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Abstract. An over-parametrized (three-parametric) R-matrix satisfying a graded Yang-Baxter
equation is introduced. It turns out that such an over-parametrization is very helpful. Indeed, this
R-matrix with one of the parameters being auxiliary, thus, reducible to a two-parametric R-matrix,
allows the construction of quantum supergroups GLp,q(1/1) and Up,q[gl(1/1)] which, respectively,
are two-parametric deformations of the supergroup GL(1/1) and the universal enveloping alge-
bra U [gl(1/1)]. These two-parametric quantum deformations GLpq(1/1) and Upq[gl(1/1)], to our
knowledge, are constructed for the first time via the present approach. The quantum deformation
Up,q[gl(1/1)] obtained here is a true two-parametric deformation of Drinfel’d-Jimbo’s type, un-
like some other one obtained previously elsewhere.
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I. INTRODUCTION

The discovery of the Higgs boson by the LHC collaborations ATLAS and CMS [1,2] shows
once again the might of the symmetry principle in physics (see, for instance, [3] and references
therein for a review on the Higgs boson’s search and discovery). In particular, the standard model
(SM) based on the gauge symmetry SU(3)⊗SU(2)⊗U(1) (see, for example, [4,5]), has been ver-
ified by the experiment, specially, after the discovery of the Higgs model, as an excellent model
of elementary particles and their interactions [6]. There are, however, a number of problems,
which cannot be explained or described by the existing symmetry, for example, within the SM
the problems like CP-violation (matter-antimatter asymmetry), neutrino masses and mixing, dark
matter, dark energy, etc. cannot be solved. Such problems may require an extension by size, or
even, a generalization by concept, of an underlying symmetry1 adopted to a physics system. One
of such generalizations is the concept of quantum deformed symmetry. Mathematically, if ordi-
nary (or classical) symmetry is described by classical groups such as the above-mentioned group
SU(3)⊗ SU(2)⊗U(1), the quantum deformed symmetry is described by the so-called quantum
groups [7–12] (see, for example, [13, 14] for some physics applications of quantum groups).

Using the R-matrix formalism [7] is one of the approaches to quantum groups which can
be interpreted as a kind of (quantum) deformations of ordinary (classical) groups or algebras. It
has proved to be a powerful method in investigating quantum groups and related topics such as
noncommutative geometry [8,11,12,15], integrable systems [7,13,14], etc. A physical meaning
of this approach is the so-called (universal) R-matrix associated to a quantum group satisfies the
famous Yang-Baxter equation (YBE) representing an integrability condition of a physical system
[7, 13, 14]. A mathematical advantage of this approach is both the algebraic and co-algebraic

structure of the corresponding quantum group can be expressed in a few compact (matrix) rela-
tions. Quantum groups as symmetry groups of quantum spaces [7, 8, 15] or as deformations of
universal enveloping algebras, called also Drinfel’d-Jimbo (DJ) deformation [9, 10], can be also
derived in an elegant way in the framework of the R-matrix formalism. The DJ deformation, which
is originally one-parametric, has an advantage that it has a clear algebraic structure (as a deforma-
tion from the classical algebraic structure) and it is convenient for a representation construction
and a multi-parametric generalization. Combined with the supersymmetry idea [16–18] (see, for
example, [19, 20], among a vast literature, for a more detailed introduction), the quantum defor-
mations lead to the concept of quantum supergroups [21–24]. In this case, an R-matrix becomes
graded and satisfies a graded YBE [24].

By original construction, a quantum (super) group depends on a, complex in general, pa-
rameter, but the concept of one-parametric quantum (super) groups can be generalized to that of
multi-parametric quantum (super) groups. For about three decades quantum groups have been in-
vestigated in great details in many aspects. These investigations were carried out first and mainly
on the one-parametric case and they were extended later to on the multi-parametric deforma-
tions [8, 25]. Having in principle richer structures, multi-parametric quantum groups are also a
subject of interest of a number of authors (see Refs. [26–36] and references therein) and have been
applied to considering some physics models (see in this context, for example, Refs. [36–39]) but in

1Here we do not discuss the global- and the local symmetry separately.
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comparison with the one-parametric quantum groups, they are considerably less understood (even,
in some cases they can be proved to be equivalent to one-parametric deformations). Moreover,
most of the multi-parametric deformations considered so far are two-parametric ones including
those of supergroups [27–35] (it is clear that two-parametric deformations of supergroups cannot
be always reduced to one-parametric ones [27–29, 31]). Here, we continue to deal with the case
of two-parametric deformations, in particular, a two-parametric deformation of the supergroup
GL(1/1), which was also considered in [27]. The two-parametric deformation obtained there,
however, does not lead to a ”standard” DJ form of a two-parametric deformation of U [gl(1/1)]
obtaining which is the purpose of the present work. It will be shown that such a two-parametric
deformation of DJ type can be found via a quasi three-parametric deformation of Gl(1/1).

