15], for α = 0,
model behaves as ΛCDM.

An another way of a unified description of dark matter and dark energy is K-
essence models. The idea of K- essence was first introduced as a possible model for
inflation [16, 17]. Later it was noted that K-essence can also yield interesting models
for the dark energy [18, 19, 20, 21]. It is possible to construct a particular interesting
class of such models in which the K-essence energy density tracts the radiation energy
density during the radiation-dominated era, but then evolves toward a constant density
dark energy component during the matter dominated era [5, 6]. In this class of models,
the coincidence problem is resolved by linking the onset of dark energy domination to the
epoch of equal matter and radiation.

R. J. Scherrer [22] reexamined a particularly simple class of K-essence, in which the
lagrangian contains only a kinetic factor, i.e. a function of the derivatives of the scalar
field, and does not depend explicitly on the field. He also examines such models in the
generic case. These models naturally produce a density which scales like the sum of a
non-relativistic dust component with the equation of state ω = 0 and a cosmological -
constant -like component ω = −1. The other distinguishing characteristic of these models
is that they generically produce a low sound speed, allowing the ”dust” component to
cluster as dark matter.

In this paper, based on the vector model of gravitational field we also introduce a
united description for dark matter and dark energy. This description does not require the
anti- gravitation property for dark energy. It also point out the truncation of dark matter
halos and a lower limit for the average mass of dark matter and dark energy particles.
The coincident problem between the density of dark energy and one of matter is a clear
fact.

II. AN APPROACH TO THE DARK MATTER AND DARK ENERGY
PROBLEMS

From result in the paper [23], we have known that the density of the cosmological
energy (ordinary matter, dark matter and dark energy) dilutes in the form ρ ∝ R−2

in the vector model of gravitational field. Thus, basing on the dilution of the density,
the cosmological energy is like the dust matter (ρm ∝ R−3) than the radiation energy
(ρR ∝ R−4). Because of this fact, we assume that the classical Bolzmann distribution
can be used to describe the distribution of the cosmological energy around galaxies and
galactic clusters.

We consider a galaxy with the gravitationalmass Mg, it is in a sea of the cosmological
energy. We investigate the gravitational field at a point A in this sea.
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Call N0 is the density of cosmological energy particles at a very distance point from
the galaxy when ϕg = 0.

Call ϕg is the gravitational potential at A. When we assume that the classical
Boltzmann distribution can be applied to the cosmological energy, we have the density of
particles at A

N = N0 exp
(
−mgϕg

kT

)
(1)

Here mg is the gravitational mass of a particle. Thus density of gravitational mass at A is

ρg = Nmg = mgN0 exp
(
−mgϕg

kT

)
(2)

Here mg is the gravitational mass of particle, T is the absolute temperature of the particle
gas. At a remote distance from the galaxy, the kinetic energy of particle is very larger
than its potential energy. We suppose that

mgϕg � kT (3)

We have
exp

(
−mgϕg

kT

)
≈ 1 − mgϕg

kT
(4)

From (2)

ρg = mgN0

(
1 − mgϕg

kT

)
(5)

= mgN0 −
m2

gN0ϕg

kT
(6)

We recall the 3th equation of the system of non-relativistic equations [24]

∇−→
E g = −ρg

εg
(7)

Notice that
−→
Dg = εg

−→
E g [24], G = 1/4πεg and

−→
E g = −∇ϕg due to

−→
A g = 0, thus

∇2ϕg =
ρg

εg
(8)

Substituting (6) into (8), we have

∇2ϕg =
mgN0

εg
−

m2
gN0

εgkT
ϕg (9)

We rewrite (9) in the following form

∇2ϕg = a − b2ϕg (10)

Here

a ≡ mgN0

εg
(11)

b2 ≡
m2

gN0

εgkT
(12)
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Assuming that the cosmological energy particles distribute symmetrically around
galaxy Mg, we can rewrite (10) in the following form:

1
r

d2

dr2
(rϕg) = −b2ϕg + a (13)

We seek the general root of equation (13). The general root of homogeneous equation (13)

1
r

d2

dr2
(rϕg) = −b2ϕg (14)

is
ϕg0 =

1
r

(
C1e

−ibr + C2e
+ibr

)
(15)

A special root of inhomogeneous equation (13) is

ϕg1 =
1
r

(
e−ibr + e+ibr

)
+

a

b2
(16)

Thus, the general root of inhomogeneous equation (13) is

ϕg = ϕg0 + ϕg1 =
1
r

(
C1e

−ibr + C2e
+ibr

)
+

1
r

(
e−ibr + e+ibr

)
+

a

b2
(17)

Due to ϕg and a/b2 are real, so C1 = C2 and they are real or C1 = −C2 and they are purely
imaginary. We require that when r → 0, we obtain Newtonian limit for the gravitational
potential, i.e.