II. DRINFEL’D-JIMBO QUANTUM SUPERGROUPS AND THEIR
TWO-PARAMETRIC GENERALIZATION

A quantum group as a DJ deformation [9,10] of an universal enveloping algebra of a (semi-)
simple superalgebra g of rank r can be defined via a set of 3r Cartan-Chevalley generators hi, ei, fi,
i = 1,2, ...,r, subject to the following defining relations (see, for example, [40, 41] and references
therein):

a) the quantum Cartan-Kac supercommutation relations,

[hi,h j] = 0, [hi,e j] = ai je j,
[hi, f j] =−ai j f j, [ei, f j}= δi j[hi]qi ,

(1)

b) the quantum Serre relations,

(adqEi)
1−ãi jE j = 0, (adqFi)

1−ãi jF j = 0, (2)

with Ei = eiq
−hi
i , Fi = fiq

−hi
i , and

c) the quantum extra-Serre relations which for g being sl(m/n) or osp(m/n) have the form,

{[em−1,em]q, [em,em+1]q}= 0,
{[ fm−1, fm]q, [ fm, fm+1]q}= 0, (3)

where

[X ]q =
qX −q−X

q−q−1 , (4)

denotes a (one-parametric) quantum deformation of a number or operator X , and (ãi j) is a matrix
obtained from the non-symmetric Cartan matrix (ai j) of g by replacing the strictly positive ele-
ments in the rows with 0 on the diagonal entry by−1, while adq is the q-deformed adjoint operator
given by the formula (2.8) in [40]. Here qi = qdi where di are rational numbers symmetrizing the
Cartan matrix, diai j = d ja ji, 1≤ i, j ≤ r. They take, for example, in case g = sl(m/n), the values

di =

{
1 for 1≤ i≤ m,
−1 for m+1≤ i≤ r = m+n−1. (5)

Now let us define a two-parametric DJ deformation as a direct generalization of the above-defined
one-parametric deformation (1)–(3) by extending (4) to

[X ]p,q =
qX − p−X

q− p−1 , (6)
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where p and q are, in general, independent complex parameters. Thus [h]qi in (1) becomes

[hi]pi,qi ≡
qhi

i − p−hi
i

qi− p−1
i

, (7)

with qi defined above and pi = pdi . This kind two-parametric generalization of the DJ deforma-
tion was considered earlier in, for example, [29,31,32]. Next, according to this definition, we will
derive via the R-matrix formalism a two-parametric DJ deformation of U [gl(1/1)] which, to our
knowledge, has not yet been constructed. Since gl(1/1) is a rank-1 (r = 1) superalgebra, the index
i will be omitted.

As discussed in the previous section, one of the two-parametric quantum deformations of
GL(1/1) was obtained elsewhere [27], however, the corresponding two-parametric deformation of
the universal enveloping algebra U [gl(1/1)] has no DJ form. In fact, the two-parametic deforma-
tion of U [gl(1/1)] in [27] can be transformed to an one-parametric DJ deformation by re-scaling
its generators appropriately. Indeed, starting from the defining relations of the deformation of
U [gl(1/1)] given in [27],

[K,H] = 0, [K,χ±] = 0, [H,χ±] =±2χ±,

{χ+,χ−}q/p =

(
q
p

)H/2

[K]√qp ,

where

{χ+,χ−}q/p ≡
(

q
p

)1/2

χ+χ−+

(
q
p

)−1/2

χ−χ+,

[K]√qp =
(qp)K/2− (qp)−K/2

(qp)1/2− (qp)−1/2

and making re-scaling χ±→ χ ′± =

(
q
p

)−H/4

χ±, we get

[K,H] = 0, [K,χ ′±] = 0,

[H,χ ′±] =±2χ
′
±, {χ ′+,χ ′−}= [K]√qp.

The latter relations are (conventional) defining relations of an one-parametric DJ deformation of
U [gl(1/1)] with parameter

√
qp (cf. (1)–(4)). To obtain a true two-parametric deformation of both

GL(1/1) and U [gl(1/1)] we start from a three-parametric R-matrix satisfying a graded YBE. This
R-matrix approach will allow us to construct a (quasi) three-parametric deformation of GL(1/1)
which in fact is equivalent upto a rescaling to a true two-parametric deformation of GL(1/1). It
also leads to a true two-parametric DJ deformation of U [gl(1/1)].

III. A QUASI THREE-PARAMETRIC DEFORMATION OF GL(1/1)

As the maximal number of parameters of a quantum deformation of GL(1/1) is two, the
below-obtained deformation of GL(1/1) is in fact quasi-three parametric (so is the corresponding
R-matrix). We will see below that such an over-parametrization is very convenient.
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Let us start with the operator

R = q(e1
1⊗ e1

1)+ r(e1
1⊗ e2

2)+ s(e2
2⊗ e1

1)

+λ (e1
2⊗ e2

1)+ p(e2
2⊗ e2

2),
(8)

where p, q, r, s and λ are complex deformation parameters, while ei
j, i, j = 1,2, are Weyl genera-

tors of GL(1|1) with a Z2-grading given as follows:

[ei
j] = [i]+ [ j] (mod 2), [i] = δi2. (9)

We call the latter operator an R-matrix although it has a (finite) matrix form only in a finite-
dimensional representation. In the fundamental representation ei

j are super-Weyl matrices, (ei
j)

h
k =

δ i
kδ h

j , and R is a 4× 4 matrix. Three of the five parameters, say, p, q and r, can be chosen to be
independent, while the remaining parameters, s and λ , are subject to the constraints

rs = pq, λ = q− p. (10)

By this choice of the parameters, the R-matrix (1) satisfies the graded YBE

R12R13R23 = R23R13R12, (11)

with
R12 = R⊗ I ≡ R⊗ ei

i, i = 1,2,

R13 = q(e1
1⊗ ei

i⊗ e1
1)+ r(e1

1⊗ ei
i⊗ e2

2)+ s(e2
2⊗ ei

i⊗ e1
1)

+(−1)[i]λ (e1
2⊗ ei

i⊗ e2
1)+ p(e2

2⊗ ei
i⊗ e2

2),

R23 = I⊗R≡ ei
i⊗R,

(12)

where repeated indices are summation indices, I is the identity operator and the Z2-grading is
given in (9).

Now suppose the operator subject

T = a e1
1 +β e1

2 + γ e2
1 +d e2

2 ≡ t j
i ei

j (13)

obeys the so-called RT T equation
RT1T2 = T2T1R, (14)

where
T1 = T ⊗ I ≡ (ae1

1 +βe1
2 + γe2

1 +de2
2)⊗ ei

j,

T2 = I⊗T

≡ ei
j⊗ [ae1

1 +(−1)[i]βe1
2 +(−1)[i]γe2

1 +de2
2].

(15)

The Eq. (14) leads to the supercommutation relations between the elements of T :

aβ =
r
p

βa, aγ =
q
r

γa, ad = da+
λ

r
γβ , β 2 = 0 = γ2,

βγ = − s
r

γβ ≡− pq
r2 γβ , βd =

p
r

dβ , γd =
r
q

dγ.

(16)

Let us denote G a set of all operators (13) satisfying (14) and let T and T ′ be two independent
copies of (13) in the sense that all elements t i

j of T commute with all those of T ′. The fact that the
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multiplication T.T ′ preserves the relation (14), that is, the relations (16), reflects the group nature
of G. Next, since the quantity

D(T ) ≡ (a−βd−1γ)d−1 = d−1(a−βd−1γ)

= a(d− γa−1β )−1 (17)

commutes with T and has the ”multiplicative” property D(T.T ′) = D(T ).D(T ′) it can be identified
with a representation of a quantum superdeterminant. Thus we can take G with D(T ) 6= 0, ∀T ∈G,
as a quasi three-parametric deformation, denoted by GLp,q,r(1/1), of a representation of GL(1/1).
The latter deformation is equivalent upto a rescaling (e.g., p/r→ p, q/r→ q) to a two-parametric
deformation, say GLp,q(1/1), but we keep the quasi three-parametric form until obtaining a true
two-parametric deformation of U [gl(1/1)]. When we set D(T )= 1 we get a quasi three-parametric
deformation of SL(1/1). We note that the form of the quantum superdeterminant D(T ) is the same
as that given in [27], that is, it remains non-deformed and belongs to the center of GLp,q,r(1/1).
The Hopf structure is straightforward and given by the following maps:

- the co-product:
∆(T ) = T ⊗̇T, (18)

- the antipode:
S(T ).T = I, (19)

- the counit:
ε(T ) = I. (20)

In components they read

∆(t i
j) = tk

j ⊗ t i
k, (21)

S(t j
i ei

j) = S(t j
i )e

i
j

= a−1(1+βd−1γa−1)e1
1− (a−1βd−1)e1

2

−(d−1γa−1)e2
1 +d−1(1−βa−1γd−1)e2

2,

(22)

ε(t i
j) = δ

i
j. (23)