ϕg → ϕg = −GMg

r
+ constant (18)

When r → 0, ϕg in (17) becomes

ϕg =
1
r
(C1 + C2) +

2
r

+
a

b2
(19)

In the case when C1 = C2, from (18) and (19), we obtain

C1 + 1 = C2 + 1 = −GMg

2
(20)

and a/b2 = constant. In the case when C1 = −C2, we don’t obtain the classical Newtonian
limit. We shall discuss this case in a different paper. Thus the general root of (13) is

ϕg = −GMg

r

(
e−ibr + eibr

)
+

a

b2
= −GMg

r
cos br +

a

b2
(21)

We also obtain the gravitational field around galaxy Mg when the cosmological energy
presents as follows

Eg = −gradϕg = −GMgb

r
sin br − GMg

r2
cos br (22)

Finally, the gravitational force acts on a star mg1 which moves in this gravitational field
as follows

Fg = mg1Eg = −GMgbmg1

r
sin br − GMgmg1

r2
cos br (23)

We rewrite (23) in the following form

Fg = FV + FN (24)
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with

FV ≡ −GMgbmg1

r
sin br (the vacuum force) (25)

FN ≡ −GMgmg1

r2
cos br (the Newtonian force) (26)

We consider now the correlation between FV and FN when r varies from 0 to ∞.
1. Region 1 (Newtonian region): when br � 1 we have sin br ≈ 0, cos br ≈ 1 so

FV � FN we see that

Fg = FN = −GMgmg1

r2
(27)

We return the Newtonian limit.
2. Region 2 (Region of dark matter): when br = π

2 ±ε we have sin br ≈ 1, cos br ≈
0 so FV � FN Therefore

Fg = FV = −GMgmg1b

r
(28)

If we investigate now the motion of a star in this region, we have

mi1
v2

r
=

GMgmg1b

r
(29)

Because mi1
∼= mg1 therefore

v2 = GMgb (30)

i.e. v is independent of r. When taking into account of the term sinbr, we
have v2 = GMgb sin br or

v = (GMgb sinbr)1/2 with
π

2
− ε < br <

π

2
+ ε (31)

We express the results on the figure (1).
3. Region 3 (Region of dark energy): when | cos br| > sin br or br > π. FN changes

sign and becomes repulsive force and |FN | > FV or both FN and FV become
repulsive forces. A star or other galaxy into this region would be repulsed
away and accelerated. Perhaps acceleration of the Universe on large distances
occurs when galaxies are in this region.

4. Region 4 (large attractive region): when br is very large. FV and FN change
signs again and become attractive forces. We show these regions on the figure
(2).

III. THE EVALUATION OF bbb AND THE AVERAGE MASS OF THE
PARTICLES OF COSMOLOGICAL ENERGY

Now we evaluate the value of b. We examine the rotation curve of Milky Way . The
Sun which is in the region of dark matter has the rotation velocity around the Milky Way
about 200 km/s, the Milky Way’s mass is about 1011Msun. From (30), we have

b =
v2

GMg
(32)
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Fig. 1. The dependence of star velocity on the distance r from the center of galaxies.

Fig. 2. Space regions around galaxy when r increases.
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where v = 2 × 105 m/s and Mg ∼ 1011 × 2 × 1030 kg. We get

b ∼ 3 × 10−21 m−1 (33)

We also find that radii of planets in the solar system are in the Newtonian region.
Indeed, when we choose rmax = rPluto = 5500.109 m we obtain

brPluto = 3 × 10−21 × 5500× 109 = 165× 10−10 << 1 (34)

We have also known that almost masses of galaxies are about 1011 Msun, their velocities
in rotation curves are about 150 km/s → 300 km/s [2, 25, 26, 27], therefore value of b in
(33) is true.

We evaluate the first dark matter region of galaxies. From Fig.(2) and formulas
(31) we find that the region of dark matter starts at the distance so that FV � FN and
ends as brmax = π or rmax ∼ 1.04× 1021 m ∼ 33.8 kpc.

We evaluate the mean mass of the cosmological energy particles in this approach.
It is known that particles with integral spins obey the Bose - Einstein statistics , particles
with half- integral spins obey the Fermi-Dirac statistics. However, when the particle gas
satisfies the non- degeneracy condition [28, 29]

n0h
3

(2πmkT )3/2
� 1 (35)

These two statistics lead to the classical Bolzmann statistics. Here n0 is the particle
density, h = 6.63 × 10−34 J.s is the Planck constant, k = 1.38 × 10−23 J.K−1 is the
Bolzmann constant, m is the particle mass, T is the absolute temperature of the particle
gas. We can substitute n0 = ρ/m with ρ is the mass density of particles, (35) becomes

ρh3

(2πkT )3/2m5/2
� 1 (36)

But we have ρ0 = mgN0 ≤ ρ (because ρ0 is the density at the points which are very
distance from the galaxy). Therefore

ρ0h
3

(2πkT )3/2m5/2
� 1 (37)

We also recall (12)

b2 =
m2

gN0

εgkT
(38)

=
mgρ0

εgkT
(39)

Therefore

kT =
mgρ0

b2εg
=

mgρ04πG

b2
(40)

Substitute (40) into (37), we have:

h3b3

(8π2G)3/2ρ
1/2
0 m4

g

� 1 (41)
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or
(hb)3/4

(8π2G)3/8ρ
1/8
0

� mg (42)

If we choose ρ0 ∼ 10−29 g/cm3 ∼ 10−26kg/m3, we have:

mg � 1.3× 10−34 kg ∼ 54 eV (43)

We also remark that b can has different values in clusters of galaxies and superclusters of
galaxies by (12) and (30).

A remarkable point of this approach is that it do not demand dark energy with anti-
gravitational property.

The coincidence problem between the density of dark energy and the density of
matter is a clear fact because there is no the distinction between ordinary matter , dark
matter and dark energy in this approach.

IV. CONCLUSION

In this paper, we have introduced a united description for dark matter and dark
energy. we have obtained a modified expression for the gravitational force and have found
a lower limit of the average mass of the particles of cosmological energy.
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