A quantum superplane with symmetry (authomorphism) group GLp,q,r(1/1) is given by the coor-
dinates (

x
θ

)
or

(
η

y

)
(24)

subject to the commutation relations

xθ =
q
r

θx≡ s
p

θx, θ
2 = 0 or η

2 = 0, ηy =
p
r

yη , (25)

respectively. Note that these quantum superplanes (which are ”two-dimensional”) are still two-
parametric (of course, we cannot make relations between two coordinates to depend on more
than two parameters). Finally, in order to complete our program we must construct a true two-
parametric DJ deformation of the universal enveloping algebra U [gl(1/1)]. It can be obtained
from a quasi-three parametric DJ deformation, denoted as Up,q,r[gl(1/1)], corresponding to the
R-matrix (8).
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IV. A TWO-PARAMETRIC DRINFEL’D–JIMBO DEFORMATION OF U [gl(1/1)]

First, following the technique of [7], we introduce two auxilary operators

L+ = H+
1 e1

1 +H+
2 e2

2 +λX+e1
2,

L− = H−1 e1
1 +H−2 e2

2 +λX−e2
1,

(26)

with H±i and X± belonging to Up,q,r[gl(1/1)] to be constructed. Then, demanding

L±1 = L±⊗ ei
i,

L+
2 = ei

i⊗ [H+
1 e1

1 +H+
2 e2

2 +(−1)[i]λX+e1
2],

L−2 = ei
i⊗ [H−1 e1

1 +H−2 e2
2 +(−1)[i]λX−e2

1]

to obey the equations

RLε1
1 Lε2

2 = Lε2
2 Lε1

1 R, (27)

where (ε1, ε2) = (+,+),(−,−),(+,−), we get the following commutation relations between H±i
and X±:

Hε1
i Hε2

j = Hε2
j Hε1

i ,

pH+
i X+ = rX+H+

i , qH−i X+ = rX+H−i ,

rH+
i X− = pX+H+

i , rH−i X− = qX−H−i ,

rX+X−+ sX−X+ = λ−1(H−2 H+
1 −H+

2 H−1 ),

(28)

which are taken to be the defining relations of Up,q,r[gl(1/1)]. Its Hopf structure is given by

∆(L±) = L±⊗̇L±, (29)

S(L±) = (L±)−1, (30)
ε(L±) = I, (31)

or equivalently (no summation on i = 1,2),

∆(H±i ) = H±i ⊗H±i ,

∆(X+) = H+
1 ⊗X++X+⊗H+

2 ,

∆(X−) = H−2 ⊗X−+X−⊗H−1 ,

(32)

S(H±i ) = (H±i )−1,

S(X+) = −(H+
1 )−1X+(H+

2 )−1,

S(X−) = −(H−2 )−1X−(H−1 )−1,

(33)

ε(H±i ) = 1, ε(X±) = 0. (34)
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At first sight Up,q,r[gl(1/1)] given in (28) is a three-parametric quantum supergroup depending on
three parameters p, q and r (or s). However, making the substitution

H+
1 =

(
r
p

)E11

, H+
2 =

( p
r

)E22
,

H−1 =

(
r
q

)E11

, H−2 =
(q

r

)E22
,

E12 = X+rE22 , E21 = X−sE11 ,

(35)

in (28) and replacing p by p−1 (without loss of generality), we obtain a two-parametric deforma-
tion of U [gl(1/1)] generated by Ei j, which are two-parametric analogs of the Weyl generators, via
the following relations

[Eii,E j j] = 0,

[Eii,E j, j±1] = (δi j−δi, j±1)E j, j±1, (36)

{E12,E21} = [K]p,q ,

where 1≤ i, j, j±1≤ 2 and

[K]p,q =
qK− p−K

q− p−1 , K = E11 +E22. (37)

The latter deformation denoted as Up,q[gl(1/1)] is a true two-parametric DJ deformation of U [gl(1/1)],
which we are looking for, as it cannot be made to become one-parametric by a further rescaling
of its generators. Of course, (35) is not the only realization of the generators of Up,q,r[gl(1/1)] in
terms of the deformed Weyl generators Ei j.

V. CONCLUSION

We have suggested in the present paper an R-matrix satisfying a (quasi) three-parametric
graded YBE. Using this overparametrized R-matrix we can obtain two-parametric deformations
GLp,q(1/1) and Up,q[gl(1/1)], respectively, of the supergroup GL(1/1) and the corresponding
universal enveloping algebra U [gl(1/1)], respectively. It is worth noting that the quantum superal-
gebra Up,q[gl(1/1)] is a true two-parametric deformation of U [gl(1/1)] generalizing the Drinfel’d–
Jimbo deformation Uq[gl(1/1)] which is one-parametric. That is Up,q[gl(1/1)] cannot be reduced
to any one-parametric deformation by any re-scaling or re-definition of generators. Physics in-
terpretations and applications of these two-parametric deformations are a subject of our current
interest.
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